-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cifar100.py
278 lines (238 loc) · 17.2 KB
/
train_cifar100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import sys
sys.path.append('./models/')
import torch
import time
from models import PreActResNet18_cifar100
from models import PreActResNet18_silu_cifar100
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from torchvision.datasets import CIFAR10, CIFAR100
from torch.utils.data import DataLoader, TensorDataset
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
import ipdb
import sys
import argparse
sys.path.append('./utils/')
from core import *
from torch_backend import *
from cifar_funcs import *
from swa_utils import *
from datetime import datetime
from tensorboardX import SummaryWriter
# python3 train.py -gpu_id 0 -model 3 -batch_size 128 -lr_schedule 1
parser = argparse.ArgumentParser(description='Adversarial Training for CIFAR100', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--gpu_id", help="Id of GPU to be used", type=int, default = 0)
parser.add_argument("--model", help="Type of Adversarial Training: \n\t 0: l_inf \n\t 1: l_1 \n\t 2: l_2 \n\t 3: msd \n\t 4: triple \n\t 5: worst \n\t 6: vanilla \n\t 7: mix \n\t 8: sat \n\t 9: adt", type=int, default = 7)
parser.add_argument("--batch_size", help = "Batch Size for Train Set (Default = 128)", type = int, default = 128)
parser.add_argument("--swa", type = bool, default = True, help = 'using stochastic weight averaging')
parser.add_argument("--swat", type = bool, default = False, help = 'using stochastic weight averaging training')
parser.add_argument('--swa_start', type=float, default=60, metavar='N', help='SWA start epoch number (default: 20)')
parser.add_argument('--swa_c_epochs', type=int, default=1, metavar='N', help='SWA model collection frequency/cycle length in epochs (default: 1)')
parser.add_argument('--epochs', type=int, default=100, metavar='N', help='Training epochs (default: 50)')
parser.add_argument('--exp_id', type=str, default='t', metavar='N', help='The name of Experiments')
parser.add_argument('--test', type=bool, default=True, help='train or test')
parser.add_argument('--print_freq', type=int, default=5, metavar='N', help='print frequency')
parser.add_argument('--silu', type=bool, default=False, help='relu or silu')
parser.add_argument('--label_smoothing', type=str, default='False', help='smoothing')
parser.add_argument('--label_noise', type=str, default='False', help='noise')
parser.add_argument('--seed', type=int, default=1, help='noise')
args = parser.parse_args()
device_id = args.gpu_id
timestamp = str(datetime.now())[:-7]
device = torch.device("cuda:{0}".format(device_id) if torch.cuda.is_available() else "cpu")
torch.cuda.set_device(int(device_id))
torch.cuda.device_count()
batch_size = args.batch_size
choice = args.model
epochs = args.epochs
DATA_DIR = '../data'
dataset = cifar100(DATA_DIR)
train_set = list(zip(transpose(normalise2(pad(dataset['train']['data'], 4))), dataset['train']['labels']))
test_set = list(zip(transpose(normalise2(dataset['test']['data'])), dataset['test']['labels']))
train_set_x = Transform(train_set, [Crop(32, 32), FlipLR()])
train_batches = Batches(train_set_x, batch_size, shuffle=True, set_random_choices=True, num_workers=2, gpu_id = torch.cuda.current_device())
test_batches = Batches(test_set, batch_size, shuffle=False, num_workers=2, gpu_id = torch.cuda.current_device())
# import pdb; pdb.set_trace()
ln = args.label_noise
if args.silu:
model = PreActResNet18_silu_cifar100().cuda()
else:
model = PreActResNet18_cifar100().cuda()
for m in model.children():
if not isinstance(m, nn.BatchNorm2d):
m.half()
if args.swa:
if args.silu:
swa_model = PreActResNet18_silu_cifar100().cuda()
else:
swa_model = PreActResNet18_cifar100().cuda()
swa_n = 0
for m in swa_model.children():
if not isinstance(m, nn.BatchNorm2d):
m.half()
opt = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
criterion = nn.CrossEntropyLoss()
if args.label_smoothing == 'True':
criterion = LabelSmoothing(smoothing = 0.1)
else:
criterion = nn.CrossEntropyLoss()
import time
lr_schedule = lambda t: np.interp([t], [0, epochs*2//5, epochs*4//5, epochs], [0, 0.1, 0.005, 0])[0]
# lr_schedule = lambda t: np.interp([t], [0, epochs*2//5, epochs*4//5, epochs], [0, 0.1, 0.1, 0.1])[0]
args.swa_start = epochs*3//5
#For clearing pytorch cuda inconsistency
try:
train_loss, train_acc = epoch(test_batches, lr_schedule, model, 0, criterion, opt = None, device = device, stop = True)
except:
a =1
attack_list = [ pgd_linf, pgd_l1_topk, pgd_l2 , msd_v0 , triple_adv , pgd_worst_dir, triple_adv, mix, sat, adt] #TRIPLE, VANILLA DON'T HAVE A ATTACK NAME ANYTHING WORKS
attack_name = ["pgd_linf", "pgd_l1_topk", "pgd_l2", "msd_v0", "triple_adv", "pgd_worst_dir", "vanilla", "mix", 'sat', 'adt']
folder_name = ["LINF", "L1", "L2", "MSD_V0", "TRIPLE", "WORST", "VANILLA", "MIX", 'SAT', 'ADT']
if args.silu == True:
exp_name = folder_name[choice]+'_'+ args.exp_id+'_'+'silu'
else:
exp_name = folder_name[choice]+'_'+ args.exp_id
model_dir = "Final_CIFAR_100/{0}".format(exp_name)
import os
if(not os.path.exists(model_dir)):
os.makedirs(model_dir)
file = open("{0}/logs.txt".format(model_dir), "w")
def myprint(a):
print(a)
file.write(a)
file.write("\n")
attack = attack_list[choice]
hps_str = '{} model={} swa={} swa_start={} swa_c_epochs={} epochs={} test={} '.format(
timestamp, args.model, args.swa, args.swa_start, args.swa_c_epochs, args.epochs, args.test)
myprint('All hps: {}'.format(hps_str))
myprint((attack_name[choice]+'_'+ args.exp_id).format())
train_loss_list = torch.tensor([])
swa_train_loss_list = torch.tensor([])
l1_list = torch.tensor([])
swa_l1_list = torch.tensor([])
l2_list = torch.tensor([])
swa_l2_list = torch.tensor([])
linf_list = torch.tensor([])
swa_linf_list = torch.tensor([])
clean_list = torch.tensor([])
swa_clean_list = torch.tensor([])
train_acc_list = torch.tensor([])
swa_train_acc_list = torch.tensor([])
loss_l1_list = torch.tensor([])
loss_l2_list = torch.tensor([])
loss_linf_list = torch.tensor([])
for epoch_i in range(1,epochs+1):
if epoch_i == 1:
model_eval = model
start_time = time.time()
lr = lr_schedule(epoch_i + (epoch_i+1)/len(train_batches))
if choice == 6:
train_epoch = epoch
train_loss, train_acc = epoch(args, train_batches, lr_schedule, model, epoch_i, criterion, opt = opt, device = device, log = myprint, )
elif choice == 4:
train_epoch = triple_adv
train_loss, train_acc,loss_l1, loss_l2, loss_linf = triple_adv(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = opt, device = device, epsilon_l_2 = 0.5, log = myprint, label_noises = ln)
elif choice == 3:
train_epoch = epoch_adversarial
train_loss, train_acc = epoch_adversarial(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = opt, device = device, epsilon_l_2 = 0.5, log = myprint, label_noises = ln)
elif choice == 7:
train_epoch = epoch_adversarial_mix
train_loss, train_acc = epoch_adversarial_mix(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = opt, device = device, epsilon_l_2 = 0.5, log = myprint)
elif choice == 8:
train_epoch = epoch_adversarial_sat
train_loss, train_acc = epoch_adversarial_sat(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = opt, device = device, epsilon_l_2 = 0.5, log = myprint, label_noises = ln)
elif choice == 5:
train_epoch = epoch_adversarial
train_loss, train_acc = epoch_adversarial(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = opt, device = device, epsilon_l_2 = 0.5, alpha_l_inf = 0.005, log = myprint, label_noises = ln)
elif choice == 9:
train_epoch = epoch_adversarial_adt
train_loss, train_acc, loss_l1, loss_l2, loss_linf = epoch_adversarial_adt(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = opt, device = device, epsilon_l_2 = 0.5, log = myprint)
else:
train_epoch = epoch_adversarial
train_loss, train_acc = epoch_adversarial(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = opt, device = device, log = myprint)
if args.swa and epoch_i >= args.swa_start and (epoch_i - args.swa_start) % args.swa_c_epochs == 0:
myprint('using SWA'.format())
moving_average(swa_model, model, alpha=1.0 / (swa_n + 1))
swa_n += 1
bn_update(train_batches, swa_model)
# torch.save(swa_model.state_dict(),"{0}/swa_iter_{1}.pth".format(model_dir, str(epoch_i)))
model_eval = swa_model
myprint('Finishing SWA'.format())
if choice == 4 or choice == 9:
train_loss_all, train_acc_all,_ ,_ ,_ = train_epoch(args, train_batches, lr_schedule, model_eval, epoch_i, attack, criterion, opt = None, device = device, stop = True, log = myprint)
train_loss, train_acc,_ ,_ ,_ = train_epoch(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = None, device = device, stop = True, log = myprint)
else:
train_loss_all, train_acc_all = train_epoch(args, train_batches, lr_schedule, model_eval, epoch_i, attack, criterion, opt = None, device = device, stop = True, log = myprint)
train_loss, train_acc = train_epoch(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = None, device = device, stop = True, log = myprint)
else:
model_eval = model
if choice == 4 or choice == 9:
train_loss_all, train_acc_all,_ ,_ ,_ = train_epoch(args, train_batches, lr_schedule, model_eval, epoch_i, attack, criterion, opt = None, device = device, stop = True, log = myprint)
train_loss, train_acc,_ ,_ ,_ = train_epoch(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = None, device = device, stop = True, log = myprint)
else:
train_loss_all, train_acc_all = train_epoch(args, train_batches, lr_schedule, model_eval, epoch_i, attack, criterion, opt = None, device = device, stop = True, log = myprint)
train_loss, train_acc = train_epoch(args, train_batches, lr_schedule, model, epoch_i, attack, criterion, opt = None, device = device, stop = True, log = myprint)
res = 10
if args.test:
total_loss, total_acc = epoch(args, test_batches, lr_schedule, model_eval, epoch_i, criterion, opt = None, device = device, log = myprint)
total_loss, total_acc_1 = epoch_adversarial(args, test_batches, None, model_eval, epoch_i, pgd_l1_topk,criterion,device = device, stop = True, restarts = res, num_iter = 40, log = myprint)
total_loss, total_acc_2 = epoch_adversarial(args, test_batches, None, model_eval, epoch_i, pgd_l2, criterion,device = device, stop = True, restarts = res, epsilon = 0.5, num_iter = 40, alpha = 0.01, log = myprint)
total_loss, total_acc_3 = epoch_adversarial(args, test_batches, None, model_eval, epoch_i, pgd_linf, criterion,device = device, stop = True, restarts = res, num_iter = 40, log = myprint)
total_loss_cur, total_acc_cur = epoch(args, test_batches, lr_schedule, model, epoch_i, criterion, opt = None, device = device, log = myprint)
total_loss, total_acc_1_cur = epoch_adversarial(args, test_batches, None, model, epoch_i, pgd_l1_topk,criterion,device = device, stop = True, restarts = res, num_iter = 40, log = myprint)
total_loss, total_acc_2_cur = epoch_adversarial(args, test_batches, None, model, epoch_i, pgd_l2, criterion,device = device, stop = True, restarts = res, epsilon = 0.5, num_iter = 40, alpha = 0.01, log = myprint)
total_loss, total_acc_3_cur = epoch_adversarial(args, test_batches, None, model, epoch_i, pgd_linf, criterion,device = device, stop = True, restarts = res, num_iter = 40, log = myprint)
else:
total_loss, total_acc = epoch(args, test_batches, lr_schedule, model_eval, epoch_i, criterion, opt = None, device = device, log = myprint)
total_loss, total_acc_1 = epoch_adversarial(args, test_batches, lr_schedule, model_eval, epoch_i, pgd_l1_topk, criterion, opt = None, device = device, stop = True, log = myprint)
total_loss, total_acc_2 = epoch_adversarial(args, test_batches, lr_schedule, model_eval, epoch_i, pgd_l2, criterion, opt = None, device = device, stop = True, log = myprint)
total_loss, total_acc_3 = epoch_adversarial(args, test_batches, lr_schedule, model_eval, epoch_i, pgd_linf, criterion, opt = None, device = device, stop = True, log = myprint)
total_loss_cur, total_acc_cur = epoch(args, test_batches, lr_schedule, model, epoch_i, criterion, opt = None, device = device, log = myprint)
total_loss_cur, total_acc_1_cur = epoch_adversarial(args, test_batches, lr_schedule, model, epoch_i, pgd_l1_topk, criterion, opt = None, device = device, stop = True, log = myprint)
total_loss_cur, total_acc_2_cur = epoch_adversarial(args, test_batches, lr_schedule, model, epoch_i, pgd_l2, criterion, opt = None, device = device, stop = True, log = myprint)
total_loss_cur, total_acc_3_cur = epoch_adversarial(args, test_batches, lr_schedule, model, epoch_i, pgd_linf, criterion, opt = None, device = device, stop = True, log = myprint)
myprint('Epoch: {7}, Clean Acc: {6:.4f} Train Acc: {5:.4f}, Test Acc 1: {4:.4f}, Test Acc 2: {3:.4f}, Test Acc inf: {2:.4f}, Time: {1:.1f}, lr: {0:.4f}'.format(lr, time.time()-start_time, total_acc_3, total_acc_2,total_acc_1,train_acc, total_acc, epoch_i))
myprint('Epoch: {7}, Clean Acc: {6:.4f} Train Acc: {5:.4f}, Test Acc 1_cur: {4:.4f}, Test Acc 2_cur: {3:.4f}, Test Acc inf_cur: {2:.4f}, Time: {1:.1f}, lr: {0:.4f}'.format(lr, time.time()-start_time, total_acc_3_cur, total_acc_2_cur,total_acc_1_cur,train_acc, total_acc_cur, epoch_i))
myprint('Epoch: {6}, train loss: {5:.4f} train acc: {4:.4f}, train loss all: {3:.4f}, train acc all: {2:.4f}, Time: {1:.1f}, lr: {0:.4f}'.format(lr, time.time()-start_time, train_acc_all,train_loss_all,train_acc, train_loss, epoch_i))
train_loss_list = torch.cat((train_loss_list,torch.tensor([train_loss])), dim = 0)
swa_train_loss_list = torch.cat((swa_train_loss_list,torch.tensor([train_loss_all])), dim = 0)
l1_list = torch.cat((l1_list,torch.tensor([total_acc_1_cur])), dim = 0)
swa_l1_list = torch.cat((swa_l1_list,torch.tensor([total_acc_1])), dim = 0)
l2_list = torch.cat((l2_list,torch.tensor([total_acc_2_cur])), dim = 0)
swa_l2_list = torch.cat((swa_l2_list,torch.tensor([total_acc_2])), dim = 0)
linf_list = torch.cat((linf_list,torch.tensor([total_acc_3_cur])), dim = 0)
swa_linf_list = torch.cat((swa_linf_list,torch.tensor([total_acc_3])), dim = 0)
clean_list = torch.cat((clean_list,torch.tensor([total_acc_cur])), dim = 0)
swa_clean_list = torch.cat((swa_clean_list,torch.tensor([total_acc])), dim = 0)
train_acc_list = torch.cat((train_acc_list,torch.tensor([train_acc])), dim = 0)
swa_train_acc_list = torch.cat((swa_train_acc_list,torch.tensor([train_acc_all])), dim = 0)
if choice == 4 or choice == 9:
loss_l1_list = torch.cat((loss_l1_list,torch.tensor([loss_l1])), dim = 0)
loss_l2_list = torch.cat((loss_l2_list,torch.tensor([loss_l2])), dim = 0)
loss_linf_list = torch.cat((loss_linf_list,torch.tensor([loss_linf])), dim = 0)
np.save('{}/loss_l1_list.npy'.format(model_dir),loss_l1_list.numpy())
np.save('{}/loss_l2_list.npy'.format(model_dir),loss_l2_list.numpy())
np.save('{}/loss_linf_list.npy'.format(model_dir),loss_linf_list.numpy())
np.save('{}/train_loss_list.npy'.format(model_dir),train_loss_list.numpy())
np.save('{}/swa_train_loss_list.npy'.format(model_dir),swa_train_loss_list.numpy())
np.save('{}/l1_list.npy'.format(model_dir),l1_list.numpy())
np.save('{}/swa_l1_list.npy'.format(model_dir),swa_l1_list.numpy())
np.save('{}/l2_list.npy'.format(model_dir),l2_list.numpy())
np.save('{}/swa_l2_list.npy'.format(model_dir),swa_l2_list.numpy())
np.save('{}/linf_list.npy'.format(model_dir),linf_list.numpy())
np.save('{}/swa_linf_list.npy'.format(model_dir),swa_linf_list.numpy())
np.save('{}/clean_list.npy'.format(model_dir),clean_list.numpy())
np.save('{}/swa_clean_list.npy'.format(model_dir),swa_clean_list.numpy())
np.save('{}/train_acc_list.npy'.format(model_dir),train_acc_list.numpy())
np.save('{}/swa_train_acc_list.npy'.format(model_dir),swa_train_acc_list.numpy())
if train_loss <=1.5:
break
Loss_1, Loss_2, Loss_3, acc_1, acc_2, acc_3, acc_u = epoch_adversarial_union(args, test_batches, None, model, pgd_linf, criterion,device = device, stop = True, restarts = res, num_iter = 100, log = myprint)
myprint('orignal model,l1 acc: {0:4f},l2 acc: {1:4f},linf acc: {2:4f}, average acc: {3:4f}, union acc: {4:.4f}'.format(acc_1, acc_2, acc_3,(acc_1+acc_2+acc_3)/3, acc_u))
Loss_1, Loss_2, Loss_3, acc_1, acc_2, acc_3, acc_u = epoch_adversarial_union(args, test_batches, None, model_eval, pgd_linf, criterion,device = device, stop = True, restarts = res, num_iter = 100, log = myprint)
myprint('swa model, l1 acc: {0:4f},l2 acc: {1:4f},linf acc: {2:4f}, average acc: {3:4f}, union acc: {4:.4f}'.format(acc_1, acc_2, acc_3,(acc_1+acc_2+acc_3)/3, acc_u))
torch.save(model.state_dict(), "{0}/{1}.pth".format(model_dir,args.exp_id))
torch.save(swa_model.state_dict(),"{0}/swa_{1}.pth".format(model_dir,args.exp_id))