-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
947 lines (405 loc) · 18.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# -*- coding: utf-8 -*-
'''
Created on Thu Sep 20 16:16:39 2018
@ author: herbert-chen
'''
import os
import time
import shutil
import random
import numpy as np
import pandas as pd
from PIL import Image
from tqdm import tqdm
from collections import OrderedDict
from sklearn.model_selection import train_test_split
import model_v4
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
def main():
# 随机种子
np.random.seed(666)
torch.manual_seed(666)
torch.cuda.manual_seed_all(666)
random.seed(666)
# 获取当前文件名,用于创建模型及结果文件的目录
file_name = os.path.basename(__file__).split('.')[0]
# 创建保存模型和结果的文件夹
if not os.path.exists('./model/%s' % file_name):
os.makedirs('./model/%s' % file_name)
if not os.path.exists('./result/%s' % file_name):
os.makedirs('./result/%s' % file_name)
# 创建日志文件
if not os.path.exists('./result/%s.txt' % file_name):
with open('./result/%s.txt' % file_name, 'w') as acc_file:
pass
with open('./result/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('\n%s %s\n' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())), file_name))
# 默认使用PIL读图
def default_loader(path):
# return Image.open(path)
return Image.open(path).convert('RGB')
# 训练集图片读取
class TrainDataset(Dataset):
def __init__(self, label_list, transform=None, target_transform=None, loader=default_loader):
imgs = []
for index, row in label_list.iterrows():
imgs.append((row['img_path'], row['label']))
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
filename, label = self.imgs[index]
img = self.loader(filename)
if self.transform is not None:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.imgs)
# 验证集图片读取
class ValDataset(Dataset):
def __init__(self, label_list, transform=None, target_transform=None, loader=default_loader):
imgs = []
for index, row in label_list.iterrows():
imgs.append((row['img_path'], row['label']))
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
filename, label = self.imgs[index]
img = self.loader(filename)
if self.transform is not None:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.imgs)
# 测试集图片读取
class TestDataset(Dataset):
def __init__(self, label_list, transform=None, target_transform=None, loader=default_loader):
imgs = []
for index, row in label_list.iterrows():
imgs.append((row['img_path']))
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
filename = self.imgs[index]
img = self.loader(filename)
if self.transform is not None:
img = self.transform(img)
return img, filename
def __len__(self):
return len(self.imgs)
# 数据增强:在给定角度中随机进行旋转
class FixedRotation(object):
def __init__(self, angles):
self.angles = angles
def __call__(self, img):
return fixed_rotate(img, self.angles)
def fixed_rotate(img, angles):
angles = list(angles)
angles_num = len(angles)
index = random.randint(0, angles_num - 1)
return img.rotate(angles[index])
# 训练函数
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
# switch to train mode
model.train()
end = time.time()
# 从训练集迭代器中获取训练数据
for i, (images, target) in enumerate(train_loader):
# 评估图片读取耗时
data_time.update(time.time() - end)
# 将图片和标签转化为tensor
image_var = torch.tensor(images).cuda(async=True)
label = torch.tensor(target).cuda(async=True)
# 将图片输入网络,前传,生成预测值
y_pred = model(image_var)
# 计算loss
loss = criterion(y_pred, label)
losses.update(loss.item(), images.size(0))
# 计算top1正确率
prec, PRED_COUNT = accuracy(y_pred.data, target, topk=(1, 1))
acc.update(prec, PRED_COUNT)
# 对梯度进行反向传播,使用随机梯度下降更新网络权重
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 评估训练耗时
batch_time.update(time.time() - end)
end = time.time()
# 打印耗时与结果
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuray {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, acc=acc))
# 验证函数
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (images, labels) in enumerate(val_loader):
image_var = torch.tensor(images).cuda(async=True)
target = torch.tensor(labels).cuda(async=True)
# 图片前传。验证和测试时不需要更新网络权重,所以使用torch.no_grad(),表示不计算梯度
with torch.no_grad():
y_pred = model(image_var)
loss = criterion(y_pred, target)
# measure accuracy and record loss
prec, PRED_COUNT = accuracy(y_pred.data, labels, topk=(1, 1))
losses.update(loss.item(), images.size(0))
acc.update(prec, PRED_COUNT)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('TrainVal: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuray {acc.val:.3f} ({acc.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses, acc=acc))
print(' * Accuray {acc.avg:.3f}'.format(acc=acc), '(Previous Best Acc: %.3f)' % best_precision,
' * Loss {loss.avg:.3f}'.format(loss=losses), 'Previous Lowest Loss: %.3f)' % lowest_loss)
return acc.avg, losses.avg
# 测试函数
def test(test_loader, model):
csv_map = OrderedDict({'filename': [], 'probability': []})
# switch to evaluate mode
model.eval()
for i, (images, filepath) in enumerate(tqdm(test_loader)):
# bs, ncrops, c, h, w = images.size()
filepath = [os.path.basename(i) for i in filepath]
image_var = torch.tensor(images, requires_grad=False) # for pytorch 0.4
with torch.no_grad():
y_pred = model(image_var)
# 使用softmax函数将图片预测结果转换成类别概率
smax = nn.Softmax(1)
smax_out = smax(y_pred)
# 保存图片名称与预测概率
csv_map['filename'].extend(filepath)
for output in smax_out:
prob = ';'.join([str(i) for i in output.data.tolist()])
csv_map['probability'].append(prob)
result = pd.DataFrame(csv_map)
result['probability'] = result['probability'].map(lambda x: [float(i) for i in x.split(';')])
# 转换成提交样例中的格式
sub_filename, sub_label = [], []
for index, row in result.iterrows():
sub_filename.append(row['filename'])
pred_label = np.argmax(row['probability'])
if pred_label == 0:
sub_label.append('norm')
else:
sub_label.append('defect%d' % pred_label)
# 生成结果文件,保存在result文件夹中,可用于直接提交
submission = pd.DataFrame({'filename': sub_filename, 'label': sub_label})
submission.to_csv('./result/%s/submission.csv' % file_name, header=None, index=False)
return
# 保存最新模型以及最优模型
def save_checkpoint(state, is_best, is_lowest_loss, filename='./model/%s/checkpoint.pth.tar' % file_name):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, './model/%s/model_best.pth.tar' % file_name)
if is_lowest_loss:
shutil.copyfile(filename, './model/%s/lowest_loss.pth.tar' % file_name)
# 用于计算精度和时间的变化
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
# 学习率衰减:lr = lr / lr_decay
def adjust_learning_rate():
nonlocal lr
lr = lr / lr_decay
return optim.Adam(model.parameters(), lr, weight_decay=weight_decay, amsgrad=True)
# 计算top K准确率
def accuracy(y_pred, y_actual, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
final_acc = 0
maxk = max(topk)
# for prob_threshold in np.arange(0, 1, 0.01):
PRED_COUNT = y_actual.size(0)
PRED_CORRECT_COUNT = 0
prob, pred = y_pred.topk(maxk, 1, True, True)
# prob = np.where(prob > prob_threshold, prob, 0)
for j in range(pred.size(0)):
if int(y_actual[j]) == int(pred[j]):
PRED_CORRECT_COUNT += 1
if PRED_COUNT == 0:
final_acc = 0
else:
final_acc = PRED_CORRECT_COUNT / PRED_COUNT
return final_acc * 100, PRED_COUNT
# 程序主体
# 设定GPU ID
os.environ["CUDA_VISIBLE_DEVICES"] = '0, 1'
# 小数据集上,batch size不易过大。如出现out of memory,应调小batch size
batch_size = 24
# 进程数量,最好不要超过电脑最大进程数。windows下报错可以改为workers=0
workers = 12
# epoch数量,分stage进行,跑完一个stage后降低学习率进入下一个stage
stage_epochs = [20, 10, 10]
# 初始学习率
lr = 1e-4
# 学习率衰减系数 (new_lr = lr / lr_decay)
lr_decay = 5
# 正则化系数
weight_decay = 1e-4
# 参数初始化
stage = 0
start_epoch = 0
total_epochs = sum(stage_epochs)
best_precision = 0
lowest_loss = 100
# 设定打印频率,即多少step打印一次,用于观察loss和acc的实时变化
# 打印结果中,括号前面为实时loss和acc,括号内部为epoch内平均loss和acc
print_freq = 1
# 验证集比例
val_ratio = 0.12
# 是否只验证,不训练
evaluate = False
# 是否从断点继续跑
resume = False
# 创建inception_v4模型
model = model_v4.v4(num_classes=12)
model = torch.nn.DataParallel(model).cuda()
# optionally resume from a checkpoint
if resume:
checkpoint_path = './model/%s/checkpoint.pth.tar' % file_name
if os.path.isfile(checkpoint_path):
print("=> loading checkpoint '{}'".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path)
start_epoch = checkpoint['epoch'] + 1
best_precision = checkpoint['best_precision']
lowest_loss = checkpoint['lowest_loss']
stage = checkpoint['stage']
lr = checkpoint['lr']
model.load_state_dict(checkpoint['state_dict'])
# 如果中断点恰好为转换stage的点,需要特殊处理
if start_epoch in np.cumsum(stage_epochs)[:-1]:
stage += 1
optimizer = adjust_learning_rate()
model.load_state_dict(torch.load('./model/%s/model_best.pth.tar' % file_name)['state_dict'])
print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(checkpoint_path))
# 读取训练图片列表
all_data = pd.read_csv('data/label.csv')
# 分离训练集和测试集,stratify参数用于分层抽样
train_data_list, val_data_list = train_test_split(all_data, test_size=val_ratio, random_state=666, stratify=all_data['label'])
# 读取测试图片列表
test_data_list = pd.read_csv('data/test.csv')
# 图片归一化,由于采用ImageNet预训练网络,因此这里直接采用ImageNet网络的参数
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# 训练集图片变换,输入网络的尺寸为384*384
train_data = TrainDataset(train_data_list,
transform=transforms.Compose([
transforms.Resize((400, 400)),
transforms.ColorJitter(0.15, 0.15, 0.15, 0.075),
transforms.RandomHorizontalFlip(),
transforms.RandomGrayscale(),
# transforms.RandomRotation(20),
FixedRotation([0, 90, 180, 270]),
transforms.RandomCrop(384),
transforms.ToTensor(),
normalize,
]))
# 验证集图片变换
val_data = ValDataset(val_data_list,
transform=transforms.Compose([
transforms.Resize((400, 400)),
transforms.CenterCrop(384),
transforms.ToTensor(),
normalize,
]))
# 测试集图片变换
test_data = TestDataset(test_data_list,
transform=transforms.Compose([
transforms.Resize((400, 400)),
transforms.CenterCrop(384),
transforms.ToTensor(),
normalize,
]))
# 生成图片迭代器
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=workers)
val_loader = DataLoader(val_data, batch_size=batch_size*2, shuffle=False, pin_memory=False, num_workers=workers)
test_loader = DataLoader(test_data, batch_size=batch_size*2, shuffle=False, pin_memory=False, num_workers=workers)
# 使用交叉熵损失函数
criterion = nn.CrossEntropyLoss().cuda()
# 优化器,使用带amsgrad的Adam
optimizer = optim.Adam(model.parameters(), lr, weight_decay=weight_decay, amsgrad=True)
if evaluate:
validate(val_loader, model, criterion)
else:
# 开始训练
for epoch in range(start_epoch, total_epochs):
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
precision, avg_loss = validate(val_loader, model, criterion)
# 在日志文件中记录每个epoch的精度和loss
with open('./result/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('Epoch: %2d, Precision: %.8f, Loss: %.8f\n' % (epoch, precision, avg_loss))
# 记录最高精度与最低loss,保存最新模型与最佳模型
is_best = precision > best_precision
is_lowest_loss = avg_loss < lowest_loss
best_precision = max(precision, best_precision)
lowest_loss = min(avg_loss, lowest_loss)
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'best_precision': best_precision,
'lowest_loss': lowest_loss,
'stage': stage,
'lr': lr,
}
save_checkpoint(state, is_best, is_lowest_loss)
# 判断是否进行下一个stage
if (epoch + 1) in np.cumsum(stage_epochs)[:-1]:
stage += 1
optimizer = adjust_learning_rate()
model.load_state_dict(torch.load('./model/%s/model_best.pth.tar' % file_name)['state_dict'])
print('Step into next stage')
with open('./result/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('---------------Step into next stage----------------\n')
# 记录线下最佳分数
with open('./result/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('* best acc: %.8f %s\n' % (best_precision, os.path.basename(__file__)))
with open('./result/best_acc.txt', 'a') as acc_file:
acc_file.write('%s * best acc: %.8f %s\n' % (
time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())), best_precision, os.path.basename(__file__)))
# 读取最佳模型,预测测试集,并生成可直接提交的结果文件
best_model = torch.load('./model/%s/model_best.pth.tar' % file_name)
model.load_state_dict(best_model['state_dict'])
test(test_loader=test_loader, model=model)
# 释放GPU缓存
torch.cuda.empty_cache()
if __name__ == '__main__':
main()