-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject_6885.py
779 lines (619 loc) · 28.2 KB
/
project_6885.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
# -*- coding: utf-8 -*-
"""FinRL_Compare_ElegantRL_RLlib_Stablebaseline3.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1mzC1n5MuYKhLVnXwPXzKl3rGsy4zhJAS
<a href="https://colab.research.google.com/github/AI4Finance-Foundation/FinRL/blob/master/FinRL_Compare_ElegantRL_RLlib_Stablebaseline3.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
# FinRL: Compare ElegantRL, RLlib, and Stablebaselines3
## Part 1: Getting Started - Install Python Packages
### 1.1 Install DRL libraries: FinRL, ElegantRL, RLlib
"""
## install elegantrl library
!pip install git+https://github.com/AI4Finance-LLC/ElegantRL.git
## install rllib/ray library
!pip install ray[default]
## install finrl library
!pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git
"""### 1.2 Check if the additional packages needed are present, if not install them"""
!pip install trading_calendars
!pip install alpaca_trade_api
!pip install ccxt
!pip install jqdatasdk
!pip install wrds
!pip install lz4
!pip install ray[tune]
!pip install tensorboardX
!pip install gputil
"""### 1.3 Import packages"""
# Commented out IPython magic to ensure Python compatibility.
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# %matplotlib inline
# matplotlib.use('Agg')
import datetime
from elegantrl.agents import *
#from elegantrl.run import *
import torch
import ray
from finrl.apps import config
from finrl.finrl_meta.preprocessor.yahoodownloader import YahooDownloader
from finrl.finrl_meta.preprocessor.preprocessors import FeatureEngineer, data_split
#from finrl.finrl_meta.env_stock_trading.env_stocktrading import StockTradingEnv
from finrl.finrl_meta.env_stock_trading.env_stocktrading_np import StockTradingEnv
from finrl.drl_agents.stablebaselines3.models import DRLAgent as DRLAgent_sb3
from finrl.drl_agents.rllib.models import DRLAgent as DRLAgent_rllib
from finrl.drl_agents.elegantrl.models import DRLAgent as DRLAgent_erl
from finrl.finrl_meta.data_processor import DataProcessor
from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline
"""## Part 2: Train & Test Function
### 2.1 Train
"""
def train(start_date, end_date, ticker_list, data_source, time_interval,
technical_indicator_list, drl_lib, env, model_name, if_vix = True,
**kwargs):
#fetch data
print("fech data")
DP = DataProcessor(data_source, **kwargs)
data = DP.download_data(ticker_list, start_date, end_date, time_interval)
data = DP.clean_data(data)
data = DP.add_technical_indicator(data, technical_indicator_list)
if if_vix:
data = DP.add_vix(data)
price_array, tech_array, turbulence_array = DP.df_to_array(data, if_vix)
print("finish fetch data")
env_config = {'price_array':price_array,
'tech_array':tech_array,
'turbulence_array':turbulence_array,
'if_train':True}
env_instance = env(config=env_config)
#read parameters
cwd = kwargs.get('cwd','./'+str(model_name))
if drl_lib == 'elegantrl':
break_step = kwargs.get('break_step', 1e6)
erl_params = kwargs.get('erl_params')
agent = DRLAgent_erl(env = env,
price_array = price_array,
tech_array=tech_array,
turbulence_array=turbulence_array)
model = agent.get_model(model_name, model_kwargs = erl_params)
trained_model = agent.train_model(model=model,
cwd=cwd,
total_timesteps=break_step)
elif drl_lib == 'rllib':
total_episodes = kwargs.get('total_episodes', 100)
rllib_params = kwargs.get('rllib_params')
agent_rllib = DRLAgent_rllib(env = env,
price_array=price_array,
tech_array=tech_array,
turbulence_array=turbulence_array)
model,model_config = agent_rllib.get_model(model_name)
model_config['lr'] = rllib_params['lr']
model_config['train_batch_size'] = rllib_params['train_batch_size']
model_config['gamma'] = rllib_params['gamma']
#ray.shutdown()
trained_model = agent_rllib.train_model(model=model,
model_name=model_name,
model_config=model_config,
total_episodes=total_episodes)
trained_model.save(cwd)
elif drl_lib == 'stable_baselines3':
total_timesteps = kwargs.get('total_timesteps', 1e6)
agent_params = kwargs.get('agent_params')
agent = DRLAgent_sb3(env = env_instance)
model = agent.get_model(model_name, model_kwargs = agent_params)
trained_model = agent.train_model(model=model,
tb_log_name=model_name,
total_timesteps=total_timesteps)
print('Training finished!')
trained_model.save(cwd)
print('Trained model saved in ' + str(cwd))
else:
raise ValueError('DRL library input is NOT supported. Please check.')
"""### 2.2 Test"""
def test(start_date, end_date, ticker_list, data_source, time_interval,
technical_indicator_list, drl_lib, env, model_name, if_vix = True,
**kwargs):
#fetch data
DP = DataProcessor(data_source, **kwargs)
data = DP.download_data(ticker_list, start_date, end_date, time_interval)
data = DP.clean_data(data)
data = DP.add_technical_indicator(data, technical_indicator_list)
if if_vix:
data = DP.add_vix(data)
price_array, tech_array, turbulence_array = DP.df_to_array(data, if_vix)
env_config = {'price_array':price_array,
'tech_array':tech_array,
'turbulence_array':turbulence_array,
'if_train':False}
env_instance = env(config=env_config)
#load elegantrl needs state dim, action dim and net dim
net_dimension = kwargs.get('net_dimension', 2**7)
cwd = kwargs.get('cwd','./'+str(model_name))
print("price_array: ",len(price_array))
if drl_lib == 'elegantrl':
episode_total_assets = DRLAgent_erl.DRL_prediction(model_name=model_name,
cwd=cwd,
net_dimension=net_dimension,
environment=env_instance)
return episode_total_assets
elif drl_lib == 'rllib':
#load agent
episode_total_assets = DRLAgent_rllib.DRL_prediction(
model_name=model_name,
env = env,
price_array=price_array,
tech_array=tech_array,
turbulence_array=turbulence_array,
agent_path = cwd)
return episode_total_assets
elif drl_lib == 'stable_baselines3':
episode_total_assets = DRLAgent_sb3.DRL_prediction_load_from_file(
model_name=model_name,
environment = env_instance,
cwd = cwd)
return episode_total_assets
else:
raise ValueError('DRL library input is NOT supported. Please check.')
"""## Part 3: Set DRL Environment
### 3.1 Get the stock trading env from neo_finrl
"""
from finrl.finrl_meta.env_stock_trading.env_stocktrading_np import StockTradingEnv
import numpy as np
import os
import gym
from numpy import random as rd
class StockTradingEnv(gym.Env):
def __init__(self, config, initial_account=1e6,
gamma=0.99, turbulence_thresh=99, min_stock_rate=0.1,
max_stock=1e2, initial_capital=1e6, buy_cost_pct=1e-3,
sell_cost_pct=1e-3,reward_scaling=2 ** -11, initial_stocks=None,
):
price_ary = config['price_array']
tech_ary = config['tech_array']
turbulence_ary = config['turbulence_array']
if_train = config['if_train']
n = price_ary.shape[0]
self.price_ary = price_ary.astype(np.float32)
self.tech_ary = tech_ary.astype(np.float32)
self.turbulence_ary = turbulence_ary
self.tech_ary = self.tech_ary * 2 ** -7
self.turbulence_bool = (turbulence_ary > turbulence_thresh).astype(np.float32)
self.turbulence_ary = (self.sigmoid_sign(turbulence_ary, turbulence_thresh) * 2 ** -5).astype(np.float32)
stock_dim = self.price_ary.shape[1]
self.gamma = gamma
self.max_stock = max_stock
self.min_stock_rate = min_stock_rate
self.buy_cost_pct = buy_cost_pct
self.sell_cost_pct = sell_cost_pct
self.reward_scaling = reward_scaling
self.initial_capital = initial_capital
self.initial_stocks = np.zeros(stock_dim, dtype=np.float32) if initial_stocks is None else initial_stocks
# reset()
self.day = None
self.amount = None
self.stocks = None
self.total_asset = None
self.gamma_reward = None
self.initial_total_asset = None
# environment information
self.env_name = 'StockEnv'
# self.state_dim = 1 + 2 + 2 * stock_dim + self.tech_ary.shape[1]
# # amount + (turbulence, turbulence_bool) + (price, stock) * stock_dim + tech_dim
self.state_dim = 1 + 2 + 3 * stock_dim + self.tech_ary.shape[1]
# amount + (turbulence, turbulence_bool) + (price, stock) * stock_dim + tech_dim
self.stocks_cd = None
self.action_dim = stock_dim
self.max_step = self.price_ary.shape[0] - 1
self.if_train = if_train
self.if_discrete = False
self.target_return = 5.0
self.episode_return = 0.0
self.observation_space = gym.spaces.Box(low=-3000, high=3000, shape=(self.state_dim,), dtype=np.float32)
self.action_space = gym.spaces.Box(low=-1, high=1, shape=(self.action_dim,), dtype=np.float32)
def reset(self):
self.day = 0
price = self.price_ary[self.day]
if self.if_train:
self.stocks = (self.initial_stocks + rd.randint(0, 64, size=self.initial_stocks.shape)).astype(np.float32)
self.stocks_cd = np.zeros_like(self.stocks)
self.amount = self.initial_capital * rd.uniform(0.95, 1.05) - (self.stocks * price).sum()
else:
self.stocks = self.initial_stocks.astype(np.float32)
self.stocks_cd = np.zeros_like(self.stocks)
self.amount = self.initial_capital
self.total_asset = self.amount + (self.stocks * price).sum()
self.initial_total_asset = self.total_asset
self.gamma_reward = 0.0
return self.get_state(price) # state
def step(self, actions):
actions = (actions * self.max_stock).astype(int)
self.day += 1
price = self.price_ary[self.day]
self.stocks_cd += 1
if self.turbulence_bool[self.day] == 0:
min_action = int(self.max_stock * self.min_stock_rate) # stock_cd
for index in np.where(actions < -min_action)[0]: # sell_index:
if price[index] > 0: # Sell only if current asset is > 0
sell_num_shares = min(self.stocks[index], -actions[index])
self.stocks[index] -= sell_num_shares
self.amount += price[index] * sell_num_shares * (1 - self.sell_cost_pct)
self.stocks_cd[index] = 0
for index in np.where(actions > min_action)[0]: # buy_index:
if price[index] > 0: # Buy only if the price is > 0 (no missing data in this particular date)
buy_num_shares = min(self.amount // price[index], actions[index])
self.stocks[index] += buy_num_shares
self.amount -= price[index] * buy_num_shares * (1 + self.buy_cost_pct)
self.stocks_cd[index] = 0
else: # sell all when turbulence
self.amount += (self.stocks * price).sum() * (1 - self.sell_cost_pct)
self.stocks[:] = 0
self.stocks_cd[:] = 0
state = self.get_state(price)
total_asset = self.amount + (self.stocks * price).sum()
reward = (total_asset - self.total_asset) * self.reward_scaling
self.total_asset = total_asset
self.gamma_reward = self.gamma_reward * self.gamma + reward
done = self.day == self.max_step
if done:
reward = self.gamma_reward
self.episode_return = total_asset / self.initial_total_asset
return state, reward, done, dict()
def get_state(self, price):
amount = np.array(max(self.amount, 1e4) * (2 ** -12), dtype=np.float32)
scale = np.array(2 ** -6, dtype=np.float32)
return np.hstack((amount,
self.turbulence_ary[self.day],
self.turbulence_bool[self.day],
price * scale,
self.stocks * scale,
self.stocks_cd,
self.tech_ary[self.day],
)) # state.astype(np.float32)
@staticmethod
def sigmoid_sign(ary, thresh):
def sigmoid(x):
return 1 / (1 + np.exp(-x * np.e)) - 0.5
return sigmoid(ary / thresh) * thresh
"""### 3.2 Set some basic parameters"""
env = StockTradingEnv
TRAIN_START_DATE = '2016-01-01'
TRAIN_END_DATE = '2020-07-30'
TEST_START_DATE = '2020-08-01'
TEST_END_DATE = '2021-12-17'
TECHNICAL_INDICATORS_LIST = ['macd',
'boll_ub',
'boll_lb',
'rsi_30',
'dx_30',
'close_30_sma',
'close_60_sma']
"""## Part 4: Compare the three agents
### 4.1 eRL
"""
ERL_PARAMS = {"learning_rate": 3e-5,"batch_size": 2048,"gamma": 0.985,
"seed":312,"net_dimension":512, "target_step":5000, "eval_gap":60}
"""#### Train"""
#demo for elegantrl
train(start_date = TRAIN_START_DATE,
end_date = TRAIN_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='elegantrl',
env=env,
model_name='project_ddpg',
cwd='./test_project_ddpg',
erl_params=ERL_PARAMS,
break_step=1e5
)
"""#### Test"""
account_value_erl_project_ddpg=test(start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='elegantrl',
env=env,
model_name='project_ddpg',
cwd='./test_project_ddpg',
net_dimension = 512)
len(account_value_erl_project_ddpg)
"""#### Plot"""
TEST_END_DATE
baseline_df = DataProcessor('yahoofinance').download_data(ticker_list = ["^DJI"],
start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
time_interval = "1D")
stats = backtest_stats(baseline_df, value_col_name = 'close')
account_value_erl_proj_ddpg = pd.DataFrame({'date':baseline_df.date,'account_value':account_value_erl_project_ddpg[0:len(account_value_erl_project_ddpg)-1]})
account_value_erl_proj_ddpg.tail()
print("==============Get Backtest Results===========")
now = datetime.datetime.now().strftime('%Y%m%d-%Hh%M')
perf_stats_all = backtest_stats(account_value=account_value_erl_proj_ddpg)
perf_stats_all = pd.DataFrame(perf_stats_all)
perf_stats_all.to_csv("./"+"/perf_stats_all_"+now+'.csv')
# Commented out IPython magic to ensure Python compatibility.
print("==============Compare to DJIA===========")
# %matplotlib inline
# S&P 500: ^GSPC
# Dow Jones Index: ^DJI
# NASDAQ 100: ^NDX
backtest_plot(account_value_erl_proj_ddpg,
baseline_ticker = '^DJI',
baseline_start = account_value_erl_proj_ddpg.loc[0,'date'],
baseline_end = account_value_erl_proj_ddpg.loc[len(account_value_erl_proj_ddpg)-1,'date'])
"""elegentrl ddpg:"""
train(start_date = TRAIN_START_DATE,
end_date = TRAIN_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='elegantrl',
env=env,
model_name='ddpg',
cwd='./test_ele_ddpg',
erl_params=ERL_PARAMS,
break_step=1e5
)
"""test:"""
account_value_erl_ddpg=test(start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='elegantrl',
env=env,
model_name='ddpg',
cwd='./test_ele_ddpg',
net_dimension = 512)
len(account_value_erl_ddpg)
"""plot:"""
baseline_df = DataProcessor('yahoofinance').download_data(ticker_list = ["^DJI"],
start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
time_interval = "1D")
stats = backtest_stats(baseline_df, value_col_name = 'close')
account_value_erl_ddpg = pd.DataFrame({'date':baseline_df.date,'account_value':account_value_erl_ddpg[0:len(account_value_erl_ddpg)-1]})
account_value_erl_ddpg.tail()
# Commented out IPython magic to ensure Python compatibility.
print("==============Compare to DJIA===========")
# %matplotlib inline
# S&P 500: ^GSPC
# Dow Jones Index: ^DJI
# NASDAQ 100: ^NDX
backtest_plot(account_value_erl_ddpg,
baseline_ticker = '^DJI',
baseline_start = account_value_erl_ddpg.loc[0,'date'],
baseline_end = account_value_erl_ddpg.loc[len(account_value_erl_ddpg)-1,'date'])
"""4.1.3 A2C in elegantrl
Train
"""
train(start_date = TRAIN_START_DATE,
end_date = TRAIN_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='elegantrl',
env=env,
model_name='a2c',
cwd='./test_a2c',
erl_params=ERL_PARAMS,
break_step=1e5
)
"""Test"""
account_value_erl_a2c=test(start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='elegantrl',
env=env,
model_name='a2c',
cwd='./test_a2c',
net_dimension = 512)
"""Plot"""
baseline_df = DataProcessor('yahoofinance').download_data(ticker_list = ["^DJI"],
start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
time_interval = "1D")
stats = backtest_stats(baseline_df, value_col_name = 'close')
account_value_erl_a2c = pd.DataFrame({'date':baseline_df.date,'account_value':account_value_erl_a2c[0:len(account_value_erl_a2c)-1]})
account_value_erl_a2c.tail()
# Commented out IPython magic to ensure Python compatibility.
print("==============Compare to DJIA===========")
# %matplotlib inline
# S&P 500: ^GSPC
# Dow Jones Index: ^DJI
# NASDAQ 100: ^NDX
backtest_plot(account_value_erl_a2c,
baseline_ticker = '^DJI',
baseline_start = account_value_erl_a2c.loc[0,'date'],
baseline_end = account_value_erl_a2c.loc[len(account_value_erl_a2c)-1,'date'])
"""### 4.2 RLlib"""
RLlib_PARAMS = {"lr": 5e-6,"train_batch_size": 800,"gamma": 0.99}
"""#### Train"""
#demo for rllib
ray.shutdown() #always shutdown previous session if any
train(start_date = TRAIN_START_DATE,
end_date = TRAIN_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='rllib',
env=env,
model_name='ddpg',
cwd='./test_rllib_ddpg',
rllib_params = RLlib_PARAMS,
total_episodes=25)
"""#### Test"""
ray.shutdown() #always shutdown previous session if any
account_value_rllib = test(start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='rllib',
env=env,
model_name='ddpg',
cwd='./test_rllib_ddpg/checkpoint_000025/checkpoint-25',
rllib_params = RLlib_PARAMS)
len(account_value_rllib)
"""#### Plot"""
baseline_df = DataProcessor('yahoofinance').download_data(ticker_list = ["^DJI"],
start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
time_interval = "1D")
stats = backtest_stats(baseline_df, value_col_name = 'close')
len(baseline_df.date)
account_value_rllib = pd.DataFrame({'date':baseline_df.date,'account_value':account_value_rllib[0:len(account_value_rllib)-1]})
perf_stats_all = backtest_stats(account_value=account_value_rllib)
perf_stats_all = pd.DataFrame(perf_stats_all)
# Commented out IPython magic to ensure Python compatibility.
print("==============Compare to DJIA===========")
# %matplotlib inline
# S&P 500: ^GSPC
# Dow Jones Index: ^DJI
# NASDAQ 100: ^NDX
backtest_plot(account_value_rllib,
baseline_ticker = '^DJI',
baseline_start = account_value_rllib.loc[0,'date'],
baseline_end = account_value_rllib.loc[len(account_value_rllib)-1,'date'])
"""### 4.3 Stable-baselines3"""
#SAC_PARAMS = {"batch_size": 128,"buffer_size": 100000,"learning_rate": 0.0001,"learning_starts": 100,"ent_coef": "auto_0.1",}
#PPO_PARAMS = {"n_steps": 2048,"ent_coef": 0.01,"learning_rate": 0.00025,"batch_size": 128}
#TD3_PARAMS = {"batch_size": 100, "buffer_size": 1000000, "learning_rate": 0.001}
DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001}
#A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.01, "learning_rate": 3e-5}
"""#### Train"""
#demo for stable-baselines3
train(start_date = TRAIN_START_DATE,
end_date = TRAIN_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='stable_baselines3',
env=env,
model_name='ddpg',
cwd='./test_stb3_ddpg',
agent_params = DDPG_PARAMS,
total_timesteps=1e4)
"""#### Test"""
account_value_sb3=test(start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
ticker_list = config.DOW_30_TICKER,
data_source = 'yahoofinance',
time_interval= '1D',
technical_indicator_list= TECHNICAL_INDICATORS_LIST,
drl_lib='stable_baselines3',
env=env,
model_name='ddpg',
cwd='./test_stb3_ddpg.zip')
len(account_value_sb3)
"""#### Plot"""
baseline_df = DataProcessor('yahoofinance').download_data(ticker_list = ["^DJI"],
start_date = TEST_START_DATE,
end_date = TEST_END_DATE,
time_interval = "1D")
stats = backtest_stats(baseline_df, value_col_name = 'close')
account_value_sb3 = pd.DataFrame({'date':baseline_df.date,'account_value':account_value_sb3[0:len(account_value_sb3)-1]})
perf_stats_all = backtest_stats(account_value=account_value_sb3)
perf_stats_all = pd.DataFrame(perf_stats_all)
account_value_sb3.tail()
print("==============Compare to DJIA===========")
#%matplotlib inline
# S&P 500: ^GSPC
# Dow Jones Index: ^DJI
# NASDAQ 100: ^NDX
backtest_plot(account_value_sb3,
baseline_ticker = '^DJI',
baseline_start = account_value_sb3.loc[0,'date'],
baseline_end = account_value_sb3.loc[len(account_value_sb3)-1,'date'])
"""## Part 5: Use Plotly to compare eRL, RLlib and SB3"""
baseline_df
from datetime import datetime as dt
import matplotlib.pyplot as plt
import plotly
import plotly.graph_objs as go
daily_return = account_value_sb3.copy()
daily_return['sb3_ddpg_return'] = account_value_sb3.account_value.pct_change()
daily_return['erl_ddpg_return'] = account_value_erl_ddpg.account_value.pct_change()
daily_return['erl_a2c_return'] = account_value_erl_a2c.account_value.pct_change()
daily_return['project_ddpg_return'] = account_value_erl_proj_ddpg.account_value.pct_change()
daily_return['rllib_ddpg_return'] = account_value_rllib.account_value.pct_change()
daily_return['djia_return'] = baseline_df.adjcp.pct_change()
daily_return.head()
daily_return.to_csv('daily_return_erl_sb3_rllib.csv',index=False)
#daily_return = pd.read_csv('daily_return_erl_sb3_rllib.csv')
rllib_cumpod =(daily_return.rllib_ddpg_return+1).cumprod()-1
sb3_cumpod =(daily_return.sb3_ddpg_return+1).cumprod()-1
erl_cumpod =(daily_return.erl_ddpg_return+1).cumprod()-1
a2c_cumpod =(daily_return.erl_a2c_return+1).cumprod()-1
project_ddpg_cumpod =(daily_return.project_ddpg_return+1).cumprod()-1
dji_cumpod =(daily_return.djia_return+1).cumprod()-1
time_ind = pd.Series(daily_return.date)
trace0_portfolio = go.Scatter(x = time_ind, y = rllib_cumpod, mode = 'lines', name = 'RLlib')
trace1_portfolio = go.Scatter(x = time_ind, y = dji_cumpod, mode = 'lines', name = 'DJIA')
trace2_portfolio = go.Scatter(x = time_ind, y = sb3_cumpod, mode = 'lines', name = 'Stablebaselines3')
trace3_portfolio = go.Scatter(x = time_ind, y = erl_cumpod, mode = 'lines', name = 'ElegantRL')
trace4_portfolio = go.Scatter(x = time_ind, y = a2c_cumpod, mode = 'lines', name = 'A2C-ElegantRL')
trace5_portfolio = go.Scatter(x = time_ind, y = project_ddpg_cumpod, mode = 'lines', name = 'project-DDPG')
#trace4 = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG')
#trace2 = go.Scatter(x = time_ind, y = portfolio_cost_minv, mode = 'lines', name = 'Min-Variance')
#trace3 = go.Scatter(x = time_ind, y = spx_value, mode = 'lines', name = 'SPX')
fig = go.Figure()
fig.add_trace(trace5_portfolio)
fig.add_trace(trace4_portfolio)
fig.add_trace(trace3_portfolio)
fig.add_trace(trace2_portfolio)
fig.add_trace(trace0_portfolio)
fig.add_trace(trace1_portfolio)
fig.update_layout(
legend=dict(
x=0,
y=1,
traceorder="normal",
font=dict(
family="sans-serif",
size=15,
color="black"
),
bgcolor="White",
bordercolor="white",
borderwidth=2
),
)
#fig.update_layout(legend_orientation="h")
fig.update_layout(title={
#'text': "Cumulative Return using FinRL",
'y':0.85,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'})
#with Transaction cost
#fig.update_layout(title = 'Quarterly Trade Date')
fig.update_layout(
# margin=dict(l=20, r=20, t=20, b=20),
paper_bgcolor='rgba(1,1,0,0)',
plot_bgcolor='rgba(1, 1, 0, 0)',
#xaxis_title="Date",
yaxis_title="Cumulative Return",
xaxis={'type': 'date',
'tick0': time_ind[0],
'tickmode': 'linear',
'dtick': 86400000.0 *70}
)
fig.update_xaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True)
fig.update_yaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True)
fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue')
fig.show()