-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_helper.py
76 lines (64 loc) · 2.52 KB
/
data_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
from PIL import Image
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, root, split, transform):
r"""
Args:
root: Location of the dataset folder, usually it is /dataset
split: The split you want to used, it should be one of train, val or unlabeled.
transform: the transform you want to applied to the images.
"""
self.split = split
self.transform = transform
self.basicTransform = transforms.Compose([
transforms.ToTensor(),
# normalize,
])
self.image_dir = os.path.join(root, split)
label_path = os.path.join(root, f"{split}_label_tensor.pt")
self.num_images = len(os.listdir(self.image_dir))
if os.path.exists(label_path):
self.labels = torch.load(label_path)
else:
self.labels = -1 * torch.ones(self.num_images, dtype=torch.long)
def __len__(self):
return self.num_images
def __getitem__(self, idx):
with open(os.path.join(self.image_dir, f"{idx}.png"), 'rb') as f:
img = Image.open(f).convert('RGB')
if self.split == 'unlabeled':
label = self.basicTransform(img)
else:
label = self.labels[idx]
return self.transform(img), label
class UpdatedDataset(torch.utils.data.Dataset):
def __init__(self, root, transform):
r"""
Args:
root: Location of the dataset folder, usually it is /dataset
split: The split you want to used, it should be one of train, val or unlabeled.
transform: the transform you want to applied to the images.
"""
split = 'unlabeled'
self.transform = transform
self.image_dir = os.path.join(root, split)
label_path = os.path.join(root, "label_18.pt")
idx_path = os.path.join(root, "request_18.csv")
self.num_images = 12800
self.ids = np.loadtxt(idx_path, delimiter=",")
self.ids = self.ids.astype(int)
self.labels = torch.load(label_path)
def __len__(self):
return self.num_images
def __getitem__(self, idx):
with open(os.path.join(self.image_dir, f"{self.ids[idx]}.png"), 'rb') as f:
img = Image.open(f).convert('RGB')
label = self.labels[idx]
return self.transform(img), label