-
Notifications
You must be signed in to change notification settings - Fork 6
/
RGB_OFF.py
1388 lines (1310 loc) · 112 KB
/
RGB_OFF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function, division, absolute_import
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import os
import sys
from torch.autograd import Variable
from util import SobelFilter, SobelFilter_Diagonal
from basic_ops import *
import pdb
__all__ = ['BNInception', 'bninception']
pretrained_settings = {
'bninception': {
'imagenet': {
# Was ported using python2 (may trigger warning)
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/bn_inception-239d2248.pth',
# 'url': 'http://yjxiong.me/others/bn_inception-9f5701afb96c8044.pth',
'input_space': 'BGR',
'input_size': [3, 224, 224],
'input_range': [0, 255],
'mean': [104, 117, 128],
'std': [1, 1, 1],
'num_classes': 1000
}
}
}
class BNInception_OFF(nn.Module):
def __init__(self, num_classes=1000, batch=16, length=7):
super(BNInception_OFF, self).__init__()
inplace = True
self.batch = batch
self.length = length
self.freeze_bn = True
self.freeze_bn_affine = True
self.consensus_type = 'avg'
self.consensus = ConsensusModule(self.consensus_type, dim=1)
self.conv1_7x7_s2 = nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
self.conv1_7x7_s2_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.conv1_relu_7x7 = nn.ReLU (inplace)
self.pool1_3x3_s2 = nn.MaxPool2d ((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True)
self.conv2_3x3_reduce = nn.Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
self.conv2_3x3_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.conv2_relu_3x3_reduce = nn.ReLU (inplace)
self.conv2_3x3 = nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv2_3x3_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.conv2_relu_3x3 = nn.ReLU (inplace)
self.pool2_3x3_s2 = nn.MaxPool2d ((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True)
self.inception_3a_1x1 = nn.Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3a_1x1_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3a_relu_1x1 = nn.ReLU (inplace)
self.inception_3a_3x3_reduce = nn.Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3a_3x3_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3a_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_3a_3x3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_3a_3x3_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3a_relu_3x3 = nn.ReLU (inplace)
self.inception_3a_double_3x3_reduce = nn.Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3a_double_3x3_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3a_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_3a_double_3x3_1 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_3a_double_3x3_1_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_3a_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_3a_double_3x3_2 = nn.Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_3a_double_3x3_2_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_3a_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_3a_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_3a_pool_proj = nn.Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))
self.inception_3a_pool_proj_bn = nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True)
self.inception_3a_relu_pool_proj = nn.ReLU (inplace)
self.inception_3b_1x1 = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3b_1x1_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3b_relu_1x1 = nn.ReLU (inplace)
self.inception_3b_3x3_reduce = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3b_3x3_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3b_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_3b_3x3 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_3b_3x3_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_3b_relu_3x3 = nn.ReLU (inplace)
self.inception_3b_double_3x3_reduce = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3b_double_3x3_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3b_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_3b_double_3x3_1 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_3b_double_3x3_1_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_3b_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_3b_double_3x3_2 = nn.Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_3b_double_3x3_2_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_3b_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_3b_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_3b_pool_proj = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3b_pool_proj_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3b_relu_pool_proj = nn.ReLU (inplace)
self.inception_3c_3x3_reduce = nn.Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_3c_3x3_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_3c_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_3c_3x3 = nn.Conv2d(128, 160, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.inception_3c_3x3_bn = nn.BatchNorm2d(160, eps=1e-05, momentum=0.9, affine=True)
self.inception_3c_relu_3x3 = nn.ReLU (inplace)
self.inception_3c_double_3x3_reduce = nn.Conv2d(320, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3c_double_3x3_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_3c_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_3c_double_3x3_1 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_3c_double_3x3_1_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_3c_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_3c_double_3x3_2 = nn.Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.inception_3c_double_3x3_2_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_3c_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_3c_pool = nn.MaxPool2d ((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True)
self.inception_4a_1x1 = nn.Conv2d(576, 224, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_1x1_bn = nn.BatchNorm2d(224, eps=1e-05, momentum=0.9, affine=True)
self.inception_4a_relu_1x1 = nn.ReLU (inplace)
self.inception_4a_3x3_reduce = nn.Conv2d(576, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_3x3_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.inception_4a_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4a_3x3 = nn.Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4a_3x3_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_4a_relu_3x3 = nn.ReLU (inplace)
self.inception_4a_double_3x3_reduce = nn.Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_double_3x3_reduce_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_4a_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4a_double_3x3_1 = nn.Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4a_double_3x3_1_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4a_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4a_double_3x3_2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4a_double_3x3_2_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4a_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4a_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_4a_pool_proj = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_pool_proj_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4a_relu_pool_proj = nn.ReLU (inplace)
self.inception_4b_1x1 = nn.Conv2d(576, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_1x1_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_4b_relu_1x1 = nn.ReLU (inplace)
self.inception_4b_3x3_reduce = nn.Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_3x3_reduce_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_4b_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4b_3x3 = nn.Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4b_3x3_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4b_relu_3x3 = nn.ReLU (inplace)
self.inception_4b_double_3x3_reduce = nn.Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_double_3x3_reduce_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_4b_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4b_double_3x3_1 = nn.Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4b_double_3x3_1_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4b_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4b_double_3x3_2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4b_double_3x3_2_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4b_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4b_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_4b_pool_proj = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_pool_proj_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4b_relu_pool_proj = nn.ReLU (inplace)
self.inception_4c_1x1 = nn.Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_1x1_bn = nn.BatchNorm2d(160, eps=1e-05, momentum=0.9, affine=True)
self.inception_4c_relu_1x1 = nn.ReLU (inplace)
self.inception_4c_3x3_reduce = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_3x3_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4c_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4c_3x3 = nn.Conv2d(128, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4c_3x3_bn = nn.BatchNorm2d(160, eps=1e-05, momentum=0.9, affine=True)
self.inception_4c_relu_3x3 = nn.ReLU (inplace)
self.inception_4c_double_3x3_reduce = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_double_3x3_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4c_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4c_double_3x3_1 = nn.Conv2d(128, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4c_double_3x3_1_bn = nn.BatchNorm2d(160, eps=1e-05, momentum=0.9, affine=True)
self.inception_4c_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4c_double_3x3_2 = nn.Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4c_double_3x3_2_bn = nn.BatchNorm2d(160, eps=1e-05, momentum=0.9, affine=True)
self.inception_4c_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4c_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_4c_pool_proj = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_pool_proj_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4c_relu_pool_proj = nn.ReLU (inplace)
self.inception_4d_1x1 = nn.Conv2d(608, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_1x1_bn = nn.BatchNorm2d(96, eps=1e-05, momentum=0.9, affine=True)
self.inception_4d_relu_1x1 = nn.ReLU (inplace)
self.inception_4d_3x3_reduce = nn.Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_3x3_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4d_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4d_3x3 = nn.Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4d_3x3_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_4d_relu_3x3 = nn.ReLU (inplace)
self.inception_4d_double_3x3_reduce = nn.Conv2d(608, 160, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_double_3x3_reduce_bn = nn.BatchNorm2d(160, eps=1e-05, momentum=0.9, affine=True)
self.inception_4d_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4d_double_3x3_1 = nn.Conv2d(160, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4d_double_3x3_1_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_4d_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4d_double_3x3_2 = nn.Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4d_double_3x3_2_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_4d_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4d_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_4d_pool_proj = nn.Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_pool_proj_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4d_relu_pool_proj = nn.ReLU (inplace)
self.inception_4e_3x3_reduce = nn.Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_4e_3x3_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_4e_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_4e_3x3 = nn.Conv2d(128, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.inception_4e_3x3_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_4e_relu_3x3 = nn.ReLU (inplace)
self.inception_4e_double_3x3_reduce = nn.Conv2d(608, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_4e_double_3x3_reduce_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_4e_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_4e_double_3x3_1 = nn.Conv2d(192, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_4e_double_3x3_1_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.9, affine=True)
self.inception_4e_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_4e_double_3x3_2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
self.inception_4e_double_3x3_2_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.9, affine=True)
self.inception_4e_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_4e_pool = nn.MaxPool2d ((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True)
self.inception_5a_1x1 = nn.Conv2d(1056, 352, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_1x1_bn = nn.BatchNorm2d(352, eps=1e-05, momentum=0.9, affine=True)
self.inception_5a_relu_1x1 = nn.ReLU (inplace)
self.inception_5a_3x3_reduce = nn.Conv2d(1056, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_3x3_reduce_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_5a_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_5a_3x3 = nn.Conv2d(192, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5a_3x3_bn = nn.BatchNorm2d(320, eps=1e-05, momentum=0.9, affine=True)
self.inception_5a_relu_3x3 = nn.ReLU (inplace)
self.inception_5a_double_3x3_reduce = nn.Conv2d(1056, 160, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_double_3x3_reduce_bn = nn.BatchNorm2d(160, eps=1e-05, momentum=0.9, affine=True)
self.inception_5a_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_5a_double_3x3_1 = nn.Conv2d(160, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5a_double_3x3_1_bn = nn.BatchNorm2d(224, eps=1e-05, momentum=0.9, affine=True)
self.inception_5a_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_5a_double_3x3_2 = nn.Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5a_double_3x3_2_bn = nn.BatchNorm2d(224, eps=1e-05, momentum=0.9, affine=True)
self.inception_5a_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_5a_pool = nn.AvgPool2d (3, stride=1, padding=1, ceil_mode=True, count_include_pad=True)
self.inception_5a_pool_proj = nn.Conv2d(1056, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_pool_proj_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_5a_relu_pool_proj = nn.ReLU (inplace)
self.inception_5b_1x1 = nn.Conv2d(1024, 352, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_1x1_bn = nn.BatchNorm2d(352, eps=1e-05, momentum=0.9, affine=True)
self.inception_5b_relu_1x1 = nn.ReLU (inplace)
self.inception_5b_3x3_reduce = nn.Conv2d(1024, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_3x3_reduce_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_5b_relu_3x3_reduce = nn.ReLU (inplace)
self.inception_5b_3x3 = nn.Conv2d(192, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5b_3x3_bn = nn.BatchNorm2d(320, eps=1e-05, momentum=0.9, affine=True)
self.inception_5b_relu_3x3 = nn.ReLU (inplace)
self.inception_5b_double_3x3_reduce = nn.Conv2d(1024, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_double_3x3_reduce_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.inception_5b_relu_double_3x3_reduce = nn.ReLU (inplace)
self.inception_5b_double_3x3_1 = nn.Conv2d(192, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5b_double_3x3_1_bn = nn.BatchNorm2d(224, eps=1e-05, momentum=0.9, affine=True)
self.inception_5b_relu_double_3x3_1 = nn.ReLU (inplace)
self.inception_5b_double_3x3_2 = nn.Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.inception_5b_double_3x3_2_bn = nn.BatchNorm2d(224, eps=1e-05, momentum=0.9, affine=True)
self.inception_5b_relu_double_3x3_2 = nn.ReLU (inplace)
self.inception_5b_pool = nn.MaxPool2d ((3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), ceil_mode=True)
self.inception_5b_pool_proj = nn.Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_pool_proj_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True)
self.inception_5b_relu_pool_proj = nn.ReLU (inplace)
self.global_pool = nn.AvgPool2d (7, stride=1, padding=0, ceil_mode=True, count_include_pad=True)
self.last_linear = nn.Linear (1024, num_classes)
# motion conv layer
self.motion_conv_gen_3a = nn.Conv2d(256, 128, kernel_size=(1, 1), stride=(1,1))
self.motion_spatial_down_3a = nn.Conv2d(256, 32, kernel_size=(1,1), stride=(1,1))
self.motion_spatial_grad_3a = nn.Conv2d(32, 32, kernel_size=(3,3), stride=(1,1), padding=(1,1), groups=32, bias=True)
self.motion_conv_gen_3b = nn.Conv2d(320, 128, kernel_size=(1,1), stride=(1,1))
self.motion_spatial_down_3b = nn.Conv2d(320, 32, kernel_size=(1,1), stride=(1,1))
self.motion_spatial_grad_3b = nn.Conv2d(32, 32, kernel_size=(3,3), stride=(1,1), padding=(1,1), groups=32, bias=True)
self.motion_conv_gen_3c = nn.Conv2d(576, 128, kernel_size=(1, 1), stride=(1,1))
self.motion_spatial_down_3c = nn.Conv2d(576, 32, kernel_size=(1,1), stride=(1,1))
self.motion_spatial_grad_3c = nn.Conv2d(32, 32, kernel_size=(3,3), stride=(1,1), padding=(1,1), groups=32, bias=True)
self.motion_conv_trans_28 = nn.Conv2d(320, 64, kernel_size=(7, 7), stride=(2,2), padding=(3,3))
self.motion_conv1_trans_28a = nn.Conv2d(64, 64, kernel_size=(1,1), stride=(1,1))
self.motion_conv2_trans_28a = nn.Conv2d(64, 64, kernel_size=(3,3), stride=(1,1), padding=(1,1))
self.motion_conv3_trans_28a = nn.Conv2d(64, 256, kernel_size=(1,1), stride=(1,1))
self.motion_conv_branch_28a = nn.Conv2d(64, 256, kernel_size=(1,1), stride=(1,1))
self.motion_conv1_trans_28b = nn.Conv2d(256, 64, kernel_size=(1,1), stride=(1,1))
self.motion_conv2_trans_28b = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1,1), padding=(1,1))
self.motion_conv3_trans_28b = nn.Conv2d(64, 256, kernel_size=(1,1), stride=(1,1))
self.motion_conv1_trans_28c = nn.Conv2d(256, 64, kernel_size=(1,1), stride=(1,1))
self.motion_conv2_trans_28c = nn.Conv2d(64, 64, kernel_size=(3,3), stride=(1,1), padding=(1,1))
self.motion_conv3_trans_28c = nn.Conv2d(64, 256, kernel_size=(1,1),stride=(1,1))
self.motion_conv_gen_4a = nn.Conv2d(576, 128, 1, 1)
self.motion_spatial_down_4a = nn.Conv2d(576, 32, 1, 1)
self.motion_spatial_grad_4a = nn.Conv2d(32, 32, 3, 1, 1, groups=32, bias=True)
self.motion_conv_gen_4b = nn.Conv2d(576, 128, 1, 1)
self.motion_spatial_down_4b = nn.Conv2d(576, 32, 1, 1)
self.motion_spatial_grad_4b = nn.Conv2d(32, 32, 3, 1, 1, groups=32, bias=True)
self.motion_conv_gen_4c = nn.Conv2d(608, 128, 1, 1)
self.motion_spatial_down_4c = nn.Conv2d(608, 32, 1, 1)
self.motion_spatial_grad_4c = nn.Conv2d(32, 32, 3, 1, 1, groups=32, bias=True)
self.motion_conv_gen_4d = nn.Conv2d(608, 128, 1, 1)
self.motion_spatial_down_4d = nn.Conv2d(608, 32, 1, 1)
self.motion_spatial_grad_4d = nn.Conv2d(32, 32, 3, 1, 1, groups=32, bias=True)
self.motion_conv_trans_14 = nn.Conv2d(1056, 128, 5, 2, 2)
self.motion_conv1_trans_14a = nn.Conv2d(128, 128, 1, 1)
self.motion_conv2_trans_14a = nn.Conv2d(128, 128, 3, 1, 1)
self.motion_conv3_trans_14a = nn.Conv2d(128, 512, 1, 1)
self.motion_conv_expand_trans_14a = nn.Conv2d(128, 512, 1, 1)
self.motion_conv1_trans_14b = nn.Conv2d(512, 128, 1, 1)
self.motion_conv2_trans_14b = nn.Conv2d(128, 128, 3, 1, 1)
self.motion_conv3_trans_14b = nn.Conv2d(128, 512, 3, 1, 1)
self.motion_conv_gen_5a = nn.Conv2d(1024, 128, 1, 1)
self.motion_spatial_down_5a = nn.Conv2d(1024, 32, 1, 1)
self.motion_spatial_grad_5a = nn.Conv2d(32, 32, 3, 1, 1, groups=32, bias=True)
self.motion_conv_gen_5b = nn.Conv2d(1024, 128, 1, 1)
self.motion_spatial_down_5b = nn.Conv2d(1024, 32, 1, 1)
self.motion_spatial_grad_5b = nn.Conv2d(32, 32, 3, 1, 1, groups=32, bias=True)
self.motion_conv_trans = nn.Conv2d(832, 256, 3, 1, 1)
self.motion_conv1_trans = nn.Conv2d(256, 256, 1, 1)
self.motion_conv2_trans = nn.Conv2d(256, 256, 3, 1, 1)
self.motion_conv3_trans = nn.Conv2d(256, 1024, 1, 1)
self.motion_conv_branch_trans = nn.Conv2d(256, 1024, 1, 1)
self.fc_action_motion = nn.Linear(1024, 101)
self.fc_action_motion_28 = nn.Linear(256, 101)
self.fc_action_motion_14 = nn.Linear(512, 101)
# ReLU layer for OFF
self.motion_relu_gen_3a = nn.ReLU()
self.motion_relu_gen_3b = nn.ReLU()
self.motion_relu_gen_3c = nn.ReLU()
self.motion_relu_trans_28a = nn.ReLU()
self.motion_relu_trans_28b = nn.ReLU()
self.motion_relu_trans_28c = nn.ReLU()
self.motion_relu_gen_4a = nn.ReLU()
self.motion_relu_gen_4b = nn.ReLU()
self.motion_relu_gen_4c = nn.ReLU()
self.motion_relu_gen_4d = nn.ReLU()
self.motion_relu_trans_14 = nn.ReLU()
self.motion_relu_gen_5a = nn.ReLU()
self.motion_relu_gen_5b = nn.ReLU()
self.motion_relu_trans_7 = nn.ReLU()
# Pooling Layer
self.motion_pool_trans_28 = nn.MaxPool2d((3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True)
# Dropout for motion
self.dropout = nn.Dropout(p=0.8)
self.softmax = nn.Softmax()
def RGB_OFF_forward(self, input):
conv1_7x7_s2_out = self.conv1_7x7_s2(input)
conv1_7x7_s2_bn_out = self.conv1_7x7_s2_bn(conv1_7x7_s2_out)
conv1_relu_7x7_out = self.conv1_relu_7x7(conv1_7x7_s2_bn_out)
pool1_3x3_s2_out = self.pool1_3x3_s2(conv1_relu_7x7_out)
conv2_3x3_reduce_out = self.conv2_3x3_reduce(pool1_3x3_s2_out)
conv2_3x3_reduce_bn_out = self.conv2_3x3_reduce_bn(conv2_3x3_reduce_out)
conv2_relu_3x3_reduce_out = self.conv2_relu_3x3_reduce(conv2_3x3_reduce_bn_out)
conv2_3x3_out = self.conv2_3x3(conv2_relu_3x3_reduce_out)
conv2_3x3_bn_out = self.conv2_3x3_bn(conv2_3x3_out)
conv2_relu_3x3_out = self.conv2_relu_3x3(conv2_3x3_bn_out)
pool2_3x3_s2_out = self.pool2_3x3_s2(conv2_relu_3x3_out)
inception_3a_1x1_out = self.inception_3a_1x1(pool2_3x3_s2_out)
inception_3a_1x1_bn_out = self.inception_3a_1x1_bn(inception_3a_1x1_out)
inception_3a_relu_1x1_out = self.inception_3a_relu_1x1(inception_3a_1x1_bn_out)
inception_3a_3x3_reduce_out = self.inception_3a_3x3_reduce(pool2_3x3_s2_out)
inception_3a_3x3_reduce_bn_out = self.inception_3a_3x3_reduce_bn(inception_3a_3x3_reduce_out)
inception_3a_relu_3x3_reduce_out = self.inception_3a_relu_3x3_reduce(inception_3a_3x3_reduce_bn_out)
inception_3a_3x3_out = self.inception_3a_3x3(inception_3a_relu_3x3_reduce_out)
inception_3a_3x3_bn_out = self.inception_3a_3x3_bn(inception_3a_3x3_out)
inception_3a_relu_3x3_out = self.inception_3a_relu_3x3(inception_3a_3x3_bn_out)
inception_3a_double_3x3_reduce_out = self.inception_3a_double_3x3_reduce(pool2_3x3_s2_out)
inception_3a_double_3x3_reduce_bn_out = self.inception_3a_double_3x3_reduce_bn(inception_3a_double_3x3_reduce_out)
inception_3a_relu_double_3x3_reduce_out = self.inception_3a_relu_double_3x3_reduce(inception_3a_double_3x3_reduce_bn_out)
inception_3a_double_3x3_1_out = self.inception_3a_double_3x3_1(inception_3a_relu_double_3x3_reduce_out)
inception_3a_double_3x3_1_bn_out = self.inception_3a_double_3x3_1_bn(inception_3a_double_3x3_1_out)
inception_3a_relu_double_3x3_1_out = self.inception_3a_relu_double_3x3_1(inception_3a_double_3x3_1_bn_out)
inception_3a_double_3x3_2_out = self.inception_3a_double_3x3_2(inception_3a_relu_double_3x3_1_out)
inception_3a_double_3x3_2_bn_out = self.inception_3a_double_3x3_2_bn(inception_3a_double_3x3_2_out)
inception_3a_relu_double_3x3_2_out = self.inception_3a_relu_double_3x3_2(inception_3a_double_3x3_2_bn_out)
inception_3a_pool_out = self.inception_3a_pool(pool2_3x3_s2_out)
inception_3a_pool_proj_out = self.inception_3a_pool_proj(inception_3a_pool_out)
inception_3a_pool_proj_bn_out = self.inception_3a_pool_proj_bn(inception_3a_pool_proj_out)
inception_3a_relu_pool_proj_out = self.inception_3a_relu_pool_proj(inception_3a_pool_proj_bn_out)
inception_3a_output_out = torch.cat([inception_3a_relu_1x1_out,inception_3a_relu_3x3_out,inception_3a_relu_double_3x3_2_out ,inception_3a_relu_pool_proj_out], 1)
inception_3b_1x1_out = self.inception_3b_1x1(inception_3a_output_out)
inception_3b_1x1_bn_out = self.inception_3b_1x1_bn(inception_3b_1x1_out)
inception_3b_relu_1x1_out = self.inception_3b_relu_1x1(inception_3b_1x1_bn_out)
inception_3b_3x3_reduce_out = self.inception_3b_3x3_reduce(inception_3a_output_out)
inception_3b_3x3_reduce_bn_out = self.inception_3b_3x3_reduce_bn(inception_3b_3x3_reduce_out)
inception_3b_relu_3x3_reduce_out = self.inception_3b_relu_3x3_reduce(inception_3b_3x3_reduce_bn_out)
inception_3b_3x3_out = self.inception_3b_3x3(inception_3b_relu_3x3_reduce_out)
inception_3b_3x3_bn_out = self.inception_3b_3x3_bn(inception_3b_3x3_out)
inception_3b_relu_3x3_out = self.inception_3b_relu_3x3(inception_3b_3x3_bn_out)
inception_3b_double_3x3_reduce_out = self.inception_3b_double_3x3_reduce(inception_3a_output_out)
inception_3b_double_3x3_reduce_bn_out = self.inception_3b_double_3x3_reduce_bn(inception_3b_double_3x3_reduce_out)
inception_3b_relu_double_3x3_reduce_out = self.inception_3b_relu_double_3x3_reduce(inception_3b_double_3x3_reduce_bn_out)
inception_3b_double_3x3_1_out = self.inception_3b_double_3x3_1(inception_3b_relu_double_3x3_reduce_out)
inception_3b_double_3x3_1_bn_out = self.inception_3b_double_3x3_1_bn(inception_3b_double_3x3_1_out)
inception_3b_relu_double_3x3_1_out = self.inception_3b_relu_double_3x3_1(inception_3b_double_3x3_1_bn_out)
inception_3b_double_3x3_2_out = self.inception_3b_double_3x3_2(inception_3b_relu_double_3x3_1_out)
inception_3b_double_3x3_2_bn_out = self.inception_3b_double_3x3_2_bn(inception_3b_double_3x3_2_out)
inception_3b_relu_double_3x3_2_out = self.inception_3b_relu_double_3x3_2(inception_3b_double_3x3_2_bn_out)
inception_3b_pool_out = self.inception_3b_pool(inception_3a_output_out)
inception_3b_pool_proj_out = self.inception_3b_pool_proj(inception_3b_pool_out)
inception_3b_pool_proj_bn_out = self.inception_3b_pool_proj_bn(inception_3b_pool_proj_out)
inception_3b_relu_pool_proj_out = self.inception_3b_relu_pool_proj(inception_3b_pool_proj_bn_out)
inception_3b_output_out = torch.cat([inception_3b_relu_1x1_out,inception_3b_relu_3x3_out,inception_3b_relu_double_3x3_2_out,inception_3b_relu_pool_proj_out], 1)
inception_3c_3x3_reduce_out = self.inception_3c_3x3_reduce(inception_3b_output_out)
inception_3c_3x3_reduce_bn_out = self.inception_3c_3x3_reduce_bn(inception_3c_3x3_reduce_out)
inception_3c_relu_3x3_reduce_out = self.inception_3c_relu_3x3_reduce(inception_3c_3x3_reduce_bn_out)
inception_3c_3x3_out = self.inception_3c_3x3(inception_3c_relu_3x3_reduce_out)
inception_3c_3x3_bn_out = self.inception_3c_3x3_bn(inception_3c_3x3_out)
inception_3c_relu_3x3_out = self.inception_3c_relu_3x3(inception_3c_3x3_bn_out)
inception_3c_double_3x3_reduce_out = self.inception_3c_double_3x3_reduce(inception_3b_output_out)
inception_3c_double_3x3_reduce_bn_out = self.inception_3c_double_3x3_reduce_bn(inception_3c_double_3x3_reduce_out)
inception_3c_relu_double_3x3_reduce_out = self.inception_3c_relu_double_3x3_reduce(inception_3c_double_3x3_reduce_bn_out)
inception_3c_double_3x3_1_out = self.inception_3c_double_3x3_1(inception_3c_relu_double_3x3_reduce_out)
inception_3c_double_3x3_1_bn_out = self.inception_3c_double_3x3_1_bn(inception_3c_double_3x3_1_out)
inception_3c_relu_double_3x3_1_out = self.inception_3c_relu_double_3x3_1(inception_3c_double_3x3_1_bn_out)
inception_3c_double_3x3_2_out = self.inception_3c_double_3x3_2(inception_3c_relu_double_3x3_1_out)
inception_3c_double_3x3_2_bn_out = self.inception_3c_double_3x3_2_bn(inception_3c_double_3x3_2_out)
inception_3c_relu_double_3x3_2_out = self.inception_3c_relu_double_3x3_2(inception_3c_double_3x3_2_bn_out)
inception_3c_pool_out = self.inception_3c_pool(inception_3b_output_out)
inception_3c_output_out = torch.cat([inception_3c_relu_3x3_out,inception_3c_relu_double_3x3_2_out,inception_3c_pool_out], 1)
inception_4a_1x1_out = self.inception_4a_1x1(inception_3c_output_out)
inception_4a_1x1_bn_out = self.inception_4a_1x1_bn(inception_4a_1x1_out)
inception_4a_relu_1x1_out = self.inception_4a_relu_1x1(inception_4a_1x1_bn_out)
inception_4a_3x3_reduce_out = self.inception_4a_3x3_reduce(inception_3c_output_out)
inception_4a_3x3_reduce_bn_out = self.inception_4a_3x3_reduce_bn(inception_4a_3x3_reduce_out)
inception_4a_relu_3x3_reduce_out = self.inception_4a_relu_3x3_reduce(inception_4a_3x3_reduce_bn_out)
inception_4a_3x3_out = self.inception_4a_3x3(inception_4a_relu_3x3_reduce_out)
inception_4a_3x3_bn_out = self.inception_4a_3x3_bn(inception_4a_3x3_out)
inception_4a_relu_3x3_out = self.inception_4a_relu_3x3(inception_4a_3x3_bn_out)
inception_4a_double_3x3_reduce_out = self.inception_4a_double_3x3_reduce(inception_3c_output_out)
inception_4a_double_3x3_reduce_bn_out = self.inception_4a_double_3x3_reduce_bn(inception_4a_double_3x3_reduce_out)
inception_4a_relu_double_3x3_reduce_out = self.inception_4a_relu_double_3x3_reduce(inception_4a_double_3x3_reduce_bn_out)
inception_4a_double_3x3_1_out = self.inception_4a_double_3x3_1(inception_4a_relu_double_3x3_reduce_out)
inception_4a_double_3x3_1_bn_out = self.inception_4a_double_3x3_1_bn(inception_4a_double_3x3_1_out)
inception_4a_relu_double_3x3_1_out = self.inception_4a_relu_double_3x3_1(inception_4a_double_3x3_1_bn_out)
inception_4a_double_3x3_2_out = self.inception_4a_double_3x3_2(inception_4a_relu_double_3x3_1_out)
inception_4a_double_3x3_2_bn_out = self.inception_4a_double_3x3_2_bn(inception_4a_double_3x3_2_out)
inception_4a_relu_double_3x3_2_out = self.inception_4a_relu_double_3x3_2(inception_4a_double_3x3_2_bn_out)
inception_4a_pool_out = self.inception_4a_pool(inception_3c_output_out)
inception_4a_pool_proj_out = self.inception_4a_pool_proj(inception_4a_pool_out)
inception_4a_pool_proj_bn_out = self.inception_4a_pool_proj_bn(inception_4a_pool_proj_out)
inception_4a_relu_pool_proj_out = self.inception_4a_relu_pool_proj(inception_4a_pool_proj_bn_out)
inception_4a_output_out = torch.cat([inception_4a_relu_1x1_out,inception_4a_relu_3x3_out,inception_4a_relu_double_3x3_2_out,inception_4a_relu_pool_proj_out], 1)
inception_4b_1x1_out = self.inception_4b_1x1(inception_4a_output_out)
inception_4b_1x1_bn_out = self.inception_4b_1x1_bn(inception_4b_1x1_out)
inception_4b_relu_1x1_out = self.inception_4b_relu_1x1(inception_4b_1x1_bn_out)
inception_4b_3x3_reduce_out = self.inception_4b_3x3_reduce(inception_4a_output_out)
inception_4b_3x3_reduce_bn_out = self.inception_4b_3x3_reduce_bn(inception_4b_3x3_reduce_out)
inception_4b_relu_3x3_reduce_out = self.inception_4b_relu_3x3_reduce(inception_4b_3x3_reduce_bn_out)
inception_4b_3x3_out = self.inception_4b_3x3(inception_4b_relu_3x3_reduce_out)
inception_4b_3x3_bn_out = self.inception_4b_3x3_bn(inception_4b_3x3_out)
inception_4b_relu_3x3_out = self.inception_4b_relu_3x3(inception_4b_3x3_bn_out)
inception_4b_double_3x3_reduce_out = self.inception_4b_double_3x3_reduce(inception_4a_output_out)
inception_4b_double_3x3_reduce_bn_out = self.inception_4b_double_3x3_reduce_bn(inception_4b_double_3x3_reduce_out)
inception_4b_relu_double_3x3_reduce_out = self.inception_4b_relu_double_3x3_reduce(inception_4b_double_3x3_reduce_bn_out)
inception_4b_double_3x3_1_out = self.inception_4b_double_3x3_1(inception_4b_relu_double_3x3_reduce_out)
inception_4b_double_3x3_1_bn_out = self.inception_4b_double_3x3_1_bn(inception_4b_double_3x3_1_out)
inception_4b_relu_double_3x3_1_out = self.inception_4b_relu_double_3x3_1(inception_4b_double_3x3_1_bn_out)
inception_4b_double_3x3_2_out = self.inception_4b_double_3x3_2(inception_4b_relu_double_3x3_1_out)
inception_4b_double_3x3_2_bn_out = self.inception_4b_double_3x3_2_bn(inception_4b_double_3x3_2_out)
inception_4b_relu_double_3x3_2_out = self.inception_4b_relu_double_3x3_2(inception_4b_double_3x3_2_bn_out)
inception_4b_pool_out = self.inception_4b_pool(inception_4a_output_out)
inception_4b_pool_proj_out = self.inception_4b_pool_proj(inception_4b_pool_out)
inception_4b_pool_proj_bn_out = self.inception_4b_pool_proj_bn(inception_4b_pool_proj_out)
inception_4b_relu_pool_proj_out = self.inception_4b_relu_pool_proj(inception_4b_pool_proj_bn_out)
inception_4b_output_out = torch.cat([inception_4b_relu_1x1_out,inception_4b_relu_3x3_out,inception_4b_relu_double_3x3_2_out,inception_4b_relu_pool_proj_out], 1)
inception_4c_1x1_out = self.inception_4c_1x1(inception_4b_output_out)
inception_4c_1x1_bn_out = self.inception_4c_1x1_bn(inception_4c_1x1_out)
inception_4c_relu_1x1_out = self.inception_4c_relu_1x1(inception_4c_1x1_bn_out)
inception_4c_3x3_reduce_out = self.inception_4c_3x3_reduce(inception_4b_output_out)
inception_4c_3x3_reduce_bn_out = self.inception_4c_3x3_reduce_bn(inception_4c_3x3_reduce_out)
inception_4c_relu_3x3_reduce_out = self.inception_4c_relu_3x3_reduce(inception_4c_3x3_reduce_bn_out)
inception_4c_3x3_out = self.inception_4c_3x3(inception_4c_relu_3x3_reduce_out)
inception_4c_3x3_bn_out = self.inception_4c_3x3_bn(inception_4c_3x3_out)
inception_4c_relu_3x3_out = self.inception_4c_relu_3x3(inception_4c_3x3_bn_out)
inception_4c_double_3x3_reduce_out = self.inception_4c_double_3x3_reduce(inception_4b_output_out)
inception_4c_double_3x3_reduce_bn_out = self.inception_4c_double_3x3_reduce_bn(inception_4c_double_3x3_reduce_out)
inception_4c_relu_double_3x3_reduce_out = self.inception_4c_relu_double_3x3_reduce(inception_4c_double_3x3_reduce_bn_out)
inception_4c_double_3x3_1_out = self.inception_4c_double_3x3_1(inception_4c_relu_double_3x3_reduce_out)
inception_4c_double_3x3_1_bn_out = self.inception_4c_double_3x3_1_bn(inception_4c_double_3x3_1_out)
inception_4c_relu_double_3x3_1_out = self.inception_4c_relu_double_3x3_1(inception_4c_double_3x3_1_bn_out)
inception_4c_double_3x3_2_out = self.inception_4c_double_3x3_2(inception_4c_relu_double_3x3_1_out)
inception_4c_double_3x3_2_bn_out = self.inception_4c_double_3x3_2_bn(inception_4c_double_3x3_2_out)
inception_4c_relu_double_3x3_2_out = self.inception_4c_relu_double_3x3_2(inception_4c_double_3x3_2_bn_out)
inception_4c_pool_out = self.inception_4c_pool(inception_4b_output_out)
inception_4c_pool_proj_out = self.inception_4c_pool_proj(inception_4c_pool_out)
inception_4c_pool_proj_bn_out = self.inception_4c_pool_proj_bn(inception_4c_pool_proj_out)
inception_4c_relu_pool_proj_out = self.inception_4c_relu_pool_proj(inception_4c_pool_proj_bn_out)
inception_4c_output_out = torch.cat([inception_4c_relu_1x1_out,inception_4c_relu_3x3_out,inception_4c_relu_double_3x3_2_out,inception_4c_relu_pool_proj_out], 1)
inception_4d_1x1_out = self.inception_4d_1x1(inception_4c_output_out)
inception_4d_1x1_bn_out = self.inception_4d_1x1_bn(inception_4d_1x1_out)
inception_4d_relu_1x1_out = self.inception_4d_relu_1x1(inception_4d_1x1_bn_out)
inception_4d_3x3_reduce_out = self.inception_4d_3x3_reduce(inception_4c_output_out)
inception_4d_3x3_reduce_bn_out = self.inception_4d_3x3_reduce_bn(inception_4d_3x3_reduce_out)
inception_4d_relu_3x3_reduce_out = self.inception_4d_relu_3x3_reduce(inception_4d_3x3_reduce_bn_out)
inception_4d_3x3_out = self.inception_4d_3x3(inception_4d_relu_3x3_reduce_out)
inception_4d_3x3_bn_out = self.inception_4d_3x3_bn(inception_4d_3x3_out)
inception_4d_relu_3x3_out = self.inception_4d_relu_3x3(inception_4d_3x3_bn_out)
inception_4d_double_3x3_reduce_out = self.inception_4d_double_3x3_reduce(inception_4c_output_out)
inception_4d_double_3x3_reduce_bn_out = self.inception_4d_double_3x3_reduce_bn(inception_4d_double_3x3_reduce_out)
inception_4d_relu_double_3x3_reduce_out = self.inception_4d_relu_double_3x3_reduce(inception_4d_double_3x3_reduce_bn_out)
inception_4d_double_3x3_1_out = self.inception_4d_double_3x3_1(inception_4d_relu_double_3x3_reduce_out)
inception_4d_double_3x3_1_bn_out = self.inception_4d_double_3x3_1_bn(inception_4d_double_3x3_1_out)
inception_4d_relu_double_3x3_1_out = self.inception_4d_relu_double_3x3_1(inception_4d_double_3x3_1_bn_out)
inception_4d_double_3x3_2_out = self.inception_4d_double_3x3_2(inception_4d_relu_double_3x3_1_out)
inception_4d_double_3x3_2_bn_out = self.inception_4d_double_3x3_2_bn(inception_4d_double_3x3_2_out)
inception_4d_relu_double_3x3_2_out = self.inception_4d_relu_double_3x3_2(inception_4d_double_3x3_2_bn_out)
inception_4d_pool_out = self.inception_4d_pool(inception_4c_output_out)
inception_4d_pool_proj_out = self.inception_4d_pool_proj(inception_4d_pool_out)
inception_4d_pool_proj_bn_out = self.inception_4d_pool_proj_bn(inception_4d_pool_proj_out)
inception_4d_relu_pool_proj_out = self.inception_4d_relu_pool_proj(inception_4d_pool_proj_bn_out)
inception_4d_output_out = torch.cat([inception_4d_relu_1x1_out,inception_4d_relu_3x3_out,inception_4d_relu_double_3x3_2_out,inception_4d_relu_pool_proj_out], 1)
inception_4e_3x3_reduce_out = self.inception_4e_3x3_reduce(inception_4d_output_out)
inception_4e_3x3_reduce_bn_out = self.inception_4e_3x3_reduce_bn(inception_4e_3x3_reduce_out)
inception_4e_relu_3x3_reduce_out = self.inception_4e_relu_3x3_reduce(inception_4e_3x3_reduce_bn_out)
inception_4e_3x3_out = self.inception_4e_3x3(inception_4e_relu_3x3_reduce_out)
inception_4e_3x3_bn_out = self.inception_4e_3x3_bn(inception_4e_3x3_out)
inception_4e_relu_3x3_out = self.inception_4e_relu_3x3(inception_4e_3x3_bn_out)
inception_4e_double_3x3_reduce_out = self.inception_4e_double_3x3_reduce(inception_4d_output_out)
inception_4e_double_3x3_reduce_bn_out = self.inception_4e_double_3x3_reduce_bn(inception_4e_double_3x3_reduce_out)
inception_4e_relu_double_3x3_reduce_out = self.inception_4e_relu_double_3x3_reduce(inception_4e_double_3x3_reduce_bn_out)
inception_4e_double_3x3_1_out = self.inception_4e_double_3x3_1(inception_4e_relu_double_3x3_reduce_out)
inception_4e_double_3x3_1_bn_out = self.inception_4e_double_3x3_1_bn(inception_4e_double_3x3_1_out)
inception_4e_relu_double_3x3_1_out = self.inception_4e_relu_double_3x3_1(inception_4e_double_3x3_1_bn_out)
inception_4e_double_3x3_2_out = self.inception_4e_double_3x3_2(inception_4e_relu_double_3x3_1_out)
inception_4e_double_3x3_2_bn_out = self.inception_4e_double_3x3_2_bn(inception_4e_double_3x3_2_out)
inception_4e_relu_double_3x3_2_out = self.inception_4e_relu_double_3x3_2(inception_4e_double_3x3_2_bn_out)
inception_4e_pool_out = self.inception_4e_pool(inception_4d_output_out)
inception_4e_output_out = torch.cat([inception_4e_relu_3x3_out,inception_4e_relu_double_3x3_2_out,inception_4e_pool_out], 1)
inception_5a_1x1_out = self.inception_5a_1x1(inception_4e_output_out)
inception_5a_1x1_bn_out = self.inception_5a_1x1_bn(inception_5a_1x1_out)
inception_5a_relu_1x1_out = self.inception_5a_relu_1x1(inception_5a_1x1_bn_out)
inception_5a_3x3_reduce_out = self.inception_5a_3x3_reduce(inception_4e_output_out)
inception_5a_3x3_reduce_bn_out = self.inception_5a_3x3_reduce_bn(inception_5a_3x3_reduce_out)
inception_5a_relu_3x3_reduce_out = self.inception_5a_relu_3x3_reduce(inception_5a_3x3_reduce_bn_out)
inception_5a_3x3_out = self.inception_5a_3x3(inception_5a_relu_3x3_reduce_out)
inception_5a_3x3_bn_out = self.inception_5a_3x3_bn(inception_5a_3x3_out)
inception_5a_relu_3x3_out = self.inception_5a_relu_3x3(inception_5a_3x3_bn_out)
inception_5a_double_3x3_reduce_out = self.inception_5a_double_3x3_reduce(inception_4e_output_out)
inception_5a_double_3x3_reduce_bn_out = self.inception_5a_double_3x3_reduce_bn(inception_5a_double_3x3_reduce_out)
inception_5a_relu_double_3x3_reduce_out = self.inception_5a_relu_double_3x3_reduce(inception_5a_double_3x3_reduce_bn_out)
inception_5a_double_3x3_1_out = self.inception_5a_double_3x3_1(inception_5a_relu_double_3x3_reduce_out)
inception_5a_double_3x3_1_bn_out = self.inception_5a_double_3x3_1_bn(inception_5a_double_3x3_1_out)
inception_5a_relu_double_3x3_1_out = self.inception_5a_relu_double_3x3_1(inception_5a_double_3x3_1_bn_out)
inception_5a_double_3x3_2_out = self.inception_5a_double_3x3_2(inception_5a_relu_double_3x3_1_out)
inception_5a_double_3x3_2_bn_out = self.inception_5a_double_3x3_2_bn(inception_5a_double_3x3_2_out)
inception_5a_relu_double_3x3_2_out = self.inception_5a_relu_double_3x3_2(inception_5a_double_3x3_2_bn_out)
inception_5a_pool_out = self.inception_5a_pool(inception_4e_output_out)
inception_5a_pool_proj_out = self.inception_5a_pool_proj(inception_5a_pool_out)
inception_5a_pool_proj_bn_out = self.inception_5a_pool_proj_bn(inception_5a_pool_proj_out)
inception_5a_relu_pool_proj_out = self.inception_5a_relu_pool_proj(inception_5a_pool_proj_bn_out)
inception_5a_output_out = torch.cat([inception_5a_relu_1x1_out,inception_5a_relu_3x3_out,inception_5a_relu_double_3x3_2_out,inception_5a_relu_pool_proj_out], 1)
inception_5b_1x1_out = self.inception_5b_1x1(inception_5a_output_out)
inception_5b_1x1_bn_out = self.inception_5b_1x1_bn(inception_5b_1x1_out)
inception_5b_relu_1x1_out = self.inception_5b_relu_1x1(inception_5b_1x1_bn_out)
inception_5b_3x3_reduce_out = self.inception_5b_3x3_reduce(inception_5a_output_out)
inception_5b_3x3_reduce_bn_out = self.inception_5b_3x3_reduce_bn(inception_5b_3x3_reduce_out)
inception_5b_relu_3x3_reduce_out = self.inception_5b_relu_3x3_reduce(inception_5b_3x3_reduce_bn_out)
inception_5b_3x3_out = self.inception_5b_3x3(inception_5b_relu_3x3_reduce_out)
inception_5b_3x3_bn_out = self.inception_5b_3x3_bn(inception_5b_3x3_out)
inception_5b_relu_3x3_out = self.inception_5b_relu_3x3(inception_5b_3x3_bn_out)
inception_5b_double_3x3_reduce_out = self.inception_5b_double_3x3_reduce(inception_5a_output_out)
inception_5b_double_3x3_reduce_bn_out = self.inception_5b_double_3x3_reduce_bn(inception_5b_double_3x3_reduce_out)
inception_5b_relu_double_3x3_reduce_out = self.inception_5b_relu_double_3x3_reduce(inception_5b_double_3x3_reduce_bn_out)
inception_5b_double_3x3_1_out = self.inception_5b_double_3x3_1(inception_5b_relu_double_3x3_reduce_out)
inception_5b_double_3x3_1_bn_out = self.inception_5b_double_3x3_1_bn(inception_5b_double_3x3_1_out)
inception_5b_relu_double_3x3_1_out = self.inception_5b_relu_double_3x3_1(inception_5b_double_3x3_1_bn_out)
inception_5b_double_3x3_2_out = self.inception_5b_double_3x3_2(inception_5b_relu_double_3x3_1_out)
inception_5b_double_3x3_2_bn_out = self.inception_5b_double_3x3_2_bn(inception_5b_double_3x3_2_out)
inception_5b_relu_double_3x3_2_out = self.inception_5b_relu_double_3x3_2(inception_5b_double_3x3_2_bn_out)
inception_5b_pool_out = self.inception_5b_pool(inception_5a_output_out)
inception_5b_pool_proj_out = self.inception_5b_pool_proj(inception_5b_pool_out)
inception_5b_pool_proj_bn_out = self.inception_5b_pool_proj_bn(inception_5b_pool_proj_out)
inception_5b_relu_pool_proj_out = self.inception_5b_relu_pool_proj(inception_5b_pool_proj_bn_out)
inception_5b_output_out = torch.cat([inception_5b_relu_1x1_out,inception_5b_relu_3x3_out,inception_5b_relu_double_3x3_2_out,inception_5b_relu_pool_proj_out], 1)
Feature_Generation_Score = self.global_pool(inception_5b_output_out)
Feature_Generation_Score = Feature_Generation_Score.view(Feature_Generation_Score.size(0), -1)
Feature_Generation_Score = self.last_linear(Feature_Generation_Score)
# motion 3a, operating on [batch * length, c, h, w] level
motion_conv_gen_3a = self.motion_conv_gen_3a(inception_3a_output_out)
motion_relu_gen_3a = self.motion_relu_gen_3a(motion_conv_gen_3a)
channel_size = motion_relu_gen_3a.shape[1] # 128 in this case
reshape_rgb_frames_3a = motion_relu_gen_3a.view(self.batch, -1, 28, 28)
last_frames_3a = reshape_rgb_frames_3a[:, channel_size:, :, :]
first_frames_3a = reshape_rgb_frames_3a[:, :-channel_size, :, :]
eltwise_motion_3a = last_frames_3a - first_frames_3a
temporal_grad_3a = eltwise_motion_3a.view(-1, channel_size, 28, 28) # convert back to [batch * (time - 1), c, h, w]
# print(temporal_grad_3a.shape)
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_3a = inception_3a_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_3a = self.motion_spatial_down_3a(spatial_frames_3a) # downgrade dimension to 32
spatial_grad_3a = self.motion_spatial_grad_3a(spatial_down_3a)
spatial_grad_3a = self.dropout(spatial_grad_3a)
# print(spatial_grad_3a.shape)
# concatenate temporal and spatial dimension
# import pdb;pdb.set_trace()
motion_3a = torch.cat((spatial_grad_3a, temporal_grad_3a), dim=1)
# motion 3b
motion_conv_gen_3b = self.motion_conv_gen_3b(inception_3b_output_out)
motion_relu_gen_3b = self.motion_relu_gen_3b(motion_conv_gen_3b)
channel_size = motion_relu_gen_3b.shape[1]
reshape_rgb_frames_3b = motion_relu_gen_3b.view(self.batch, -1, 28, 28)
last_frames_3b = reshape_rgb_frames_3b[:, channel_size:, :, :]
first_frames_3b = reshape_rgb_frames_3b[:, :-channel_size, :, :]
eltwise_motion_3b = last_frames_3b - first_frames_3b
temporal_grad_3b = eltwise_motion_3b.view(-1, channel_size, 28, 28) # convert back to [batch * time, c, h, w]
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_3b = inception_3b_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_3b = self.motion_spatial_down_3b(spatial_frames_3b) # downgrade dimension to 32
spatial_grad_3b = self.motion_spatial_grad_3b(spatial_down_3b)
spatial_grad_3b = self.dropout(spatial_grad_3b) # dropout
# concatenate temporal and spatial dimension
motion_3b = torch.cat((spatial_grad_3b, temporal_grad_3b), dim=1)
# motion 3c
motion_conv_gen_3c = self.motion_conv_gen_3c(inception_3c_output_out)
motion_relu_gen_3c = self.motion_relu_gen_3c(motion_conv_gen_3c)
channel_size = motion_relu_gen_3c.shape[1]
reshape_rgb_frames_3c = motion_relu_gen_3c.view(self.batch, -1, 14, 14)
last_frames_3c = reshape_rgb_frames_3c[:, channel_size:, :, :]
first_frames_3c = reshape_rgb_frames_3c[:, :-channel_size, :, :]
eltwise_motion_3c = last_frames_3c - first_frames_3c
temporal_grad_3c = eltwise_motion_3c.view(-1, channel_size, 14, 14) # convert back to [batch * time, c, h, w]
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_3c = inception_3c_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_3c = self.motion_spatial_down_3c(spatial_frames_3c) # downgrade dimension to 32
spatial_grad_3c = self.motion_spatial_grad_3c(spatial_down_3c)
spatial_grad_3c = self.dropout(spatial_grad_3c) # dropout
# concatenate temporal and spatial dimension
motion_3c = torch.cat((spatial_grad_3c, temporal_grad_3c), dim=1)
# fusion at resolution 28
motion_fusion_28 = torch.cat((motion_3a, motion_3b), dim=1)
motion_conv_trans_28 = self.motion_conv_trans_28(motion_fusion_28)
motion_relu_trans_28 = self.motion_relu_trans_28a(motion_conv_trans_28)
motion_conv1_trans_28a = self.motion_conv1_trans_28a(motion_relu_trans_28)
motion_conv1_trans_28a = self.motion_relu_trans_28a(motion_conv1_trans_28a)
motion_conv2_trans_28a = self.motion_conv2_trans_28a(motion_conv1_trans_28a)
motion_conv2_trans_28a =self.motion_relu_trans_28a(motion_conv2_trans_28a)
motion_conv3_trans_28a = self.motion_conv3_trans_28a(motion_conv2_trans_28a)
# residual connection
motion_conv_branch_28a = self.motion_conv_branch_28a(motion_conv_trans_28)
motion_sum_28a = motion_conv3_trans_28a + motion_conv_branch_28a
motion_sum_28a = self.motion_relu_trans_28a(motion_sum_28a)
# fusion a certain resolution
motion_conv1_trans_28b = self.motion_conv1_trans_28b(motion_sum_28a)
motion_conv1_trans_28b = self.motion_relu_trans_28b(motion_conv1_trans_28b)
motion_conv2_trans_28b = self.motion_conv2_trans_28b(motion_conv1_trans_28b)
motion_conv2_trans_28b = self.motion_relu_trans_28b(motion_conv2_trans_28b)
motion_conv3_trans_28b = self.motion_conv3_trans_28b(motion_conv2_trans_28b)
motion_sum_28b = motion_conv3_trans_28b + motion_sum_28a
motion_sum_28b = self.motion_relu_trans_28b(motion_sum_28b)
# This isn't motion_c
motion_conv1_trans_28c = self.motion_conv1_trans_28c(motion_sum_28b)
motion_conv1_trans_28c = self.motion_relu_trans_28c(motion_conv1_trans_28c)
motion_conv2_trans_28c = self.motion_conv2_trans_28c(motion_conv1_trans_28c)
motion_conv2_trans_28c = self.motion_relu_trans_28c(motion_conv2_trans_28c)
motion_conv3_trans_28c = self.motion_conv3_trans_28c(motion_conv2_trans_28c)
motion_sum_28c = motion_conv3_trans_28c + motion_sum_28b
motion_sum_28c = self.motion_relu_trans_28c(motion_sum_28c)
# motion_4a
motion_conv_gen_4a = self.motion_conv_gen_4a(inception_4a_output_out)
motion_relu_gen_4a = self.motion_relu_gen_4a(motion_conv_gen_4a)
channel_size = motion_relu_gen_4a.shape[1]
reshape_rgb_frames_4a = motion_relu_gen_4a.view(self.batch, -1, 14, 14)
last_frames_4a = reshape_rgb_frames_4a[:, channel_size:, :, :]
first_frames_4a = reshape_rgb_frames_4a[:, :-channel_size, :, :]
eltwise_motion_4a = last_frames_4a - first_frames_4a
temporal_grad_4a = eltwise_motion_4a.view(-1, channel_size, 14, 14) # convert back to [batch * time, c, h, w]
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_4a = inception_4a_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_4a = self.motion_spatial_down_4a(spatial_frames_4a) # downgrade dimension to 32
spatial_grad_4a = self.motion_spatial_grad_4a(spatial_down_4a)
spatial_grad_4a = self.dropout(spatial_grad_4a) # dropout
# concatenate temporal and spatial dimension
motion_4a = torch.cat((spatial_grad_4a, temporal_grad_4a), dim=1)
# motion 4b
motion_conv_gen_4b = self.motion_conv_gen_4b(inception_4b_output_out)
motion_relu_gen_4b = self.motion_relu_gen_4b(motion_conv_gen_4b)
channel_size = motion_relu_gen_4b.shape[1]
reshape_rgb_frames_4b = motion_relu_gen_4b.view(self.batch, -1, 14, 14)
last_frames_4b = reshape_rgb_frames_4b[:, channel_size:, :, :]
first_frames_4b = reshape_rgb_frames_4b[:, :-channel_size, :, :]
eltwise_motion_4b = last_frames_4b - first_frames_4b
temporal_grad_4b = eltwise_motion_4b.view(-1, channel_size, 14, 14) # convert back to [batch * time, c, h, w]
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_4b = inception_4b_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_4b = self.motion_spatial_down_4b(spatial_frames_4b) # downgrade dimension to 32
spatial_grad_4b = self.motion_spatial_grad_4b(spatial_down_4b)
spatial_grad_4b = self.dropout(spatial_grad_4b) # dropout
# concatenate temporal and spatial dimension
motion_4b = torch.cat((spatial_grad_4b, temporal_grad_4b), dim=1)
# motion 4c
motion_conv_gen_4c = self.motion_conv_gen_4c(inception_4c_output_out)
motion_relu_gen_4c = self.motion_relu_gen_4c(motion_conv_gen_4c)
channel_size = motion_relu_gen_4c.shape[1]
reshape_rgb_frames_4c = motion_relu_gen_4c.view(self.batch, -1, 14, 14)
last_frames_4c = reshape_rgb_frames_4c[:, channel_size:, :, :]
first_frames_4c = reshape_rgb_frames_4c[:, :-channel_size, :, :]
eltwise_motion_4c = last_frames_4c - first_frames_4c
temporal_grad_4c = eltwise_motion_4c.view(-1, channel_size, 14, 14) # convert back to [batch * time, c, h, w]
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_4c = inception_4c_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_4c = self.motion_spatial_down_4c(spatial_frames_4c) # downgrade dimension to 32
spatial_grad_4c = self.motion_spatial_grad_4c(spatial_down_4c)
spatial_grad_4c = self.dropout(spatial_grad_4c) # dropout
# concatenate temporal and spatial dimension
motion_4c = torch.cat((spatial_grad_4c, temporal_grad_4c), dim=1)
# motion 4d
motion_conv_gen_4d = self.motion_conv_gen_4d(inception_4d_output_out)
motion_relu_gen_4d = self.motion_relu_gen_4d(motion_conv_gen_4d)
channel_size = motion_relu_gen_4d.shape[1]
reshape_rgb_frames_4d = motion_relu_gen_4d.view(self.batch, -1, 14, 14)
last_frames_4d = reshape_rgb_frames_4d[:, channel_size:, :, :]
first_frames_4d = reshape_rgb_frames_4d[:, :-channel_size, :, :]
eltwise_motion_4d = last_frames_4d - first_frames_4d
temporal_grad_4d = eltwise_motion_4d.view(-1, channel_size, 14, 14) # convert back to [batch * time, c, h, w]
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_4d = inception_4d_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_4d = self.motion_spatial_down_4d(spatial_frames_4d) # downgrade dimension to 32
spatial_grad_4d = self.motion_spatial_grad_4d(spatial_down_4d)
spatial_grad_4d = self.dropout(spatial_grad_4d) # dropout
# concatenate temporal and spatial dimension
motion_4d = torch.cat((spatial_grad_4d, temporal_grad_4d), dim=1)
# fusion at resolution 14
motion_fusion_14 = torch.cat((motion_3c, motion_4a, motion_4b, motion_4c, motion_4d, motion_sum_28c), 1)
motion_conv_trans_14 = self.motion_conv_trans_14(motion_fusion_14)
motion_conv_trans_14 = self.motion_relu_trans_14(motion_conv_trans_14)
motion_conv1_trans_14a = self.motion_conv1_trans_14a(motion_conv_trans_14)
motion_conv1_trans_14a = self.motion_relu_trans_14(motion_conv1_trans_14a)
motion_conv2_trans_14a = self.motion_conv2_trans_14a(motion_conv1_trans_14a)
motion_conv2_trans_14a = self.motion_relu_trans_14(motion_conv2_trans_14a)
motion_conv3_trans_14a = self.motion_conv3_trans_14a(motion_conv2_trans_14a)
motion_conv_expand_trans_14a = self.motion_conv_expand_trans_14a(motion_conv_trans_14)
motion_sum_14a = motion_conv3_trans_14a + motion_conv_expand_trans_14a
motion_sum_14a = self.motion_relu_trans_14(motion_sum_14a)
motion_conv1_trans_14b = self.motion_conv1_trans_14b(motion_sum_14a)
motion_conv1_trans_14b = self.motion_relu_trans_14(motion_conv1_trans_14b)
motion_conv2_trans_14b = self.motion_conv2_trans_14b(motion_conv1_trans_14b)
motion_conv2_trans_14b = self.motion_relu_trans_14(motion_conv2_trans_14b)
motion_conv3_trans_14b = self.motion_conv3_trans_14b(motion_conv2_trans_14b)
motion_conv3_trans_14b = self.motion_relu_trans_14(motion_conv3_trans_14b)
motion_sum_14b = motion_sum_14a + motion_conv3_trans_14b
motion_sum_14b = self.motion_relu_trans_14(motion_sum_14b)
## FC & Loss & Accuracy 28 ##
motion_pool_trans_28 = self.motion_pool_trans_28(motion_sum_28c)
global_pool_motion_28 = self.global_pool(motion_pool_trans_28)
global_pool_motion_28 = self.dropout(global_pool_motion_28)
global_pool_motion_28 = torch.squeeze(global_pool_motion_28)
fc_action_motion_28 = self.fc_action_motion_28(global_pool_motion_28)
## FC & Loss & Accuracy 14 ##
global_pool_motion_14 = self.global_pool(motion_sum_14b)
global_pool_motion_14 = self.dropout(global_pool_motion_14)
global_pool_motion_14 = torch.squeeze(global_pool_motion_14)
fc_action_motion_14 = self.fc_action_motion_14(global_pool_motion_14)
# motion 5a
motion_conv_gen_5a = self.motion_conv_gen_5a(inception_5a_output_out)
motion_relu_gen_5a = self.motion_relu_gen_5a(motion_conv_gen_5a)
channel_size = motion_relu_gen_5a.shape[1]
reshape_rgb_frames_5a = motion_relu_gen_5a.view(self.batch, -1, 7, 7)
last_frames_5a = reshape_rgb_frames_5a[:, channel_size:, :, :]
first_frames_5a = reshape_rgb_frames_5a[:, :-channel_size, :, :]
eltwise_motion_5a = last_frames_5a - first_frames_5a
temporal_grad_5a = eltwise_motion_5a.view(-1, channel_size, 7, 7) # convert back to [batch * time, c, h, w]
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_5a = inception_5a_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_5a = self.motion_spatial_down_5a(spatial_frames_5a) # downgrade dimension to 32
spatial_grad_5a = self.motion_spatial_grad_5a(spatial_down_5a)
spatial_grad_5a = self.dropout(spatial_grad_5a) # dropout
# concatenate temporal and spatial dimension
motion_5a = torch.cat((spatial_grad_5a, temporal_grad_5a), dim=1)
# motion 5b
motion_conv_gen_5b = self.motion_conv_gen_5b(inception_5b_output_out)
motion_relu_gen_5b = self.motion_relu_gen_5b(motion_conv_gen_5b)
channel_size = motion_relu_gen_5b.shape[1]
reshape_rgb_frames_5b = motion_relu_gen_5b.view(self.batch, -1, 7, 7)
last_frames_5b = reshape_rgb_frames_5b[:, channel_size:, :, :]
first_frames_5b = reshape_rgb_frames_5b[:, :-channel_size, :, :]
eltwise_motion_5b = last_frames_5b - first_frames_5b
temporal_grad_5b = eltwise_motion_5b.view(-1, channel_size, 7, 7) # convert back to [batch * time, c, h, w]
# since temporal grad length -1, so does spatial grad
# discard last frame
spatial_frames_5b = inception_5b_output_out[:self.batch * (self.length - 1), :, :, :]
spatial_down_5b = self.motion_spatial_down_5b(spatial_frames_5b) # downgrade dimension to 32
spatial_grad_5b = self.motion_spatial_grad_5b(spatial_down_5b)
spatial_grad_5b = self.dropout(spatial_grad_5b) # dropout
# concatenate temporal and spatial dimension
motion_5b = torch.cat((spatial_grad_5b, temporal_grad_5b), dim=1)
# fusion at resolution 7
motion_fusion = torch.cat((motion_5a, motion_5b, motion_sum_14b), 1)
motion_conv_trans = self.motion_conv_trans(motion_fusion)
motion_conv_trans = self.motion_relu_trans_7(motion_conv_trans)
motion_conv1_trans = self.motion_conv1_trans(motion_conv_trans)
motion_conv1_trans = self.motion_relu_trans_7(motion_conv1_trans)
motion_conv2_trans = self.motion_conv2_trans(motion_conv1_trans)
motion_conv2_trans = self.motion_relu_trans_7(motion_conv2_trans)
motion_conv3_trans = self.motion_conv3_trans(motion_conv2_trans)
motion_conv_branch_trans = self.motion_conv_branch_trans(motion_conv_trans)
motion_sum = motion_conv3_trans + motion_conv_branch_trans
## FC & Loss & Accuracy 7
global_pool_motion = self.global_pool(motion_sum)
global_pool_motion = self.dropout(global_pool_motion)
global_pool_motion = torch.squeeze(global_pool_motion)
fc_action_motion_7 = self.fc_action_motion(global_pool_motion)
# Feature_Generation_Score = Feature_Generation_Score.view(self.batch, self.length, -1)
# fc_action_motion_7 = fc_action_motion_7.view(self.batch, self.length - 1, -1)
# fc_action_motion_28 = fc_action_motion_28.view(self.batch, self.length - 1, -1)
# fc_action_motion_14 = fc_action_motion_14.view(self.batch, self.length - 1, -1)
# ''' Output shape is [batch, num_class], frames-wise is consensus by average '''
# Feature_Generation_Score = self.consensus(Feature_Generation_Score).squeeze(1)
# fc_action_motion_7 = self.consensus(fc_action_motion_7).squeeze(1)
# fc_action_motion_28 = self.consensus(fc_action_motion_28).squeeze(1)
# fc_action_motion_14 = self.consensus(fc_action_motion_14).squeeze(1)
return fc_action_motion_7, Feature_Generation_Score, fc_action_motion_14
# return fc_action_motion_7, fc_action_motion_28, fc_action_motion_14
# return fc_action_motion
def features(self, input):
conv1_7x7_s2_out = self.conv1_7x7_s2(input)
conv1_7x7_s2_bn_out = self.conv1_7x7_s2_bn(conv1_7x7_s2_out)
conv1_relu_7x7_out = self.conv1_relu_7x7(conv1_7x7_s2_bn_out)
pool1_3x3_s2_out = self.pool1_3x3_s2(conv1_7x7_s2_bn_out)
conv2_3x3_reduce_out = self.conv2_3x3_reduce(pool1_3x3_s2_out)
conv2_3x3_reduce_bn_out = self.conv2_3x3_reduce_bn(conv2_3x3_reduce_out)
conv2_relu_3x3_reduce_out = self.conv2_relu_3x3_reduce(conv2_3x3_reduce_bn_out)
conv2_3x3_out = self.conv2_3x3(conv2_3x3_reduce_bn_out)
conv2_3x3_bn_out = self.conv2_3x3_bn(conv2_3x3_out)
conv2_relu_3x3_out = self.conv2_relu_3x3(conv2_3x3_bn_out)
pool2_3x3_s2_out = self.pool2_3x3_s2(conv2_3x3_bn_out)
inception_3a_1x1_out = self.inception_3a_1x1(pool2_3x3_s2_out)
inception_3a_1x1_bn_out = self.inception_3a_1x1_bn(inception_3a_1x1_out)
inception_3a_relu_1x1_out = self.inception_3a_relu_1x1(inception_3a_1x1_bn_out)
inception_3a_3x3_reduce_out = self.inception_3a_3x3_reduce(pool2_3x3_s2_out)
inception_3a_3x3_reduce_bn_out = self.inception_3a_3x3_reduce_bn(inception_3a_3x3_reduce_out)
inception_3a_relu_3x3_reduce_out = self.inception_3a_relu_3x3_reduce(inception_3a_3x3_reduce_bn_out)
inception_3a_3x3_out = self.inception_3a_3x3(inception_3a_3x3_reduce_bn_out)
inception_3a_3x3_bn_out = self.inception_3a_3x3_bn(inception_3a_3x3_out)
inception_3a_relu_3x3_out = self.inception_3a_relu_3x3(inception_3a_3x3_bn_out)
inception_3a_double_3x3_reduce_out = self.inception_3a_double_3x3_reduce(pool2_3x3_s2_out)
inception_3a_double_3x3_reduce_bn_out = self.inception_3a_double_3x3_reduce_bn(inception_3a_double_3x3_reduce_out)
inception_3a_relu_double_3x3_reduce_out = self.inception_3a_relu_double_3x3_reduce(inception_3a_double_3x3_reduce_bn_out)
inception_3a_double_3x3_1_out = self.inception_3a_double_3x3_1(inception_3a_double_3x3_reduce_bn_out)
inception_3a_double_3x3_1_bn_out = self.inception_3a_double_3x3_1_bn(inception_3a_double_3x3_1_out)
inception_3a_relu_double_3x3_1_out = self.inception_3a_relu_double_3x3_1(inception_3a_double_3x3_1_bn_out)
inception_3a_double_3x3_2_out = self.inception_3a_double_3x3_2(inception_3a_double_3x3_1_bn_out)
inception_3a_double_3x3_2_bn_out = self.inception_3a_double_3x3_2_bn(inception_3a_double_3x3_2_out)
inception_3a_relu_double_3x3_2_out = self.inception_3a_relu_double_3x3_2(inception_3a_double_3x3_2_bn_out)
inception_3a_pool_out = self.inception_3a_pool(pool2_3x3_s2_out)
inception_3a_pool_proj_out = self.inception_3a_pool_proj(inception_3a_pool_out)
inception_3a_pool_proj_bn_out = self.inception_3a_pool_proj_bn(inception_3a_pool_proj_out)
inception_3a_relu_pool_proj_out = self.inception_3a_relu_pool_proj(inception_3a_pool_proj_bn_out)
inception_3a_output_out = torch.cat([inception_3a_1x1_bn_out,inception_3a_3x3_bn_out,inception_3a_double_3x3_2_bn_out,inception_3a_pool_proj_bn_out], 1)
inception_3b_1x1_out = self.inception_3b_1x1(inception_3a_output_out)
inception_3b_1x1_bn_out = self.inception_3b_1x1_bn(inception_3b_1x1_out)
inception_3b_relu_1x1_out = self.inception_3b_relu_1x1(inception_3b_1x1_bn_out)
inception_3b_3x3_reduce_out = self.inception_3b_3x3_reduce(inception_3a_output_out)
inception_3b_3x3_reduce_bn_out = self.inception_3b_3x3_reduce_bn(inception_3b_3x3_reduce_out)
inception_3b_relu_3x3_reduce_out = self.inception_3b_relu_3x3_reduce(inception_3b_3x3_reduce_bn_out)
inception_3b_3x3_out = self.inception_3b_3x3(inception_3b_3x3_reduce_bn_out)
inception_3b_3x3_bn_out = self.inception_3b_3x3_bn(inception_3b_3x3_out)
inception_3b_relu_3x3_out = self.inception_3b_relu_3x3(inception_3b_3x3_bn_out)
inception_3b_double_3x3_reduce_out = self.inception_3b_double_3x3_reduce(inception_3a_output_out)
inception_3b_double_3x3_reduce_bn_out = self.inception_3b_double_3x3_reduce_bn(inception_3b_double_3x3_reduce_out)
inception_3b_relu_double_3x3_reduce_out = self.inception_3b_relu_double_3x3_reduce(inception_3b_double_3x3_reduce_bn_out)
inception_3b_double_3x3_1_out = self.inception_3b_double_3x3_1(inception_3b_double_3x3_reduce_bn_out)
inception_3b_double_3x3_1_bn_out = self.inception_3b_double_3x3_1_bn(inception_3b_double_3x3_1_out)
inception_3b_relu_double_3x3_1_out = self.inception_3b_relu_double_3x3_1(inception_3b_double_3x3_1_bn_out)
inception_3b_double_3x3_2_out = self.inception_3b_double_3x3_2(inception_3b_double_3x3_1_bn_out)
inception_3b_double_3x3_2_bn_out = self.inception_3b_double_3x3_2_bn(inception_3b_double_3x3_2_out)
inception_3b_relu_double_3x3_2_out = self.inception_3b_relu_double_3x3_2(inception_3b_double_3x3_2_bn_out)
inception_3b_pool_out = self.inception_3b_pool(inception_3a_output_out)
inception_3b_pool_proj_out = self.inception_3b_pool_proj(inception_3b_pool_out)
inception_3b_pool_proj_bn_out = self.inception_3b_pool_proj_bn(inception_3b_pool_proj_out)
inception_3b_relu_pool_proj_out = self.inception_3b_relu_pool_proj(inception_3b_pool_proj_bn_out)
inception_3b_output_out = torch.cat([inception_3b_1x1_bn_out,inception_3b_3x3_bn_out,inception_3b_double_3x3_2_bn_out,inception_3b_pool_proj_bn_out], 1)
inception_3c_3x3_reduce_out = self.inception_3c_3x3_reduce(inception_3b_output_out)
inception_3c_3x3_reduce_bn_out = self.inception_3c_3x3_reduce_bn(inception_3c_3x3_reduce_out)
inception_3c_relu_3x3_reduce_out = self.inception_3c_relu_3x3_reduce(inception_3c_3x3_reduce_bn_out)
inception_3c_3x3_out = self.inception_3c_3x3(inception_3c_3x3_reduce_bn_out)
inception_3c_3x3_bn_out = self.inception_3c_3x3_bn(inception_3c_3x3_out)
inception_3c_relu_3x3_out = self.inception_3c_relu_3x3(inception_3c_3x3_bn_out)
inception_3c_double_3x3_reduce_out = self.inception_3c_double_3x3_reduce(inception_3b_output_out)
inception_3c_double_3x3_reduce_bn_out = self.inception_3c_double_3x3_reduce_bn(inception_3c_double_3x3_reduce_out)
inception_3c_relu_double_3x3_reduce_out = self.inception_3c_relu_double_3x3_reduce(inception_3c_double_3x3_reduce_bn_out)
inception_3c_double_3x3_1_out = self.inception_3c_double_3x3_1(inception_3c_double_3x3_reduce_bn_out)
inception_3c_double_3x3_1_bn_out = self.inception_3c_double_3x3_1_bn(inception_3c_double_3x3_1_out)
inception_3c_relu_double_3x3_1_out = self.inception_3c_relu_double_3x3_1(inception_3c_double_3x3_1_bn_out)
inception_3c_double_3x3_2_out = self.inception_3c_double_3x3_2(inception_3c_double_3x3_1_bn_out)
inception_3c_double_3x3_2_bn_out = self.inception_3c_double_3x3_2_bn(inception_3c_double_3x3_2_out)
inception_3c_relu_double_3x3_2_out = self.inception_3c_relu_double_3x3_2(inception_3c_double_3x3_2_bn_out)
inception_3c_pool_out = self.inception_3c_pool(inception_3b_output_out)
inception_3c_output_out = torch.cat([inception_3c_3x3_bn_out,inception_3c_double_3x3_2_bn_out,inception_3c_pool_out], 1)
inception_4a_1x1_out = self.inception_4a_1x1(inception_3c_output_out)
inception_4a_1x1_bn_out = self.inception_4a_1x1_bn(inception_4a_1x1_out)
inception_4a_relu_1x1_out = self.inception_4a_relu_1x1(inception_4a_1x1_bn_out)
inception_4a_3x3_reduce_out = self.inception_4a_3x3_reduce(inception_3c_output_out)
inception_4a_3x3_reduce_bn_out = self.inception_4a_3x3_reduce_bn(inception_4a_3x3_reduce_out)
inception_4a_relu_3x3_reduce_out = self.inception_4a_relu_3x3_reduce(inception_4a_3x3_reduce_bn_out)
inception_4a_3x3_out = self.inception_4a_3x3(inception_4a_3x3_reduce_bn_out)
inception_4a_3x3_bn_out = self.inception_4a_3x3_bn(inception_4a_3x3_out)
inception_4a_relu_3x3_out = self.inception_4a_relu_3x3(inception_4a_3x3_bn_out)
inception_4a_double_3x3_reduce_out = self.inception_4a_double_3x3_reduce(inception_3c_output_out)
inception_4a_double_3x3_reduce_bn_out = self.inception_4a_double_3x3_reduce_bn(inception_4a_double_3x3_reduce_out)
inception_4a_relu_double_3x3_reduce_out = self.inception_4a_relu_double_3x3_reduce(inception_4a_double_3x3_reduce_bn_out)
inception_4a_double_3x3_1_out = self.inception_4a_double_3x3_1(inception_4a_double_3x3_reduce_bn_out)
inception_4a_double_3x3_1_bn_out = self.inception_4a_double_3x3_1_bn(inception_4a_double_3x3_1_out)
inception_4a_relu_double_3x3_1_out = self.inception_4a_relu_double_3x3_1(inception_4a_double_3x3_1_bn_out)
inception_4a_double_3x3_2_out = self.inception_4a_double_3x3_2(inception_4a_double_3x3_1_bn_out)
inception_4a_double_3x3_2_bn_out = self.inception_4a_double_3x3_2_bn(inception_4a_double_3x3_2_out)
inception_4a_relu_double_3x3_2_out = self.inception_4a_relu_double_3x3_2(inception_4a_double_3x3_2_bn_out)
inception_4a_pool_out = self.inception_4a_pool(inception_3c_output_out)
inception_4a_pool_proj_out = self.inception_4a_pool_proj(inception_4a_pool_out)
inception_4a_pool_proj_bn_out = self.inception_4a_pool_proj_bn(inception_4a_pool_proj_out)
inception_4a_relu_pool_proj_out = self.inception_4a_relu_pool_proj(inception_4a_pool_proj_bn_out)
inception_4a_output_out = torch.cat([inception_4a_1x1_bn_out,inception_4a_3x3_bn_out,inception_4a_double_3x3_2_bn_out,inception_4a_pool_proj_bn_out], 1)
inception_4b_1x1_out = self.inception_4b_1x1(inception_4a_output_out)
inception_4b_1x1_bn_out = self.inception_4b_1x1_bn(inception_4b_1x1_out)
inception_4b_relu_1x1_out = self.inception_4b_relu_1x1(inception_4b_1x1_bn_out)
inception_4b_3x3_reduce_out = self.inception_4b_3x3_reduce(inception_4a_output_out)
inception_4b_3x3_reduce_bn_out = self.inception_4b_3x3_reduce_bn(inception_4b_3x3_reduce_out)
inception_4b_relu_3x3_reduce_out = self.inception_4b_relu_3x3_reduce(inception_4b_3x3_reduce_bn_out)
inception_4b_3x3_out = self.inception_4b_3x3(inception_4b_3x3_reduce_bn_out)
inception_4b_3x3_bn_out = self.inception_4b_3x3_bn(inception_4b_3x3_out)
inception_4b_relu_3x3_out = self.inception_4b_relu_3x3(inception_4b_3x3_bn_out)
inception_4b_double_3x3_reduce_out = self.inception_4b_double_3x3_reduce(inception_4a_output_out)
inception_4b_double_3x3_reduce_bn_out = self.inception_4b_double_3x3_reduce_bn(inception_4b_double_3x3_reduce_out)
inception_4b_relu_double_3x3_reduce_out = self.inception_4b_relu_double_3x3_reduce(inception_4b_double_3x3_reduce_bn_out)
inception_4b_double_3x3_1_out = self.inception_4b_double_3x3_1(inception_4b_double_3x3_reduce_bn_out)
inception_4b_double_3x3_1_bn_out = self.inception_4b_double_3x3_1_bn(inception_4b_double_3x3_1_out)
inception_4b_relu_double_3x3_1_out = self.inception_4b_relu_double_3x3_1(inception_4b_double_3x3_1_bn_out)
inception_4b_double_3x3_2_out = self.inception_4b_double_3x3_2(inception_4b_double_3x3_1_bn_out)
inception_4b_double_3x3_2_bn_out = self.inception_4b_double_3x3_2_bn(inception_4b_double_3x3_2_out)
inception_4b_relu_double_3x3_2_out = self.inception_4b_relu_double_3x3_2(inception_4b_double_3x3_2_bn_out)
inception_4b_pool_out = self.inception_4b_pool(inception_4a_output_out)
inception_4b_pool_proj_out = self.inception_4b_pool_proj(inception_4b_pool_out)
inception_4b_pool_proj_bn_out = self.inception_4b_pool_proj_bn(inception_4b_pool_proj_out)
inception_4b_relu_pool_proj_out = self.inception_4b_relu_pool_proj(inception_4b_pool_proj_bn_out)
inception_4b_output_out = torch.cat([inception_4b_1x1_bn_out,inception_4b_3x3_bn_out,inception_4b_double_3x3_2_bn_out,inception_4b_pool_proj_bn_out], 1)
inception_4c_1x1_out = self.inception_4c_1x1(inception_4b_output_out)
inception_4c_1x1_bn_out = self.inception_4c_1x1_bn(inception_4c_1x1_out)
inception_4c_relu_1x1_out = self.inception_4c_relu_1x1(inception_4c_1x1_bn_out)
inception_4c_3x3_reduce_out = self.inception_4c_3x3_reduce(inception_4b_output_out)
inception_4c_3x3_reduce_bn_out = self.inception_4c_3x3_reduce_bn(inception_4c_3x3_reduce_out)
inception_4c_relu_3x3_reduce_out = self.inception_4c_relu_3x3_reduce(inception_4c_3x3_reduce_bn_out)
inception_4c_3x3_out = self.inception_4c_3x3(inception_4c_3x3_reduce_bn_out)
inception_4c_3x3_bn_out = self.inception_4c_3x3_bn(inception_4c_3x3_out)
inception_4c_relu_3x3_out = self.inception_4c_relu_3x3(inception_4c_3x3_bn_out)
inception_4c_double_3x3_reduce_out = self.inception_4c_double_3x3_reduce(inception_4b_output_out)
inception_4c_double_3x3_reduce_bn_out = self.inception_4c_double_3x3_reduce_bn(inception_4c_double_3x3_reduce_out)
inception_4c_relu_double_3x3_reduce_out = self.inception_4c_relu_double_3x3_reduce(inception_4c_double_3x3_reduce_bn_out)
inception_4c_double_3x3_1_out = self.inception_4c_double_3x3_1(inception_4c_double_3x3_reduce_bn_out)
inception_4c_double_3x3_1_bn_out = self.inception_4c_double_3x3_1_bn(inception_4c_double_3x3_1_out)
inception_4c_relu_double_3x3_1_out = self.inception_4c_relu_double_3x3_1(inception_4c_double_3x3_1_bn_out)
inception_4c_double_3x3_2_out = self.inception_4c_double_3x3_2(inception_4c_double_3x3_1_bn_out)