Skip to content

Simple Importance Weighted Autoencoders (IWAE) implementation in Pytorch

Notifications You must be signed in to change notification settings

JohanYe/IWAE-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Importance Weighted Autoencoders (IWAE)

Link to paper: https://arxiv.org/abs/1509.00519

AnalyticalIWAE: IWAE calculating loss manually

PytorchIWAE: IWAE using built-in torch functions to evaluate and calculation loss.
Includes example of algorithm very easy to apply to existing VAE (although a bit slower)

ConvIWAE: An example of convolutional IWAE, not integrated with main script, only as example

Importance Weighted Autoencoders - Gaussian encoder and decoder

Pytorch IWAE Loss Curve:

MNIST

Pytorch IWAE 60 epoch results:

MNIST sampled sampels

Training gif

Giffygifgif1

Importance Weighted Autoencoders - Gaussian encoder, Bernoulli decoder

Analytical IWAE Loss Curve:

MNIST sampled sampels

Analytical IWAE 60 epoch results:

MNIST sampled sampels

Training gif

Giffygifgif2

About

Simple Importance Weighted Autoencoders (IWAE) implementation in Pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages