-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path01_vocab.R
60 lines (45 loc) · 1.75 KB
/
01_vocab.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#Load packages
library(tidyverse)
library(visdat) #Means "visualize data"
rm(list = ls()) #clean variables out of environment
ds <- read_csv('vocab.csv')
getwd()
#Read the data file (all defaults work so all we need is a filename)
ds <- read_csv('data_raw/vocab.csv')
#Check for 'missing' values
vis_miss(ds)
#Wide to long (we'll go over this next week)
ds <- pivot_longer(ds, cols = everything(), names_to = "age", values_to = "word")
#Age should be a number -- let's find that problem and fix it
glimpse(ds) #Age is a character, that's not useful
ds$age <- as.numeric(ds$age) #Reassign age to be numeric
glimpse(ds) #Age correctly numeric now (dbl = number with decimals)
vis_miss(ds) #Wide to long helped, but we still have all of those missings
#Order data set by age, remove missing rows
ds <- ds %>%
arrange(age) %>%
drop_na()
#What's with all the %>% ? (pipes)
vis_miss(ds) #No more missing data, age/word are correct formats
write_csv(data = ds, file = 'data_cleaned/vocab.csv') #Write to data_cleaneds
##COOL THINGS WE CAN DO THAT WE'RE NOT READY FOR YET
vis_expect(ds, ~ nchar(.x) > 10)
ds <- ds %>% group_by(age) %>% mutate(n = n()) %>% ungroup()
ds <- ds %>% mutate(item = 1, vocab_size = cumsum(item), item = NULL)
ds %>%
group_by(age) %>%
summarize(vocab_size = max(vocab_size)) %>%
ggplot(aes(x = age, y = vocab_size)) +
geom_line() +
geom_point() +
scale_x_continuous(name = "Age (months)", breaks = seq(12,24,1)) +
ylab("Productive vocabulary size") +
theme_minimal()
ds %>%
group_by(age) %>%
mutate(item = 1, item_by_age = cumsum(item))%>%
ungroup %>%
ggplot(aes(x = age, y = item_by_age, label = word)) +
geom_text(size = 3) +
scale_x_continuous(name = "Age (months)", breaks = seq(12,24,1)) +
theme_minimal()