-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathdeclutr.jsonnet
86 lines (84 loc) · 2.95 KB
/
declutr.jsonnet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// This should be a registered name in the Transformers library (see https://huggingface.co/models)
// OR a path on disk to a serialized transformer model.
local transformer_model = std.extVar("TRANSFORMER_MODEL");
// This will be used to set the max/min # of tokens in the positive and negative examples.
local max_length = 512;
local min_length = 32;
{
"vocabulary": {
"type": "empty"
},
"dataset_reader": {
"type": "declutr",
"lazy": true,
"num_anchors": 2,
"num_positives": 2,
"max_span_len": max_length,
"min_span_len": min_length,
"tokenizer": {
"type": "pretrained_transformer",
"model_name": transformer_model,
// Account for special tokens (e.g. CLS and SEP), otherwise a cryptic error is thrown.
"max_length": max_length - 2,
},
"token_indexers": {
"tokens": {
"type": "pretrained_transformer",
"model_name": transformer_model,
},
},
},
"train_data_path": null,
"model": {
"type": "declutr",
"text_field_embedder": {
"type": "mlm",
"token_embedders": {
"tokens": {
"type": "pretrained_transformer_mlm",
"model_name": transformer_model,
"masked_language_modeling": true
},
},
},
"loss": {
"type": "nt_xent",
"temperature": 0.05,
},
// There was a small bug in the original implementation that caused gradients derived from
// the contrastive loss to be scaled by 1/N, where N is the number of GPUs used during
// training. This has been fixed. To reproduce results from the paper, set this to false.
// Note that this will have no effect if you are not using distributed training with more
// than 1 GPU.
"scale_fix": false
},
"data_loader": {
"batch_size": 4,
"num_workers": 1,
"drop_last": true,
},
"trainer": {
// Set use_amp to true to use automatic mixed-precision during training (if your GPU supports it)
"use_amp": true,
"optimizer": {
"type": "huggingface_adamw",
"lr": 5e-5,
"eps": 1e-06,
"correct_bias": false,
"weight_decay": 0.1,
"parameter_groups": [
// Apply weight decay to pre-trained params, excluding LayerNorm params and biases
[["bias", "LayerNorm\\.weight", "layer_norm\\.weight"], {"weight_decay": 0}],
],
},
"num_epochs": 1,
"checkpointer": {
// A value of null or -1 will save the weights of the model at the end of every epoch
"num_serialized_models_to_keep": -1,
},
"grad_norm": 1.0,
"learning_rate_scheduler": {
"type": "slanted_triangular",
},
},
}