-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_learning_dataset_template.py
290 lines (240 loc) · 12 KB
/
deep_learning_dataset_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
'''
This is a template for sampling parameters for deep learning applications. It is
annotated so that it can be used as a template for further customization. Otherwise
it can be used as is to generate datasets for deep learning applications.
To date, most DL applications work with spectra in the frequency domain. The desired
crop range in ppm can be specified in the config.json file. Should time-domain FIDs
be required, that can also be specified in the config file.
Written by: Ing. John T LaMaster, 2023
'''
import argparse
import json
import os
import sys
import numpy as np
import scipy.io as io
import torch
from aux import normalize
from mainFcns import _save, prepare, simulate
from types import SimpleNamespace
sys.path.append('../')
def sample(inputs):
config, resWater_cfg, baseline_cfg, pm, l, ind, p, totalEntries = inputs
# Sample parameters
# This script assumes uniform distribution, however, other distributions
# can be defined after this.
params = torch.ones((totalEntries, ind['overall'][-1]+1)).uniform_(0,1)
params = normalize(params, dims=-1)
# normalize converts the range from [0,1) to [0,1].
# Quantify parameters
params = pm.quantify_params(params)
# print(params[:,ind['metabolites']])
'''
>>>>>>>>>>
This next section of code will need to be customized for your own implementations.
Hint: This is where the covariance matrix should be implemented.
>>>>>>>>>>
'''
# All metabolite values are ratios wrt creatine or tCre. Therefore, Cr is always 1.0
params[:,ind['cr']].fill_(1.0)
if 'PCr' in config.metabolites: params[:,ind['pcr']].fill_(1.0)
'''
If you want to use a covariance matrix for sampling metabolite amplitudes, this is where covmat and loc
should be defined.
Use the ind variable to move the sampled parameters to the correct indices. The exact implementation will
depend on the variables and order of variables that are included in your covariance matrix.
'''
# if config.use_covmat:
# # _, mtb_ind = pm.basis_metab
# # print('mtb_ind: ',mtb_ind)
# # covmat = torch.as_tensor(config.covmat) # 2D matrix
# # loc = torch.as_tensor(config.loc) # 1D matrix
# # mets = torch.distributions.multivariate_normal.MultivariateNormal(loc=loc,
# # covariance_matrix=covmat)
# # start, stop = mtb_ind[0], mtb_ind[-1]
# # params[:,start:stop+1] = mets.rsample([params.shape[0]])
# _, mtb_ind = pm.basis_metab
# print('mtb_ind: ',mtb_ind)
# covmat = torch.as_tensor(config.covmat) # 2D matrix
# loc = torch.as_tensor(config.loc) # 1D matrix
# mets = torch.distributions.multivariate_normal.MultivariateNormal(loc=loc,
# covariance_matrix=covmat)
# start, stop = mtb_ind[0], mtb_ind[-1]
# temp = mets.rsample([params.shape[0]])
# params[:,start:stop+1] = torch.cat(temp[...,0], torch.ones_like(temp[...,0]), temp[...,-1], dim=-1)
# print(params.shape)
'''
>>>>>>>>>>
The next section of code is used to drop some parameters from each spectrum
for deep learning applications. Should you want to use different
distributions for some of the parameters, the following can be used as a
guide. Defining different distributions can be done before OR after
quantifying the parameters.
>>>>>>>>>>
'''
print('>>> Line Broadening')
keys, g = ind.keys(), 0
for k in keys: g += 1 if 'mm' in k else 0
for k in keys: g += 1 if 'lip' in k else 0
# Drop D from some metabolites
if config.lineshape in ['voigt','lorentzian']:
for n in ind['d']:
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,n].fill_(0.)
else:
for n in ind['d']: params[:,n].fill_(0.0)
# Drop G from some spectra by group
if config.lineshape in ['voigt','gaussian']:
groups = [0]
if g!=0: groups.append(int(l-g-1))
for n in groups:
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,n].fill_(0.)
else:
for n in ind['g']: params[:,n].fill_(0.0)
# One Gaussian value is used for metabolites and the other is used for
# MM/Lip - but only 2 values! Should an additional group be separated, this
# and the pm.initialize() code will need to be updated.
if not config.b0:
for n in ind['g']:
if n>0 and n<l-g-1:
params[:,n] = params[:,ind['g'][0]].clone()
if n>l-g-1:
params[:,n] = params[:,ind['g'][int(l-g-1)]].clone()
else:
# The B0 field distortions are modeled instead of using a Gaussian term for the metabolties
for n in ind['g']:
if n>0 and n<l-g-1:
params[:,n].fill_(0.)
if n>l-g-1:
params[:,n] = params[:,ind['g'][int(l-g-1)]].clone()
# Randomly drop some metabolites and their line broadening and fshifts
for _, n in enumerate(ind['metabolites']):
if not n==ind['cr']: # Creatine
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,int(n)].fill_(0.) # amplitude
params[sign,int(n+l)].fill_(0.) # If the lines are omitted, then the broadening is too
params[sign,int(n+2*l)].fill_(0.) # gaussian
params[sign,int(n+3*l+1)].fill_(0.) # fshift
# Fully omit the macromolecular baseline
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
for n in ind['mac']:
params[sign,n].fill_(0) # amplitude
params[sign,n+l].fill_(0) # lorentzian
params[sign,n+2*l].fill_(0) # gaussian
params[sign,n+3*l+1].fill_(0) # fshift
# Fully omit the lipid signal
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
for n in ind['lip']:
params[sign,n].fill_(0) # amplitude
params[sign,n+l].fill_(0) # lorentzian
params[sign,n+2*l].fill_(0) # gaussian
params[sign,n+3*l+1].fill_(0) # fshift
# Fully omit both lipid and macromolecular signal
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
for n in ind['mac']:
params[sign,n].fill_(0) # amplitude
params[sign,n+l].fill_(0) # lorentzian
params[sign,n+2*l].fill_(0) # gaussian
params[sign,n+3*l+1].fill_(0) # fshift
for n in ind['lip']:
params[sign,n].fill_(0) # amplitude
params[sign,n+l].fill_(0) # lorentzian
params[sign,n+2*l].fill_(0) # gaussian
params[sign,n+3*l+1].fill_(0) # fshift
# Frequency Shift
print('>>> Frequency Shift')
# Drop the global frequency shift
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,ind['f_shift']] = 0.0
if 'f_shifts' in ind.keys():
for i, n in enumerate(ind['f_shifts']):
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,n] = 0.0 # Hz
# Noise
print('>>> Noise')
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[:,ind['snr']].uniform_(config.snr[0],config.snr[1]) # dB
params[sign,ind['snr']].fill_(100.)
# Noiseless data is assumed to have SNR=100dB - set arbitrarily
# Phase Shift
print('>>> Phase Shift')
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,ind['phi0']].fill_(0.0)
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,ind['phi1']].fill_(0.0)
# Eddy Currents
print('>>> Eddy Currents')
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
for i in ind['ecc']: params[sign,i].fill_(0.0)
# B0 Inhomogeneities
print('>>> B0 Inhomogeneities')
if 'b0' in ind.keys():
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,ind['b0']].fill_(0.0)
for i, n in enumerate(ind['b0_dir']):
sign = torch.tensor([True if torch.rand([1]) > p else False for _ in range(params.shape[0])])
params[sign,n].fill_(0.5) # 1 Hz minimum
if config.num_coils>1:
print('>>> Transients')
sign = torch.tensor([True if torch.rand([params[:,ind['coil_snr']].shape]) > p else False for _ in range(params.shape[0])])
factors = torch.distributions.normal.Normal(1,0.25).sample(params[:,ind['coil_snr']].shape)
factors[sign,ind['coil_snr']].fill_(1.0)
params[:,ind['coil_snr']] = factors
# Values are sampled from a Gaussian mu=1, min/max=~0/2
# The linear SNR is calculated and scaled based on the number of transients
# Then the linear SNR is scaled about 1.0 so mu = lin_snr
if config.coil_sens:
# drop_prob does not affect this parameter
print('>>> Coil Sensitivities')
params[:,ind['coil_sens']] = torch.distributions.normal.Normal(1,0.5).sample(params[:,ind['coil_sens']].shape).clamp(min=0.0,max=2.0)
if config.coil_fshift:
print('>>> Coil Frequency Drift')
sign = torch.tensor([True if torch.rand([params[:,ind['coil_fshift']].shape]) > p else False for _ in range(params.shape[0])])
factors = torch.distributions.normal.Normal(1,0.25).sample(params[:,ind['coil_fshift']].shape)
factors[sign,ind['coil_fshift']].fill_(1.0)
params[:,ind['coil_fshift']] = factors * params[:,ind['coil_fshift']][0]
if config.coil_phi0:
print('>>> Coil Phase Drift')
sign = torch.tensor([True if torch.rand([params[:,ind['coil_phi0']].shape]) > p else False for _ in range(params.shape[0])])
factors = torch.distributions.normal.Normal(1,0.25).sample(params[:,ind['coil_phi0']].shape)
factors[sign,ind['coil_phi0']].fill_(1.0)
params[:,ind['coil_phi0']] = factors * params[:,ind['coil_phi0']][0]
'''
>>>>>>>>>>
If certain parts of the model are turned off, then their values should be zeroed out.
>>>>>>>>>>
'''
if not config.b0:
params[:,ind['b0']].fill_(0.0)
for n in ind['b0_dir']: params[:,n].fill_(0.0)
# Coil_sens is dealt with above
# D is dealt with above
if not config.eddy:
for n in ind['ecc']: params[:,n].fill_(0.0)
if not config.fshift_g: params[:,ind['f_shift']].fill_(0.0)
if not config.fshift_i:
for n in ind['f_shifts']:
params[:,n].fill_(0.0)
# G is dealt with above
if not config.noise: params[:,ind['snr']].fill_(0.0)
if not config.phi0: params[:,ind['phi0']].fill_(0.0)
if not config.phi1: params[:,ind['phi1']].fill_(0.0)
# Multi_coil is dealt with above
return config, resWater_cfg, baseline_cfg, pm, l, ind, p, totalEntries, params
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--savedir', type=str, default='./dataset/')
parser.add_argument('--batchSize', type=int, default=10000)
parser.add_argument('--stepSize', type=int, default=10000)
parser.add_argument('--parameters', type=str, default=None, help='Path to .mat file with pre-sampled parameters')
parser.add_argument('--config_file', type=str, default='./src/configurations/debug_new_init.json')
args = parser.parse_args()
os.makedirs(args.savedir, exist_ok=True)
# Simulate
if isinstance(args.parameters, str):
from aux import load_parameters
sampled = load_parameters(args.parameters, prepare(args.config_file))
else:
sampled = sample(prepare(args.config_file))
simulate(sampled,args=args)