-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrandNoiseSeries.m
163 lines (146 loc) · 5.06 KB
/
randNoiseSeries.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
function[varargout] = randNoiseSeries(data, varargin)
%% Build a matrix of random time series with desired noise properties given
% an initial time series vector or matrix, and scales to the standard deviation of
% the original data.
%
% [randSeries] = randNoiseSeries(ts, ...)
% Constructs an artificial noisy time series based on the properties of a time series ts.
%
% [randSeries] = randNoiseSeries(dataMatrix, ...)
% If Data is an m x n matrix, returns an m x n matrix with n random series.
% Each of the n columns in randSeries uses the properties of the analogous
% column in "matrix".
%
% [..., noiseArgs] = randNoiseSeries(data, 'red')
% Uses red, AR(1) noise properties and returns the desired properties for
% future calls to randNoiseSeries.
%
% [..., noiseArgs] = randNoiseSeries(data, 'white')
% Uses white, Gaussian noise. Returns the desired properties for future
% calls to randNoiseSeries.
%
% [...] = randNoiseSeries(..., 'noScaling')
% Does not scale the random series to data standard deviation. All random
% series will have mean = 0, an variance = 1.
%
% [randSeries] = randNoiseSeries( noiseArgs )
% Uses output from a past call to generate a new set of noisy time series.
% This method is recommended for Monte Carlo processes to avoid the
% creation of unecessarily large matrices.
%
%
% ----- Inputs -----
%
% ts: A time series. Must be a vector.
%
% dataMatrix: A 2D matrix. Each column is a time series.
%
% noiseArgs: A structure with possible fields...
% 'scale': The scaling matrix
% 'ar1': AR1 properties
% 'size': output size
% 'noise': The noise type
%
%
% ----- Output -----
%
% randSeries: The matrix of randomly generated, noisy time series. Each column
% of the matrix is a separate time series.
%
% noiseArgs: A structure with possible fields...
% 'scale': The scaling matrix
% 'ar1': AR1 properties
% 'size': output size
% 'noise': The noise type
%
%
% ----- Written By -----
%
% Jonathan King, 2017, University of Arizona, [email protected]
% Parse inputs, determine noise properties, error check
[sData, ar1, scale, noise] = setup( data, varargin{:} );
% White noise
if isnan(ar1)
randSeries = randn( sData );
% Red noise
else
% Preallocate
randSeries = NaN( sData );
% Initialize the first row
randSeries(1,:) = randn(1,sData(2));
% Calculate autocorrelation through the matrix, add white noise
for k = 1:sData(1)-1
randSeries(k+1,:) = ( ar1 .* randSeries(k,:) ) + randn(1, sData(2));
end
end
% Standardize
randSeries = zscore(randSeries);
% Scaling
if ~isnan(scale)
randSeries = randSeries .* scale;
end
% Create noise args
if nargout == 1
varargout = {randSeries};
elseif nargout == 2
noiseArgs = struct('size',sData,'noise',noise,'ar1',ar1,'scale',scale);
varargout = {randSeries, noiseArgs};
else
error('Too many outputs');
end
end
%%%%% Helper Function %%%%%
function[sData, ar1, scale, noise] = setup(data, varargin)
% Set defaults
scale = NaN;
ar1 = NaN;
% If noiseArgs was provided, get the properties
if nargin == 1
if isstruct( data )
if ~isfield(data,'noise') || ~isfield(data,'size') || ~isfield(data,'ar1') || ~isfield(data, 'scale')
error('noiseArgs structure must contain ''noise'', ''size'', ''ar1'', and ''scale'' fields');
end
noise = data.noise;
sData = data.size;
ar1 = data.ar1;
scale = data.scale;
if ~ismember(noise, {'white','red'})
error('Unreognized noise type');
elseif (~isscalar(scale) && ~isequal(size(scale),sData)) || (isscalar(scale) && ~isnan(scale) && ~isequal(size(scale),sData))
error('The scaling field in noiseArgs must be the same size as the ''size'' field dimensions');
elseif numel(sData)~=2
error('The output size in noiseArgs must be 2D');
elseif (~isscalar(ar1) && (~isvector(ar1) || numel(ar1)~=sData(2))) || (isscalar(ar1) && ~isnan(ar1) && numel(ar1)~=sData(2))
error('ar1 in noiseArgs must be a vector containing the same number of elements as columns in the output series');
end
if ~isrow(ar1)
ar1 = ar1';
end
else
error('noiseArgs must be a structure');
end
% Otherwise determine data noise properties from data
elseif nargin < 4
if ~ismember(varargin{1}, {'white','red'})
error('Unrecognized noise type');
end
noise = varargin{1};
if ~ismatrix(data)
error('data must be a matrix');
end
% Get the size of the output series
sData = size(data);
% Get red noise properties
if strcmpi(noise, 'red')
ar1 = diag( corr( data(1:end-1,:), data(2:end,:) ) )';
end
% Get scaling properties
if nargin == 2
scale = repmat( std(data), [sData(1), 1]);
elseif ~strcmpi( varargin{2}, 'noScaling')
error('Unrecognized input');
end
else
error('Unrecognized Inputs');
end
end