-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransOP.cpp
268 lines (189 loc) · 4.96 KB
/
TransOP.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
* This program takes a space delimited text file of
* x and y positions and returns a file containing
* the translational order parameter - TOPresult.txt.
*
* The calculations are based on real space lattice
* spacings of a0=1e-7m
*
* The range/resolution in reciprocal space is
* -3pi to 3pi in qx and qy in steps of pi/20.0
*
*
* Modifications need to be made to this program to allow
* for different densities and parameters to be specified.
*
*
*
* This was written by Jon Watkins - Jan 2014
*
*/
#include <iostream>
#include <fstream>
#include <cmath>
#include <list>
#include <sstream>
#include <iomanip>
#include <string>
//#include <stdio>
#include <cilk/cilk.h>
using namespace std;
double pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679;
double a0=1;
int t=0;
class CVortex {
double x, y, z;
public:
CVortex() {
x=0;
y=0;
z=0;
}
~CVortex() {}
void set_pos (double a,double b,double c) {
x = a;
y = b;
z = c;
};
double get_x () {
return x;
};
double get_y () {
return y;
};
double get_z () {
return z;
};
};
struct recipPoint
{
double qx;
double qy;
double sf;
};
void initialiseVortices(list<CVortex>& vorticesList, bool& file, std::string pos_file_name_){
ostringstream oss;
char renderChar[100];
string renderStr;
oss.str("");
oss << pos_file_name_;
std::cout << "oss: " << oss.str() << endl;
renderStr = oss.str();
cout << renderStr << endl;
strcpy(renderChar,renderStr.c_str());
ifstream myfile (renderChar);
cout << "initialise Vortices" << endl;
if (myfile.is_open()) {
cout << "Initial Vortex Positions From File" << endl;
file = true;
double xval;
double yval;
while ( myfile.good() )
{
myfile >> xval;
myfile >> yval;
CVortex newVortex;
//if (xval > 10e-7 && xval < 60e-7 && yval > 2e-7 && yval < 50e-7 ) {
newVortex.set_pos(xval/a0,yval/a0,0);
vorticesList.push_back(newVortex);
}
myfile.close();
}
cout << "initialised" << endl;
}
bool readSingleDataStep(std::list<CVortex> &posdata_, std::string &pos_file_name_)
{
posdata_.clear();
static std::ifstream readStepDataFile;
if (!readStepDataFile.is_open())
{
//std::ostringstream jobstr;
//jobstr.str("");
//jobstr << "guidata.txt";
readStepDataFile.open(pos_file_name_.c_str());
std::cout << "Opening guidata file...";
}
std::string temp;
std::string input;
std::string in;
std::string in2;
std::string tline;
std::string vortline;
int timestep;
int numVortices;
std::stringstream sinput;
double xval;
double yval;
int coord_num;
double a0;
if (readStepDataFile.is_open() && readStepDataFile.good())
{
// read timestep header
std::getline(readStepDataFile, input);
sinput.str("");
sinput << input;
sinput >> in >> timestep >> in2 >> numVortices;
t=timestep;
//std::cout << in << " " << timestep << " " << in2 << " " << numVortices << std::endl;
for (int i =1;i<=numVortices;i++)
{
std::getline(readStepDataFile, input);
std::stringstream tinput;
tinput << input;
tinput >> xval >> yval >> coord_num >> a0;
// add new vortex
CVortex newVortex;
newVortex.set_pos(xval,yval,0);
posdata_.push_back(newVortex);
}
}
else return false;
return true;
}
int main(int argc, char *argv[])
{
std::string pos_file_name;
if(argc!=2)
{
std::cout << "The program should be run with the command line \n"
<< " TransOP <pos_file_name>\n"
<< " where <pos_file_name> should be replaced by the name of the position data.\n";
return 1;
}
else if (argc==2)
{
pos_file_name = argv[1];
}
std::list<CVortex> posdata;
double Gx= 4.08406; // These should be calculated from the structure factor plots.
double Gy= 6.04137;
std::cout << "G: (" << Gx << ", " << Gy << ")" << std::endl;
std::ofstream TOPfile("TOPresults.txt");
TOPfile << "Translational Order parameter calculated at each timestep\n"
<< "t TOP\n";
while ( readSingleDataStep(posdata, pos_file_name) )
{
int numParticles=posdata.size();
if (numParticles==0) continue;
std::cout << t << std::endl;
double r0x=posdata.begin()->get_x();
double r0y=posdata.begin()->get_y();
double real_part=0;
double imag_part=0;
for (std::list<CVortex>::iterator p = posdata.begin();
p != posdata.end(); ++p)
{
//std::cout << std::distance(posdata.begin(),p)+1 << std::endl;
real_part+=cos(Gx*(p->get_x()-r0x)+Gy*(p->get_y()-r0y));
imag_part+=sin(Gx*(p->get_x()-r0x)+Gy*(p->get_y()-r0y));
//std::cout << real_part << ", " << imag_part << std::endl;
}
real_part/=numParticles;
imag_part/=numParticles;
double sqrd=real_part*real_part+imag_part*imag_part;
std::cout << sqrd << std::endl;
TOPfile << t << " " << sqrd << std::endl;
}
TOPfile.close();
return 0;
}