forked from jiangnanpro/ppml-workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_reserve_accuracy_.py
213 lines (153 loc) · 6.95 KB
/
get_reserve_accuracy_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import sys
import glob
import datetime
import argparse
import collections
import itertools
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import torch
from torch import nn
import torch.nn.functional as F
import torch.optim
from torchvision import transforms, models, datasets
import wandb
from DeepDA_code import *
def val(val_dataloader, model, device):
correct_cnt = 0
total_cnt = 0
model.eval()
with torch.no_grad():
for batch_idx, (X, y) in enumerate(val_dataloader):
X, y = X.to(device), y.to(device)
logits = model.predict(X)
correct_cnt += (logits.argmax(dim=1) == y).sum().item()
total_cnt += y.shape[0]
val_acc = (correct_cnt / total_cnt) * 100
return val_acc
def get_dataloaders(args):
transform = {
'train': transforms.Compose(
[lambda x: x.convert("RGB") if x.mode == "L" else x,
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])]),
'test': transforms.Compose(
[lambda x: x.convert("RGB") if x.mode == "L" else x,
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
}
train_dataset = datasets.ImageFolder(root=args.train_path, transform=transform["train"])
val_dataset = datasets.ImageFolder(root=args.val_path, transform=transform["test"])
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
return train_dataloader, val_dataloader
def count_trainable_parameters(model):
return sum([x.numel() for x in model.parameters() if x.requires_grad])
def get_torch_gpu_environment():
env_info = dict()
env_info["PyTorch_version"] = torch.__version__
if torch.cuda.is_available():
env_info["cuda_version"] = torch.version.cuda
env_info["cuDNN_version"] = torch.backends.cudnn.version()
env_info["nb_available_GPUs"] = torch.cuda.device_count()
env_info["current_GPU_name"] = torch.cuda.get_device_name(torch.cuda.current_device())
else:
env_info["nb_available_GPUs"] = 0
return env_info
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--train_path', type=str, default="data/QMNIST_ppml_ImageFolder/defender")
argparser.add_argument('--val_path', type=str, default="data/QMNIST_ppml_ImageFolder/reserve")
argparser.add_argument('--batch_size', type=int, default=64)
argparser.add_argument('--lr', type=float, help='learning rate of the optimizer', default=1e-3)
argparser.add_argument('--momentum', type=float, default=0.9)
argparser.add_argument('--weight_decay', type=float, default=1e-4)
argparser.add_argument('--scheduler_patience', type=int, default=5)
argparser.add_argument('--scheduler_factor', type=float, default=0.1)
argparser.add_argument('--epochs', type=int, help='how many epochs in total', default=30)
argparser.add_argument('--random_seed', type=int, help='random seed', default=68)
argparser.add_argument('--train_mode', type=str, default="whole")
argparser.add_argument('--random_labels', action="store_true", default=False)
argparser.add_argument('--overfit', action="store_true", default=False)
argparser.add_argument('--num_workers', type=int, default=0)
args = argparser.parse_args()
if args.random_labels:
assert args.train_path != "data/QMNIST_ppml_ImageFolder/defender"
assert args.val_path != "data/QMNIST_ppml_ImageFolder/reserve"
t0_overall = time.time()
# random seed
torch.manual_seed(args.random_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.random_seed)
np.random.seed(args.random_seed)
# device
if torch.cuda.is_available():
device = torch.device('cuda')
print("Using GPU for PyTorch")
else:
device = torch.device('cpu')
print("Using CPU for PyTorch")
# neural network
## "supervised_model_checkpoints/resnet50_large_fm_defender.pth"
model_path = "supervised_model_checkpoints/resnet50_fm_defender.pth"
model = TransferNet(10, base_net='resnet50', transfer_loss='lmmd',
use_bottleneck=True, bottleneck_width=256, max_iter=1000)
model.to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
print("Model created.")
if args.random_labels:
labels_status = "flipped"
else:
labels_status = "normal"
if args.overfit:
try_overfitting = "overfit"
else:
try_overfitting = "normal"
# wandb
project_name = "tmpFODFS"
group_name = "tmp"
#group_name = "{}-{}-{}-{}".format(args.train_mode, args.weight_decay, labels_status, try_overfitting)
wandb_dir = "wandb_logs"
if not os.path.exists(wandb_dir):
os.makedirs(wandb_dir)
wandb.init(config=args, project=project_name, dir=wandb_dir)
env_info = get_torch_gpu_environment()
for k, v in env_info.items():
wandb.run.summary[k] = v
wandb.run.summary["trainable_parameters_count"] = count_trainable_parameters(model)
wandb_run_name = wandb.run.name
# optimizer and scheduler
optim = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim,
"min",
verbose=True,
patience=args.scheduler_patience,
factor=args.scheduler_factor)
print("Optimizer and scheduler ready.")
# data loaders
train_dataloader, val_dataloader = get_dataloaders(args)
# checkpoint setting
checkpoints_dir = "supervised_model_checkpoints"
if not os.path.exists(checkpoints_dir):
os.makedirs(checkpoints_dir)
best_model = [np.inf, os.path.join(checkpoints_dir,
"best_model_{}_{}_{}.pth".format(project_name, group_name, wandb_run_name))] # (score, path)
last_model = os.path.join(checkpoints_dir, "last_model_{}_{}_{}.pth".format(project_name, group_name, wandb_run_name))
val_acc = val(val_dataloader, model, device)
print()
print()
print("val_acc = ")
print(val_acc)
print()
print()
t_overall = time.time() - t0_overall
print("Done in {:.2f} s.".format(t_overall))
wandb.run.summary["overall_computation_time"] = t_overall