forked from jiangnanpro/ppml-workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoracle_attack_UDA.py
328 lines (255 loc) · 11.1 KB
/
oracle_attack_UDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
"""
Oracle attack of the unsupervised domain adaptation network: from (large or not) Fake-MNIST to QMNIST defender.
"""
import os
import glob
import time
import random
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import shutil
import pickle
from PIL import Image # 8.0.1
import argparse
import subprocess
from DeepDA_code import *
def load_trained_model(model_path, device):
if model_path in ["supervised_model_checkpoints/resnet50_fm_defender.pth",
"supervised_model_checkpoints/resnet50_large_fm_defender.pth"]:
model = TransferNet(10, base_net='resnet50', transfer_loss='lmmd',
use_bottleneck=True, bottleneck_width=256, max_iter=1000)
model.to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
else:
model = models.resnet50(pretrained=False)
fc_in_features = model.fc.in_features
model.fc = nn.Linear(fc_in_features, 10)
model.to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
return model
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="supervised_model_checkpoints/resnet50_fm_defender.pth",
help="""which trained model to load""")
parser.add_argument("--dataset_path", type=str, default="data/QMNIST_ppml.pickle",
help="""which trained model to load""")
parser.add_argument("--N", type=int, default=3000,
help="""Only the first N samples of defender and reserve data will be used,
this means 2 * N samples in total.""")
parser.add_argument("--attack_mode", type=str, default="forward_target_domain",
help="""how to do the one-step attack to the unsupervised domain adaptation model""")
parser.add_argument("--lr", type=float, default=1e-3,
help="""step size of the one-step gradient update, also known as eta""")
parser.add_argument("--momentum", type=float, default=0.9,
help="""SGD momentum of the one-step gradient update""")
parser.add_argument("--weight_decay", type=float, default=5e-4,
help="""weight decay of the one-step gradient update""")
parser.add_argument("--results_dir", type=str, required=True)
parser.add_argument("--zip", action="store_true", default=False)
parser.add_argument("--source_path", type=str, default=None)
parser.add_argument("--num_workers", type=int, default=0)
args = parser.parse_args()
return args
def get_transform(device):
"""
Input: numpy.ndarray, shape = (28, 28), uint8
Output: torch.Tensor (cpu or cuda), torch.Size([1, 3, 224, 224]), torch.float32
"""
transform = torchvision.transforms.Compose(
[lambda x: Image.fromarray(x),
lambda x: x.convert("RGB") if x.mode == "L" else x,
torchvision.transforms.Resize([224, 224]),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
lambda x: torch.unsqueeze(x, 0),
lambda x: x.to(device)],
)
return transform
def convert_to_one_hot_encoding(y):
one_hot = np.zeros(10, dtype=np.int64)
one_hot[y] = 1
return one_hot
def form_x_all_y_all(args):
"""
x_all:
numpy.ndarray, shape = (2 * N, 28, 28), uint8
y_all:
numpy.ndarray (2 * N, 10) int64
First N are defender data, the last N are reserve data
"""
if args.dataset_path == "data/QMNIST_ppml.pickle":
with open(args.dataset_path, 'rb') as f:
pickle_data = pickle.load(f)
x_defender = pickle_data['x_defender']
x_reserve = pickle_data['x_reserve']
y_defender = pickle_data['y_defender']
y_reserve = pickle_data['y_reserve']
else:
with open('data/QMNIST_ppml.pickle', 'rb') as f:
pickle_data = pickle.load(f)
x_defender = pickle_data['x_defender']
x_reserve = pickle_data['x_reserve']
with open("data/y_defender_flipped20.pickle", "rb") as f:
y_defender = pickle.load(f).astype(int)
y_defender = y_defender.argmax(axis=1).reshape((-1, 1))
with open("data/y_reserve_flipped20.pickle", "rb") as f:
y_reserve = pickle.load(f).astype(int)
y_reserve = y_reserve.argmax(axis=1).reshape((-1, 1))
x_all = []
y_all = []
for i in range(args.N):
x_all.append(x_defender[i])
y_all.append(convert_to_one_hot_encoding(y_defender[i, 0]))
for i in range(args.N):
x_all.append(x_reserve[i])
y_all.append(convert_to_one_hot_encoding(y_reserve[i, 0]))
x_all = np.array(x_all)
y_all = np.array(y_all)
return x_all, y_all
def save_np_array(results_dir, file_name, arr):
file_path = os.path.join(results_dir, file_name)
with open(file_path, "wb") as f:
np.save(f, arr)
print("{} saved.".format(file_path))
def evaluate_model(model, data, transform, args):
"""
res: predicted probabilities
"""
model.eval()
res = []
for i in range(data.shape[0]):
img = transform(data[i])
if args.model_path in ["supervised_model_checkpoints/resnet50_fm_defender.pth",
"supervised_model_checkpoints/resnet50_large_fm_defender.pth"]:
res.append(F.softmax(model.predict(img).squeeze(0), dim=0).detach().to("cpu").numpy())
else:
res.append(F.softmax(model(img).squeeze(0), dim=0).detach().to("cpu").numpy())
res = np.array(res)
return res
def compute_yhat_all(args, device, x_all, transform, results_dir):
"""
yhat_all:
numpy.ndarray, shape = (2 * N, 10), float32
"""
model = load_trained_model(args.model_path, device)
yhat_all = evaluate_model(model, x_all, transform, args)
save_np_array(results_dir, "yhat_all.npy", yhat_all)
return yhat_all
def compute_total_gradient_norm(model):
total_gradient_norm = 0
for p in model.parameters():
param_gradient_norm = p.grad.detach().data.norm(2)
total_gradient_norm += param_gradient_norm.item() ** 2
total_gradient_norm = total_gradient_norm ** 0.5
return total_gradient_norm
def compute_perturbed_model(args, device, transform, img, label, iter_source=None):
"""
returns the model updated by one extra gradient step
and returns the norm of the gradient
"""
model = load_trained_model(args.model_path, device)
if args.model_path in ["supervised_model_checkpoints/resnet50_fm_defender.pth",
"supervised_model_checkpoints/resnet50_large_fm_defender.pth"]:
params = model.get_parameters(initial_lr=args.lr)
else:
params = model.parameters()
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=False)
model.train()
if args.attack_mode == "forward_target_domain":
if args.model_path in ["supervised_model_checkpoints/resnet50_fm_defender.pth",
"supervised_model_checkpoints/resnet50_large_fm_defender.pth"]:
output = model.predict(img)
else:
output = model(img)
criterion = torch.nn.CrossEntropyLoss()
loss = criterion(output, label)
optimizer.zero_grad()
loss.backward()
total_gradient_norm = compute_total_gradient_norm(model)
optimizer.step()
elif args.attack_mode == "transfer_loss":
data_source, label_source = next(iter_source)
data_source, label_source = data_source.to(device), label_source.to(device)
clf_loss, transfer_loss = model(data_source, img, label_source)
clf_loss_weight = 0
transfer_loss_weight = 0.5
loss = clf_loss_weight * clf_loss + transfer_loss_weight * transfer_loss
optimizer.zero_grad()
loss.backward()
total_gradient_norm = compute_total_gradient_norm(model)
optimizer.step()
elif args.attack_mode == "total_loss":
data_source, label_source = next(iter_source)
data_source, label_source = data_source.to(device), label_source.to(device)
clf_loss, transfer_loss = model(data_source, img, label_source)
clf_loss_weight = 1
transfer_loss_weight = 0.5
loss = clf_loss_weight * clf_loss + transfer_loss_weight * transfer_loss
optimizer.zero_grad()
loss.backward()
total_gradient_norm = compute_total_gradient_norm(model)
optimizer.step()
else:
raise NotImplementedError("attack_mode={} not supported.".format(args.attack_mode))
return model, total_gradient_norm
def compute_oneStep_yhat_all_gradNorm_all(args, device, x_all, y_all, transform, results_dir):
gradNorm_all = []
oneStep_yhat_all = []
if args.attack_mode in ["transfer_loss", "total_loss"]:
# for both resnet50_fm_defender.pth and resnet50_large_fm_defender.pth,
# seed was 52 in the beginning
set_random_seed(52)
source_dataloader = load_source_dataloader(args.source_path, 32, num_workers=args.num_workers)
iter_source = iter(source_dataloader)
else:
iter_source = None
for idx in range(x_all.shape[0]):
# img: torch.Tensor, torch.Size([1, 3, 224, 224]), torch.float32
img = transform(x_all[idx])
# label: torch.Tensor, shape = (1,), int64
label = torch.from_numpy(np.expand_dims(np.argmax(y_all[idx]), axis=0)).to(device)
model, total_gradient_norm = compute_perturbed_model(args, device, transform, img, label,
iter_source)
gradNorm_all.append(total_gradient_norm)
oneStep_yhat = evaluate_model(model,
np.expand_dims(x_all[idx], axis=0), transform, args).squeeze(0)
oneStep_yhat_all.append(oneStep_yhat)
oneStep_yhat_all = np.array(oneStep_yhat_all)
gradNorm_all = np.array(gradNorm_all)
save_np_array(results_dir, "oneStep_yhat_all.npy", oneStep_yhat_all)
save_np_array(results_dir, "gradNorm_all.npy", gradNorm_all)
return oneStep_yhat_all, gradNorm_all
if __name__ == "__main__":
t0 = time.time()
args = parse_arguments()
results_dir = args.results_dir # "results_oracle_attack_UDA"
if os.path.exists(results_dir):
shutil.rmtree(results_dir)
os.makedirs(results_dir)
torch.backends.cudnn.deterministic = True
random.seed(2021)
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
np.random.seed(2021)
if not torch.cuda.is_available():
device = torch.device("cpu")
print("Using CPU for PyTorch")
else:
device = torch.device("cuda")
print("Using GPU for PyTorch")
x_all, y_all = form_x_all_y_all(args)
transform = get_transform(device)
yhat_all = compute_yhat_all(args, device, x_all, transform, results_dir)
oneStep_yhat_all, gradNorm_all = compute_oneStep_yhat_all_gradNorm_all(args,
device, x_all, y_all, transform, results_dir)
if args.zip:
cmd = "zip -r {}.zip {}".format(results_dir, results_dir)
subprocess.call(cmd.split())
print("Done in {:.1f} s.".format(time.time() - t0))