forked from jiangnanpro/ppml-workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupervised_train_resnet50_defender.py
314 lines (233 loc) · 10.8 KB
/
supervised_train_resnet50_defender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import sys
import glob
import datetime
import argparse
import collections
import itertools
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import torch
from torch import nn
import torch.nn.functional as F
import torch.optim
from torchvision import transforms, models, datasets
import wandb
def train(train_dataloader, model, device, optim, epoch, scheduler, wandb, args):
t0 = time.time()
train_loss = 0
correct_cnt = 0
total_cnt = 0
criterion = torch.nn.CrossEntropyLoss()
model.train()
for batch_idx, (X, y) in enumerate(train_dataloader):
X, y = X.to(device), y.to(device)
optim.zero_grad()
logits = model(X)
loss = criterion(logits, y)
loss.backward()
optim.step()
train_loss += loss.item()
correct_cnt += (logits.argmax(dim=1) == y).sum().item()
total_cnt += y.shape[0]
train_loss /= len(train_dataloader)
train_acc = (correct_cnt / total_cnt) * 100
t1 = time.time() - t0
print("Epoch {} | Train loss {:.2f} | Train acc {:.2f} | Time {:.1f} seconds.".format(
epoch+1, train_loss, train_acc, t1))
wandb.log({"epoch": epoch+1, "train_loss": train_loss, "train_acc": train_acc, "train_epoch_time": t1})
return train_acc, train_loss
def val(val_dataloader, model, device, epoch, best_model, scheduler, wandb, args, last_model, train_acc, train_loss):
t0 = time.time()
val_loss = 0
correct_cnt = 0
total_cnt = 0
criterion = torch.nn.CrossEntropyLoss()
model.eval()
with torch.no_grad():
for batch_idx, (X, y) in enumerate(val_dataloader):
X, y = X.to(device), y.to(device)
logits = model(X)
loss = criterion(logits, y)
val_loss += loss.item()
correct_cnt += (logits.argmax(dim=1) == y).sum().item()
total_cnt += y.shape[0]
val_loss /= len(val_dataloader)
val_acc = (correct_cnt / total_cnt) * 100
t1 = time.time() - t0
print("Epoch {} | Val loss {:.2f} | Val acc {:.2f} | Time {:.1f} seconds.".format(
epoch+1, val_loss, val_acc, t1))
wandb.log({"epoch": epoch+1, "val_loss": val_loss, "val_acc": val_acc, "val_epoch_time": t1})
if not args.overfit:
scheduler.step(val_loss)
if val_loss < best_model[0]:
best_model[0] = val_loss
torch.save(model.state_dict(), best_model[1])
wandb.run.summary["best_model_train_acc"] = train_acc
wandb.run.summary["best_model_val_acc"] = val_acc
wandb.run.summary["best_model_epoch"] = epoch+1
wandb.run.summary["best_model_acc_diff"] = train_acc - val_acc
else:
scheduler.step(train_loss)
if train_loss < best_model[0]:
best_model[0] = train_loss
torch.save(model.state_dict(), best_model[1])
wandb.run.summary["best_model_train_acc"] = train_acc
wandb.run.summary["best_model_val_acc"] = val_acc
wandb.run.summary["best_model_epoch"] = epoch+1
wandb.run.summary["best_model_acc_diff"] = train_acc - val_acc
return val_acc
def get_backbone(args, device):
model = models.resnet50(pretrained=True)
for name, param in model.named_parameters():
if args.train_mode == "whole":
param.requires_grad = True
elif args.train_mode == "fc":
if name.startswith("fc"):
param.requires_grad = True
else:
param.requires_grad = False
elif args.train_mode == "layer42conv3bn3":
if name.startswith("fc"):
param.requires_grad = True
elif name.startswith("layer4.2.bn3"):
param.requires_grad = True
elif name.startswith("layer4.2.conv3"):
param.requires_grad = True
else:
param.requires_grad = False
elif args.train_mode == "layer42":
# layer4.1 consists of conv1, bn1, conv2, bn2, conv3, bn3
if name.startswith("fc"):
param.requires_grad = True
elif name.startswith("layer4.2"):
param.requires_grad = True
else:
param.requires_grad = False
else:
raise NotImplementedError("train_mode={} not implemented.".format(args.train_mode))
fc_in_features = model.fc.in_features
model.fc = nn.Linear(fc_in_features, 10)
model.to(device)
return model
def get_dataloaders(args):
transform = {
'train': transforms.Compose(
[lambda x: x.convert("RGB") if x.mode == "L" else x,
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])]),
'test': transforms.Compose(
[lambda x: x.convert("RGB") if x.mode == "L" else x,
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
}
train_dataset = datasets.ImageFolder(root=args.train_path, transform=transform["train"])
val_dataset = datasets.ImageFolder(root=args.val_path, transform=transform["test"])
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
return train_dataloader, val_dataloader
def count_trainable_parameters(model):
return sum([x.numel() for x in model.parameters() if x.requires_grad])
def get_torch_gpu_environment():
env_info = dict()
env_info["PyTorch_version"] = torch.__version__
if torch.cuda.is_available():
env_info["cuda_version"] = torch.version.cuda
env_info["cuDNN_version"] = torch.backends.cudnn.version()
env_info["nb_available_GPUs"] = torch.cuda.device_count()
env_info["current_GPU_name"] = torch.cuda.get_device_name(torch.cuda.current_device())
else:
env_info["nb_available_GPUs"] = 0
return env_info
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--train_path', type=str, default="data/QMNIST_ppml_ImageFolder/defender")
argparser.add_argument('--val_path', type=str, default="data/QMNIST_ppml_ImageFolder/reserve")
argparser.add_argument('--batch_size', type=int, default=64)
argparser.add_argument('--lr', type=float, help='learning rate of the optimizer', default=1e-3)
argparser.add_argument('--momentum', type=float, default=0.9)
argparser.add_argument('--weight_decay', type=float, default=1e-4)
argparser.add_argument('--scheduler_patience', type=int, default=5)
argparser.add_argument('--scheduler_factor', type=float, default=0.1)
argparser.add_argument('--epochs', type=int, help='how many epochs in total', default=30)
argparser.add_argument('--random_seed', type=int, help='random seed', default=68)
argparser.add_argument('--train_mode', type=str, default="whole")
argparser.add_argument('--random_labels', action="store_true", default=False)
argparser.add_argument('--overfit', action="store_true", default=False)
argparser.add_argument('--num_workers', type=int, default=0)
args = argparser.parse_args()
if args.random_labels:
assert args.train_path != "data/QMNIST_ppml_ImageFolder/defender"
assert args.val_path != "data/QMNIST_ppml_ImageFolder/reserve"
t0_overall = time.time()
# random seed
torch.manual_seed(args.random_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.random_seed)
np.random.seed(args.random_seed)
# device
if torch.cuda.is_available():
device = torch.device('cuda')
print("Using GPU for PyTorch")
else:
device = torch.device('cpu')
print("Using CPU for PyTorch")
# neural network
model = get_backbone(args, device)
print("Model created.")
if args.random_labels:
labels_status = "flipped"
else:
labels_status = "normal"
if args.overfit:
try_overfitting = "overfit"
else:
try_overfitting = "normal"
# wandb
project_name = "supervised_resnet50_QMNIST_defender"
group_name = "{}-{}-{}-{}".format(args.train_mode, args.weight_decay, labels_status, try_overfitting)
wandb_dir = "wandb_logs"
if not os.path.exists(wandb_dir):
os.makedirs(wandb_dir)
wandb.init(config=args, project=project_name, group=group_name, dir=wandb_dir)
env_info = get_torch_gpu_environment()
for k, v in env_info.items():
wandb.run.summary[k] = v
wandb.run.summary["trainable_parameters_count"] = count_trainable_parameters(model)
wandb_run_name = wandb.run.name
# optimizer and scheduler
optim = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim,
"min",
verbose=True,
patience=args.scheduler_patience,
factor=args.scheduler_factor)
print("Optimizer and scheduler ready.")
# data loaders
train_dataloader, val_dataloader = get_dataloaders(args)
# checkpoint setting
checkpoints_dir = "supervised_model_checkpoints"
if not os.path.exists(checkpoints_dir):
os.makedirs(checkpoints_dir)
best_model = [np.inf, os.path.join(checkpoints_dir,
"best_model_{}_{}_{}.pth".format(project_name, group_name, wandb_run_name))] # (score, path)
last_model = os.path.join(checkpoints_dir, "last_model_{}_{}_{}.pth".format(project_name, group_name, wandb_run_name))
print("Training loop starts...")
for epoch in range(args.epochs):
train_acc, train_loss = train(train_dataloader, model, device, optim, epoch, scheduler, wandb, args)
val_acc = val(val_dataloader, model, device, epoch, best_model, scheduler, wandb, args, last_model, train_acc, train_loss)
wandb.log({"epoch": epoch+1, "lr": optim.param_groups[0]['lr']})
torch.save(model.state_dict(), last_model)
wandb.run.summary["last_model_train_acc"] = train_acc
wandb.run.summary["last_model_val_acc"] = val_acc
wandb.run.summary["last_model_acc_diff"] = train_acc - val_acc
t_overall = time.time() - t0_overall
print("Done in {:.2f} s.".format(t_overall))
wandb.run.summary["overall_computation_time"] = t_overall