-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchipqa.py
323 lines (247 loc) · 11.1 KB
/
chipqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import time
from joblib import Parallel,delayed
import numpy as np
import cv2
import queue
import glob
import os
import time
import scipy.ndimage
import joblib
import sys
import matplotlib.pyplot as plt
import niqe
import save_stats
from numba import jit,prange
import argparse
parser = argparse.ArgumentParser(description='Generate ChipQA features from an 8 bit mp4/avi video and store them')
parser.add_argument('--input_file',help='Input video file (has to be 8 bit mp4 or avi)')
parser.add_argument('--results_file',help='File where features are stored')
args = parser.parse_args()
C=1
def gen_gauss_window(lw, sigma):
sd = np.float32(sigma)
lw = int(lw)
weights = [0.0] * (2 * lw + 1)
weights[lw] = 1.0
sum = 1.0
sd *= sd
for ii in range(1, lw + 1):
tmp = np.exp(-0.5 * np.float32(ii * ii) / sd)
weights[lw + ii] = tmp
weights[lw - ii] = tmp
sum += 2.0 * tmp
for ii in range(2 * lw + 1):
weights[ii] /= sum
return weights
def compute_image_mscn_transform(image, C=1, avg_window=None, extend_mode='constant'):
if avg_window is None:
avg_window = gen_gauss_window(3, 7.0/6.0)
assert len(np.shape(image)) == 2
h, w = np.shape(image)
mu_image = np.zeros((h, w), dtype=np.float32)
var_image = np.zeros((h, w), dtype=np.float32)
image = np.array(image).astype('float32')
scipy.ndimage.correlate1d(image, avg_window, 0, mu_image, mode=extend_mode)
scipy.ndimage.correlate1d(mu_image, avg_window, 1, mu_image, mode=extend_mode)
scipy.ndimage.correlate1d(image**2, avg_window, 0, var_image, mode=extend_mode)
scipy.ndimage.correlate1d(var_image, avg_window, 1, var_image, mode=extend_mode)
var_image = np.sqrt(np.abs(var_image - mu_image**2))
return (image - mu_image)/(var_image + C), var_image, mu_image
def spatiotemporal_mscn(img_buffer,avg_window,extend_mode='mirror'):
st_mean = np.zeros((img_buffer.shape))
scipy.ndimage.correlate1d(img_buffer, avg_window, 0, st_mean, mode=extend_mode)
return st_mean
@jit(nopython=True)
def find_sts_locs(sts_slope,cy,cx,step,h,w):
if(np.abs(sts_slope)<1):
x_sts = np.arange(cx-int((step-1)/2),cx+int((step-1)/2)+1)
y = (cy-(x_sts-cx)*sts_slope).astype(np.int64)
y_sts = np.asarray([y[j] if y[j]<h else h-1 for j in range(step)])
else:
y_sts = np.arange(cy-int((step-1)/2),cy+int((step-1)/2)+1)
x= ((-y_sts+cy)/sts_slope+cx).astype(np.int64)
x_sts = np.asarray([x[j] if x[j]<w else w-1 for j in range(step)])
return x_sts,y_sts
@jit(nopython=True)
def find_kurtosis_slice(Y3d_mscn,cy,cx,rst,rct,theta,h,step):
st_kurtosis = np.zeros((len(theta),))
data = np.zeros((len(theta),step**2))
for index,t in enumerate(theta):
rsin_theta = rst[:,index]
rcos_theta =rct[:,index]
x_sts,y_sts = cx+rcos_theta,cy+rsin_theta
data[index,:] =Y3d_mscn[:,y_sts*h+x_sts].flatten()
data_mu4 = np.mean((data[index,:]-np.mean(data[index,:]))**4)
data_var = np.var(data[index,:])
st_kurtosis[index] = data_mu4/(data_var**2+1e-4)
idx = (np.abs(st_kurtosis - 3)).argmin()
data_slice = data[idx,:]
return data_slice
def find_kurtosis_sts(img_buffer,grad_img_buffer,step,cy,cx,rst,rct,theta):
h, w = img_buffer[step-1].shape[:2]
Y3d_mscn = np.reshape(img_buffer.copy(),(step,-1))
gradY3d_mscn = np.reshape(grad_img_buffer.copy(),(step,-1))
sts= [find_kurtosis_slice(Y3d_mscn,cy[i],cx[i],rst,rct,theta,w,step) for i in range(len(cy))]
sts_grad= [find_kurtosis_slice(gradY3d_mscn,cy[i],cx[i],rst,rct,theta,w,step) for i in range(len(cy))]
return sts,sts_grad
def unblockshaped(arr, h, w):
"""
Return an array of shape (h, w) where
h * w = arr.size
If arr is of shape (n, nrows, ncols), n sublocks of shape (nrows, ncols),
then the returned array preserves the "physical" layout of the sublocks.
"""
n, nrows, ncols = arr.shape
return (arr.reshape(h//nrows, -1, nrows, ncols)
.swapaxes(1,2)
.reshape(h, w))
def sts_fromfilename(filename,filename_out):
st_time_length = 5
t = np.arange(0,st_time_length)
a=0.5
avg_window = t*(1-a*t)*np.exp(-2*a*t)
avg_window = np.flip(avg_window)
cap = cv2.VideoCapture(filename)
count=1
ret, prev = cap.read()
#percent by which the image is resized
scale_percent = 0.5
#
theta = np.arange(0,np.pi,np.pi/6)
ct = np.cos(theta)
st = np.sin(theta)
lower_r = int((st_time_length+1)/2)-1
higher_r = int((st_time_length+1)/2)
r = np.arange(-lower_r,higher_r)
rct = np.round(np.outer(r,ct))
rst = np.round(np.outer(r,st))
rct = rct.astype(np.int32)
rst = rst.astype(np.int32)
prevY = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY)
prevY = prevY.astype(np.float32)
h,w = prev.shape[0],prev.shape[1]
if(h>w):
h_temp = h
h=w
w = h_temp
# dsize
dsize = (int(scale_percent*h),int(scale_percent*w))
step = st_time_length
cy, cx = np.mgrid[step:h-step*4:step*4, step:w-step*4:step*4].reshape(2,-1).astype(int) # these will be the centers of each block
dcy, dcx = np.mgrid[step:dsize[0]-step*4:step*4, step:dsize[1]-step*4:step*4].reshape(2,-1).astype(int) # these will be the centers of each block
prevY_down = cv2.resize(prevY,(dsize[1],dsize[0]),interpolation=cv2.INTER_CUBIC)
img_buffer = np.zeros((st_time_length,prevY.shape[0],prevY.shape[1]))
grad_img_buffer = np.zeros((st_time_length,prevY.shape[0],prevY.shape[1]))
down_img_buffer =np.zeros((st_time_length,prevY_down.shape[0],prevY_down.shape[1]))
graddown_img_buffer =np.zeros((st_time_length,prevY_down.shape[0],prevY_down.shape[1]))
gradient_x = cv2.Sobel(prevY,ddepth=-1,dx=1,dy=0)
gradient_y = cv2.Sobel(prevY,ddepth=-1,dx=0,dy=1)
gradient_mag = np.sqrt(gradient_x**2+gradient_y**2)
gradient_x_down = cv2.Sobel(prevY_down,ddepth=-1,dx=1,dy=0)
gradient_y_down = cv2.Sobel(prevY_down,ddepth=-1,dx=0,dy=1)
gradient_mag_down = np.sqrt(gradient_x_down**2+gradient_y_down**2)
i = 0
Y_mscn,_,_ = compute_image_mscn_transform(prevY)
dY_mscn,_,_ = compute_image_mscn_transform(prevY_down)
gradY_mscn,_,_ = compute_image_mscn_transform(gradient_mag)
dgradY_mscn,_,_ = compute_image_mscn_transform(gradient_mag_down)
img_buffer[i,:,:] = Y_mscn
down_img_buffer[i,:,:]= dY_mscn
grad_img_buffer[i,:,:] =gradY_mscn
graddown_img_buffer[i,:,:]=dgradY_mscn
i = i+1
r1 = len(np.arange(step,h-step*4,step*4))
r2 = len(np.arange(step,w-step*4,step*4))
dr1 = len(np.arange(step,dsize[0]-step*4,step*4))
dr2 = len(np.arange(step,dsize[1]-step*4,step*4))
spat_list = []
X_list = []
spatavg_list = []
feat_sd_list = []
sd_list= []
j=0
total_time = 0
while(True):
# try:
#
j = j+1
# uncomment for FLOPS
#high.start_counters([events.PAPI_FP_OPS,])
ret,bgr = cap.read()
count=count+1
if(ret==False):
count=count-1
break
lab = cv2.cvtColor(bgr, cv2.COLOR_BGR2LAB)
lab = lab.astype(np.float32)
chroma_feats = save_stats.chroma_feats(lab,C=1)
Y = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
Y = Y.astype(np.float32)
Y_down = cv2.resize(Y,(dsize[1],dsize[0]),interpolation=cv2.INTER_CUBIC)
#
gradient_x = cv2.Sobel(Y,ddepth=-1,dx=1,dy=0)
gradient_y = cv2.Sobel(Y,ddepth=-1,dx=0,dy=1)
gradient_mag = np.sqrt(gradient_x**2+gradient_y**2)
gradient_x_down = cv2.Sobel(Y_down,ddepth=-1,dx=1,dy=0)
gradient_y_down = cv2.Sobel(Y_down,ddepth=-1,dx=0,dy=1)
gradient_mag_down = np.sqrt(gradient_x_down**2+gradient_y_down**2)
Y_mscn,Ysigma,_ = compute_image_mscn_transform(Y)
dY_mscn,dYsigma,_ = compute_image_mscn_transform(Y_down)
gradY_mscn,_,_ = compute_image_mscn_transform(gradient_mag)
dgradY_mscn,_,_ = compute_image_mscn_transform(gradient_mag_down)
gradient_feats = save_stats.extract_secondord_feats(gradY_mscn)
gdown_feats = save_stats.extract_secondord_feats(dgradY_mscn)
gfeats = np.concatenate((gradient_feats,gdown_feats),axis=0)
Ysigma_mscn,_,_= compute_image_mscn_transform(Ysigma)
dYsigma_mscn,_,_= compute_image_mscn_transform(dYsigma)
sigma_feats = save_stats.stat_feats(Ysigma_mscn)
dsigma_feats = save_stats.stat_feats(dYsigma_mscn)
feats = np.concatenate((chroma_feats,gfeats,sigma_feats,dsigma_feats),axis=0)
feat_sd_list.append(feats)
spatavg_list.append(feats)
img_buffer[i,:,:] = Y_mscn
down_img_buffer[i,:,:]= dY_mscn
grad_img_buffer[i,:,:] =gradY_mscn
graddown_img_buffer[i,:,:]=dgradY_mscn
i=i+1
#
if (i>=st_time_length):
Y3d_mscn = spatiotemporal_mscn(img_buffer,avg_window)
Ydown_3d_mscn = spatiotemporal_mscn(down_img_buffer,avg_window)
grad3d_mscn = spatiotemporal_mscn(grad_img_buffer,avg_window)
graddown3d_mscn = spatiotemporal_mscn(graddown_img_buffer,avg_window)
spat_feats = niqe.compute_niqe_features(Y,C=C)
sd_feats = np.std(feat_sd_list,axis=0)
sd_list.append(sd_feats)
feat_sd_list = []
sts,sts_grad, = find_kurtosis_sts(Y3d_mscn,grad3d_mscn,step,cy,cx,rst,rct,theta)
dsts,dsts_grad= find_kurtosis_sts(Ydown_3d_mscn,graddown3d_mscn,step,dcy,dcx,rst,rct,theta)
sts_arr = unblockshaped(np.reshape(sts,(-1,st_time_length,st_time_length)),r1*st_time_length,r2*st_time_length)
sts_grad= unblockshaped(np.reshape(sts_grad,(-1,st_time_length,st_time_length)),r1*st_time_length,r2*st_time_length)
dsts_arr = unblockshaped(np.reshape(dsts,(-1,st_time_length,st_time_length)),dr1*st_time_length,dr2*st_time_length)
dsts_grad= unblockshaped(np.reshape(dsts_grad,(-1,st_time_length,st_time_length)),dr1*st_time_length,dr2*st_time_length)
feats = save_stats.brisque(sts_arr)
grad_feats = save_stats.brisque(sts_grad)
dfeats = save_stats.brisque(dsts_arr)
dgrad_feats = save_stats.brisque(dsts_grad)
allst_feats = np.concatenate((spat_feats,feats,dfeats,grad_feats,dgrad_feats),axis=0)
X_list.append(allst_feats)
img_buffer = np.zeros((st_time_length,prevY.shape[0],prevY.shape[1]))
grad_img_buffer = np.zeros((st_time_length,prevY.shape[0],prevY.shape[1]))
down_img_buffer =np.zeros((st_time_length,prevY_down.shape[0],prevY_down.shape[1]))
graddown_img_buffer =np.zeros((st_time_length,prevY_down.shape[0],prevY_down.shape[1]))
i=0
X1 = np.average(spatavg_list,axis=0)
X2 = np.average(sd_list,axis=0)
X3 = np.average(X_list,axis=0)
X = np.concatenate((X1,X2,X3),axis=0)
train_dict = {"features":X}
joblib.dump(train_dict,filename_out)
return
def main():
args = parser.parse_args()
sts_fromfilename(args.input_file,args.results_file)
if __name__ == '__main__':
# print(__doc__)
main()