-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMSE.py
43 lines (28 loc) · 1.16 KB
/
MSE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Scaling up tpo multiple data points
import numpy as np
import Dataset4
from sklearn.metrics import mean_squared_error
def relu(x):
out = max(0, x)
return out
def predict_with_network(inputd, weights):
node0_input = (inputd * weights['node0']).sum()
node0_output = relu(node0_input)
node1_input = (inputd * weights['node1']).sum()
node1_output = relu(node1_input)
hidden_layer_values = np.array([node0_output, node1_output])
output = (hidden_layer_values * weights['output']).sum()
return output
# Create model_output_0
model_output_0 = []
# Create model_output_1
model_output_1 = []
for row in Dataset4.input_data:
model_output_0.append(predict_with_network(row, Dataset4.weights))
model_output_1.append((predict_with_network(row, Dataset4.NewWeights)))
# Calculate the Mean Squared Error for model_output_0: mse0
mse0 = mean_squared_error(model_output_0, Dataset4.ActualTargets)
# Calculate the Mean Squared Error for model_output_1: mse1
mse1 = mean_squared_error(model_output_1, Dataset4.ActualTargets)
print("Mean Squared Error with first series of weights: %f" % mse0)
print("Mean Squared Error with new weights: %f" % mse1)