From 4fbaf03a4f6853072ea14c4901f459e465f45869 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jochen=20Nie=C3=9Fer?= Date: Sun, 13 Oct 2024 15:51:18 +0200 Subject: [PATCH 1/6] add and re-arrange raw data --- .../Create_results_in_figure_2.ipynb | 1487 +++++++++++++++++ ...Create_validation_plot_from_raw_data.ipynb | 20 +- .../Processing_test_1_raw_data.ipynb | 56 +- .../Template.xlsx | Bin 0 -> 14933 bytes ...mal model_normal data_noise level 0.6.xlsx | Bin ...mal model_normal data_noise level 1.2.xlsx | Bin ...odel_skew normal data_noise level 0.6.xlsx | Bin ...mal model_normal data_noise level 0.6.xlsx | Bin ...odel_skew normal data_noise level 0.6.xlsx | Bin ...odel_skew normal data_noise level 1.2.xlsx | Bin .../{ => paper raw data}/test1_all_data.txt | 0 .../{ => paper raw data}/test2_summary.xlsx | Bin .../test3_df_comparison.xlsx | Bin 13 files changed, 1525 insertions(+), 38 deletions(-) create mode 100644 docs/source/notebooks/Create_results_in_figure_2.ipynb create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/Template.xlsx rename docs/source/notebooks/{ => paper raw data/synthetic data sets for validation}/Normal model_normal data_noise level 0.6.xlsx (100%) rename docs/source/notebooks/{ => paper raw data/synthetic data sets for validation}/Normal model_normal data_noise level 1.2.xlsx (100%) rename docs/source/notebooks/{ => paper raw data/synthetic data sets for validation}/Normal model_skew normal data_noise level 0.6.xlsx (100%) rename docs/source/notebooks/{ => paper raw data/synthetic data sets for validation}/Skew normal model_normal data_noise level 0.6.xlsx (100%) rename docs/source/notebooks/{ => paper raw data/synthetic data sets for validation}/Skew normal model_skew normal data_noise level 0.6.xlsx (100%) rename docs/source/notebooks/{ => paper raw data/synthetic data sets for validation}/Skew normal model_skew normal data_noise level 1.2.xlsx (100%) rename docs/source/notebooks/{ => paper raw data}/test1_all_data.txt (100%) rename docs/source/notebooks/{ => paper raw data}/test2_summary.xlsx (100%) rename docs/source/notebooks/{ => paper raw data}/test3_df_comparison.xlsx (100%) diff --git a/docs/source/notebooks/Create_results_in_figure_2.ipynb b/docs/source/notebooks/Create_results_in_figure_2.ipynb new file mode 100644 index 0000000..ea6af20 --- /dev/null +++ b/docs/source/notebooks/Create_results_in_figure_2.ipynb @@ -0,0 +1,1487 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Create results and diagnostic plots" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import pandas\n", + "import numpy as np\n", + "import arviz as az\n", + "from pathlib import Path\n", + "from peak_performance import pipeline as pl, models, plots\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exemplary result with a single peak" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "path_result = Path(\"./paper raw data\")\n", + "path = Path(\"./paper raw data/exemplary results raw data/A1t1R1Part2_110_109.9_110.1.npy\")\n", + "timeseries = np.load(path)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc5klEQVR4nO3de3zT1f0/8Ncn917TG72Xcr/IHVQuooIil4mIeJtMROe8TNExdW7OXdj2m0z39bLBxBvzho65ecGJoiA3kYuA3CnlUugFer8kvSZp8vn9kXw+TdqkTUpuTV/Px6OP0eST9MSs7avv8z7nCKIoiiAiIiLqYRShHgARERFRdzDEEBERUY/EEENEREQ9EkMMERER9UgMMURERNQjMcQQERFRj8QQQ0RERD0SQwwRERH1SKpQDyBQbDYbLly4gLi4OAiCEOrhEBERkRdEUUR9fT0yMzOhUHRea4nYEHPhwgXk5OSEehhERETUDcXFxcjOzu70mogNMXFxcQDs/xHi4+NDPBoiIiLyhtFoRE5Ojvx7vDMRG2KkKaT4+HiGGCIioh7Gm1YQNvYSERFRj8QQQ0RERD0SQwwRERH1SAwxRERE1CMxxBAREVGPxBBDREREPRJDDBEREfVIDDFERETUIzHEEBERUY/EEENEREQ9EkMMERER9UgMMURERNQjMcQQkUwURbyz6xz2F9aGeihERF1iiCEi2dHzRvxu3TH8+qMjoR4KEVGXGGKISFbVYAIAlNe3hHgkRERdY4ghIlmDqRUAYGy2wGYTQzwaIqLOMcQQkUwKMTYRaDC3hng0RESdY4ghIllDS1twMTRZQjgSIqKuMcQQkaze5BRimhliiCi8McQQkcy5EmNsYYghovDGEENEsgZTW3AxshJDRGGOIYYoQn1zqhLbTlb69JgGTicRUQ/CEEMUgZrNVvzk7X348Vt7UWH0fs+XBpNV/jdDDBGFO4YYoghUbmyBqdUGq03EVh+qMQ1OfTAMMUQU7hhiiCJQuVP1ZVu+DyGG00lE1IMwxBBFoDKnEPPNqUq0Wm1ePc5ln5hmbnZHROGNIYYoAlUYTfK/jS2tOFBc59XjuE8MEfUkDDFEEai8XTPv1vyKLh8jiiKnk4ioR2GIIYpA5fX2SsyIzHgAwFYv+mKazFaITmc+cp8YIgp3DDFEEUiqxNw6IRsAcOyCscul1s5VGICVGCIKfwwxRBFICiyXZOoxOlsPAF0utXYXYkTn0gwRUZhhiCGKMKIootzR2JsWr8W0IX0AdL3UWlqZlBSjAQBYbSIazdbOHkJEFFI+hZjly5fjsssuQ1xcHFJTUzF//nzk5+e7XCOKIpYtW4bMzExERUVh2rRpOHbsmMs1JpMJjzzyCFJSUhATE4N58+ahpKTE5Zra2losWrQIer0eer0eixYtQl1dXfdeJVEvUm9qRbPFHj5S43S4emgqgK6XWkuVmJRYDTRK+48GTikRUTjzKcRs27YNDz/8MHbv3o2NGzeitbUVM2fORGNjo3zNc889hxdeeAErV67E3r17kZ6ejuuuuw719fXyNUuXLsXHH3+MtWvXYseOHWhoaMDcuXNhtbb91bdw4UIcPHgQGzZswIYNG3Dw4EEsWrTIDy+ZKLJJU0nxOhWiNEqMzUlAQrS6y6XW9Y5KTJxOjfgoNQDA0MQQQ0ThS+XLxRs2bHD5/M0330Rqair279+Pq666CqIo4qWXXsLTTz+NBQsWAADefvttpKWl4f3338cDDzwAg8GA1atX491338WMGTMAAGvWrEFOTg42bdqEWbNmIS8vDxs2bMDu3bsxceJEAMDrr7+OyZMnIz8/H0OHDvXHayfqEZ7bcAJfHS/Hhw9OgT5a3eX1ZQZpKkkHAFAqBFw5uA/+d+gCtuZX4LJ+SW4fJ1ViYrUq6KNUqGowsRJDRGHtonpiDAYDACApyf5D8ezZsygrK8PMmTPla7RaLa6++mrs3LkTALB//35YLBaXazIzMzFy5Ej5ml27dkGv18sBBgAmTZoEvV4vX0PUG4iiiDW7C3G6ogEHS+q8eoy0MkkKMQDkvpjOllpL5ybF6lTQS5UYhhgiCmM+VWKciaKIxx57DFOnTsXIkSMBAGVlZQCAtLQ0l2vT0tJQWFgoX6PRaJCYmNjhGunxZWVlSE1N7fA1U1NT5WvaM5lMMJmcdik1Grv5yojCx/m6Zhgd0zze7ttSXm8PManxWvm2qxwh5tgFIyrqW5Aap+vwOKkSE6dVockRYrhXDBGFs25XYpYsWYLDhw/jX//6V4f7BEFw+VwUxQ63tdf+GnfXd/Y8y5cvl5uA9Xo9cnJyvHkZRGHt+IW2MG5s8S5QVBhdp5MAoE+cFqOy7EutPa1Sko4ciNGyEkNEPUO3QswjjzyCTz/9FFu2bEF2drZ8e3p6OgB0qJZUVFTI1Zn09HSYzWbU1tZ2ek15eXmHr1tZWdmhyiN56qmnYDAY5I/i4uLuvDSisJJX2tYQb/TyQEZ5OilO63L71Y5qzK6CarePa3TpiWGIIaLw51OIEUURS5YswUcffYTNmzejf//+Lvf3798f6enp2Lhxo3yb2WzGtm3bMGXKFADAhAkToFarXa4pLS3F0aNH5WsmT54Mg8GA7777Tr5mz549MBgM8jXtabVaxMfHu3wQ9XTHSw3yv72txEghJl3vOmXULyUGAFBZb+rwGKBtn5g49sQQUQ/hU0/Mww8/jPfffx/r1q1DXFycXHHR6/WIioqCIAhYunQpnnnmGQwePBiDBw/GM888g+joaCxcuFC+9t5778Xjjz+O5ORkJCUl4YknnsCoUaPk1UrDhw/H7Nmzcd999+HVV18FANx///2YO3cuVyZRr3K81Gk6ydueGMd0Umq8a4hJirEHkzoPy6adVydJGGKIKJz5FGJWrVoFAJg2bZrL7W+++SbuvvtuAMCTTz6J5uZmPPTQQ6itrcXEiRPx1VdfIS4uTr7+xRdfhEqlwm233Ybm5mZce+21eOutt6BUKuVr3nvvPTz66KPyKqZ58+Zh5cqV3XmNRD2SodmC4ppml8+7IooiKuo7rk4CgMRo+068NY1mt4+V9omJ1amgVAhef00iolDxKcR4c46KIAhYtmwZli1b5vEanU6HFStWYMWKFR6vSUpKwpo1a3wZHlFEOVHqusJOWqXUmdomCyxW+/dpn1jXnhgpxNQ2uQ8xzpUY7thLRD0Bz04iClN5jhCjUdm/Tb2ZTioz2KswyTEa+XGSRMeZSE1mK1osHc9EkpdYO/XEcIk1EYUzhhiiMCX1w4zvmwDAu8betj1iOu4DE+80TeSuL0Zq7I3RquSdgd1VYkRRxD1vfoc739gDm42nXBNR6DDEEIUpKcRM7J8MwLsl1hXybr3aDvcJgoBERzhx1xdT72GJdftp5KoGM7bkV2LH6Sqcq27s8DxERMHCEEMUhixWG06WNQAAJg1whBhvKjHSRnduduQFPPfFmFttMLfaT7iO06rlENNqE9Fkdp16Kqltkv99srweREShwhBDFIbOVDbAbLUhTqvCJZn2PY/MrTa3vSzOyjupxABtfTHtQ4y00R0AxGiViFIroVa6X6F0vq5txdSJMoYYIgodhhiiMCQ19Q7PiEecVgVHK0uXjbae9oiRSNNJte2mk6Sm3ii1EiqlAoIgeNzw7nxtW4jJZ4ghohBiiCEKQ9KZSZdkxkOhEBAvrRbqYkpJ2iMm3UOISYqR9opxfR7nPWIk8Z5CTB1DDBGFB4YYojB0XK7E2DeJjNdJgaLz5t626STfemKcT7CWeKrElDhVYs5VN3Y5xUVEFCgMMURhRhTFtkpMhv3k6fgoe7jorBJjtYnyuUieemKSPPTENJjsz+tcifFmOskmAqfKG7p4RUREgcEQQxRmyo0m1DZZoFQIGJwWC6CtEtNZT0xVgwk2EVAIQHKs+xCT4OHoAWk6KUbTMcQ4f01RFOXpJCko5XOFEhGFCEMMUZiRTq4e1CcWOrX9PDFvQow0ldQnTitvateep0Mg5SMHuqjEGJtb5WunD00FAOSXuR6PQEQULAwxRGFGmkqS+mEA5+kkzz0x8h4xHvphAM+HQDZ62RNT7NgjJjlGgzE5CQC4zJqIQochhijMSE290v4wgG+VmFQPG90BnTT2ulmd5C7ESFNJ2YlRGJpuD1lcoUREocIQQxRm2jf1Ak79KZ009nZ25IDE0yGQzkcOSNwtsZaaerMSozAkzR5iKupNHfadISIKBoYYojDSYGpFYY19ysZ1OkmqxFzcdJKnQyB9rcRkJUQhVqtCTlIUAE4pEVFoMMQQhZH8MiNE0b5ZnfMKI2+WWEsnWHdWibEfAtmxL8bbfWKkc5OyEuzhZWhavDxuIqJgY4ghCiNSRcO5CgM4b3bXWU9M50cOSOSjB5o6hpgYNyHG6LYnJhoAMEzqi+FeMUQUAgwxRGGkusEeLNL1US63x7sJFO1JPTGejhyQuDsEUj52wEMlRhRFAK49MQCcmntZiSGi4FN1fQkRBYsUUqTpI4m8OsnDEmtTqxXVjumhznpiACBJWqHkNJ3U2Mk+MRariGaLFaII1Dr6aNqHmJPlDRBFEYLgfn8aIqJAYCWGKIxI00VSaJE4T+1IVRFn0nEDaqUgTxd5kujY8M75EMi2npi2x0ZrlFA5moANzRZ5KilOp5LH1z8lBmqlgAZTq8uZSkREwcAQQxRGpMZdafpIIlVmWm32qkh7cj9MnK7Laoi7vWLcrU4SBMFlSkmeSkpom+pSKxUY2Md+NAL3iyGiYGOIIQoj0hJqfbsQE6Vuq4q4W2btzR4xkvaHQNpsIhrMHXtinMdhaLKgpF1Tr6StuZchhoiCiyGGKIzIlRida5gQBMHt5nOScjnEdN4PA3Q8BLLJ0e8C2KeKnMW7qcRkJ7o2HQ9Nl5ZZM8QQUXAxxBCFEU/TSUBbsHG3V0x5fdcb3UmkQyClSow0laRUCNCqXH8kOE8ntd8jRjKMxw8QUYgwxBCFEUOT+8ZeoPNl1uUGx7lJXkwnyT0xjsbeBpP9f2O1qg79NC49MXWuy6sl0gqlM5UNMLfauvz6RET+whBDFCZsNlE+w6h9T4zzbe4qMRcM9oCRofemEuPaE+Nuj5gOX7OT6aQMvQ5xOhVabSIKqrjpHREFD0MMUZhoMLd67E0BnE+y7tjYW+qoxGS22yTPHaknRjoEstFk9fg1pRBT2WBChWPKqv10kiAIGJrGKSUiCj6GGKIwIU0TaVUK6NTKDvfL5ye1m04SRbEtxCR0HWLaHwLpPJ3UnhRi8krt4USnVsiVHGfSlBIPgiSiYGKIIQoTUoXFXVMv4Pn8pOpGM8ytNgiCd4297Q+BrHezR4xECjEnHMcKZCVEud2HZlCqfa+Yc1WNXX59IiJ/YYghChNtu/W6Pw0k3kNPzAVHw21KrBYalXff0s6HQEq79bqrxEhfs8Vib9jNardHjESqztQ1eT7biYjI3xhiiMKEFE7cNfUCTkus2/XEXKjzfipJIh0CWdNobtutt5PpJEn7pl6J1GfT2SnbRET+xhBDFCbaDn/0EGI8VGJKHSuTMr1YmSSRDoGs66IS0z7EtG/qbX8dQwwRBRNDDFGYkE6odrdHDNBZiLFXYjK8WJkkcT4Est7NCdYSfbSXlRjH2OqczmMiIgo0hhiiMNFWifHQE+NhibW0CV1mgveVGOdDIH2ZTvJUiUlwhJ1GsxUWKze8I6LgYIghChNtjb3uKzF6R7hpP2VTKocY7ysxzhveNToqMe72iYnRKOXl2EDHwx8lcU5j5pQSEQULQwxRmOi6sdd+e32LBTabKN/eNp3keyWmptHcNp2k7fh1BUGQx6NWCkiNc3+sgVIhyI3HXKFERMHCEEMUJrrcJ8Zxu00EGs32a1utNvkEa99WJzktse5knxigLVRl6KOgUHTcI0bStkKJfTFEFBwMMURhQj7B2sN0klalgEapcFxrDx4V9SbYRHuVpE9s14c/SpwPgWxbndRxl2CgLTx56oeRSH0xnE4iomBhiCEKE1019gqC0OEka2mju7R4XadVkvace2IaOplOAtoqMe1Pr/Z0HaeTiChYGGKIwoSxi8ZeoOP5SRd8OPjRmfMhkNKyaE/TSdLuvp6WV0sYYogo2Nz/1CKioJOmiDw19gIdz0+SViZl+LC82v489kMgrTYRUo+wuyXWAHDH5X1R12TB/LFZnT6nNJ1Ux+kkIgoShhiiMNBqtcnTOp4ae53vkwKPL6dXO5MOgaxqMMm3eQoxkwYkY9KA5C6fMyHKXt1pf8o2EVGgcDqJKAxIAQZwv1+LpO38JHtQkDe682F5tSQppi0sRbfbD6Y79Ny1l4iCjCGGKAxI00PRGiXUSs/flu2PHpDOTfLlyAGJ1BcDeK7C+ELP6SQiCjKGGKIwIO8R00lTL9BW7ZCuL3WcYO1rTwzQdggk4Lmp1xcJbOwloiBjiCEKA13t1iuRz09qsaDFYkV1o33qpqs9XNxJjPFzJabd8m8iokBjiCEKA13tESOJdzo/qczR1BulVnYZftxJdDqh2h8hRpqe4nQSEQULQwxRGOhqt15J20nWFnmju4wEHQTB96bcJD9XYpx37BVFsYuriYguHkMMURiQT7DuajrJaYl1dze6kyT6uSdGqgZZbaLLaisiokBhiCEKA22NvV1MJzktsZY2usvsRlMv0HYIJADE+aESo1MroVXZf6SwuZeIgoEhhigMeN3Y67TEWqrEdGd5NeD/SgzAQyCJKLgYYojCgNHL6SQp5DSYWlFS2wSg+5UY154Y3xuD3ZF27WUlhoiCgSGGKAxIxwh01dgr7eYrisCp8gYAF1GJcQkxym49R3t6VmKIKIgYYojCgMHLJdZalRI6tf3btszYvXOTJHFaFVSOowb8NZ0kHz3QzKMHiCjwGGKIwoC300lAx2pNd6eTBEGQ93bx33QSd+0louBhiCEKA97uEwO4Bh19lBrRmu5XUfom2as4Gd04QNIdNvYSUTD5p4ZMRBdFWmLtzc67zsuwuzuVJHnhtrHIL6/HiMz4i3oeiTR+AysxRBQEDDFEIWZutaHZYgXgXSXGOehkXmQFpV9KDPqlxFzUczjTy0cPsCeGiAKP00lEISZNJQHeNdg6Tyd15/TqQGJPDBEFE0MMUYhJTb1xOhWUiq7PQHKu1nR3eXWgsCeGiIKJIYYoxLzdI0bivAw76yJ7YvxN7olhiCGiIGCIIQoxX5ZXA+0rMeE2ncQde4koeBhiiEJM3ujOyw3nnMPOxa5O8jdpx95mixWmVmuIR0NEkY4hhijE5D1ivKzESFM2ggCkxYdXJSZOq4LU1sMpJSIKNIYYohDzZY8YoG06qU+sFhpVeH0LKxSCHMa4VwwRBRr3iSEKMV926wWA0Tl6DM+Ix7XDUgM5rG5LiFKjrsmCOlZiiCjAGGKIQszo5eGPknidGl/87MpADumi6KM1QHUTm3uJKODCqxZN1Au1Nfb65xDGUOMyayIKFoYYohCT94nxsicm3LXt2sujB4gosBhiiEJMmk7ytrE33HHXXiIKFp9DzPbt23HDDTcgMzMTgiDgk08+cbn/7rvvhiAILh+TJk1yucZkMuGRRx5BSkoKYmJiMG/ePJSUlLhcU1tbi0WLFkGv10Ov12PRokWoq6vz+QUShbu2xt7IaFFL4HQSEQWJzyGmsbERY8aMwcqVKz1eM3v2bJSWlsofn3/+ucv9S5cuxccff4y1a9dix44daGhowNy5c2G1tm2OtXDhQhw8eBAbNmzAhg0bcPDgQSxatMjX4RKFPWmJdaRMJ8XzEEgiChKf//SbM2cO5syZ0+k1Wq0W6enpbu8zGAxYvXo13n33XcyYMQMAsGbNGuTk5GDTpk2YNWsW8vLysGHDBuzevRsTJ04EALz++uuYPHky8vPzMXToUF+HTRSWRFH0+diBcJcQ7Th6gJUYIgqwgPTEbN26FampqRgyZAjuu+8+VFRUyPft378fFosFM2fOlG/LzMzEyJEjsXPnTgDArl27oNfr5QADAJMmTYJer5evac9kMsFoNLp8EIU7U6sNZqsNQAROJ7Gxl4gCzO8hZs6cOXjvvfewefNmPP/889i7dy+uueYamEwmAEBZWRk0Gg0SExNdHpeWloaysjL5mtTUjht5paamyte0t3z5crl/Rq/XIycnx8+vjMj/pCqMQgBitRESYtjYS0RB4vefmrfffrv875EjR+LSSy9Fbm4u1q9fjwULFnh8nCiKEARB/tz5356ucfbUU0/hsccekz83Go0MMhT2nM9N8vT/7Z5GWmXF6SQiCrSAL7HOyMhAbm4uTp06BQBIT0+H2WxGbW2ty3UVFRVIS0uTrykvL+/wXJWVlfI17Wm1WsTHx7t8EIU7g9TUGyEb3QFtJ1kbmi2w2cQQj4aIIlnAQ0x1dTWKi4uRkZEBAJgwYQLUajU2btwoX1NaWoqjR49iypQpAIDJkyfDYDDgu+++k6/Zs2cPDAaDfA1RJPD1yIGeQKrEiCJQ79jIj4goEHz+ydnQ0IDTp0/Ln589exYHDx5EUlISkpKSsGzZMtx8883IyMjAuXPn8Otf/xopKSm46aabAAB6vR733nsvHn/8cSQnJyMpKQlPPPEERo0aJa9WGj58OGbPno377rsPr776KgDg/vvvx9y5c7kyiSKKr4c/9gRalRJRaiWaLVYYmi1yZYaIyN98DjH79u3D9OnT5c+lPpTFixdj1apVOHLkCN555x3U1dUhIyMD06dPx7///W/ExcXJj3nxxRehUqlw2223obm5Gddeey3eeustKJVK+Zr33nsPjz76qLyKad68eZ3uTUPUE0Xabr2ShGg1mg1W1DWb0RfRoR4OEUUon0PMtGnTIIqe57m//PLLLp9Dp9NhxYoVWLFihcdrkpKSsGbNGl+HR9SjyOcmRVAlBrCHslJDCze8I6KA4tlJRCFkiMCeGIDLrIkoOBhiiEJIbuyNwEoMwGXWRBRYDDFEISQ19kZa82tClP3oAe7aS0SBxBBDFELGCNwnBmibTmJPDBEFEkMMUQi17dgbWT0xevbEEFEQMMQQhZCBPTFERN3GEEMUQm079kZWiGnriWGIIaLAYYghChFRFOV9YiJxszsAqGtmYy8RBQ5DDFGINJqtsDoOSIzTRVhPTBR7Yogo8BhiiEJE+gWvUSoQpVZ2cXXPIvfEcDqJiAKIIYYoRKR+kfgoNQRBCPFo/EuaTjK12tBisYZ4NEQUqRhiiELEIB/+GFlTSQAQq1VBqbAHM04pEVGgMMQQhYghQk+wBgBBEDilREQBxxBDFCLGCA4xAJDgeF3VjaYQj4SIIhVDDFGIRHIlBgByk6MBAAWVjSEeCRFFKoYYohCR9lCJ1BAzND0eAJBfVh/ikRBRpGKIIQqRSK/EDE2PBcAQQ0SBwxBDFCIGxwnW+mhNiEcSGEPT7JWYE2VGiKIY4tEQUSRiiCEKkUivxAxMjYFSIcDY0ooyY0uoh0NEEYghhihEIj3EaFVKDEiJAQCc4JQSEQUAQwxRiET6EmsAGJoeB4B9MUQUGAwxRCES6ZUYABjmCDEnGWKIKAAYYohCQBTFXhFipGXWnE4iokBgiCEKgQZTK6w2+4qdiA4xafZKzOnKBrRabSEeDRFFGoYYohCQqjAapQI6deR+G2YnRiFao4S51YZz1dy5l4j8K3J/ehKFMXkqKVoNQRBCPJrAUSgEDHFUYzilRET+xhBDFAK9oR9GMowrlIgoQBhiiEKgNyyvlkjLrFmJISJ/Y4ghCoHeVImRQszJcoYYIvIvhhiiEOhVIcbRE1NU04Qmc2uIR0NEkYQhhigEelOISY7VIiVWC1EETpY3hHo4RBRBGGKIQqCuyR5i4ntBiAGcm3uNIR4JEUUShhiiEOhNlRiAzb1EFBgMMUQhIIWYhF4WYrjMmoj8iSGGKAR60xJrgHvFEFFgMMQQhYDzjr29weDUOAgCUN1oRlWDKdTDIaIIwRBDFAK9rScmSqNEblI0AFZjiMh/GGKIgsxmE3tdiAHY3EtE/scQQxRkDeZW2ET7v3tXiIkHwGXWROQ/DDFEQWZw7BGjUSmgUytDPJrgkZp7t5+swv7C2hCPhogiAUMMUZD1xqkkAJgyMBmpcVqUGVtw86qdePyDQ6isZ5MvEXUfQwxRkBl72R4xkoRoDT7/2ZW47dJsAMCH35fgmv/bitU7zkIUxRCPjoh6IoYYoiDrrZUYAEiJ1eK5W8bg44emYFSWHvWmVvzps+NYd/BCqIdGRD0QQwxRkPXmECMZ1zcRnzx8BW6ZYK/KfHeuJsQjIqKeiCGGKMgYYuyUCgFTBiYDAM5U8HRrIvIdQwxRkEkhprecYN2ZgX1iAQBnKhtDPBIi6okYYoiCrI6VGNmAPjEAgKoGkxzuiIi8xRBDFGScTmoTp1MjLV4LACio5JQSEfmGIYYoyHrbCdZd4ZQSEXUXQwxRkEmVmIRecoJ1V9pCDCsxROQbhhiiION0kquBjr4YrlAiIl8xxBAFGUOMq4GprMQQUfcwxBAFkc0msiemHWk6qbC6CRarLcSjIaKehCGGKIgazK2wOY4J4j4xdunxOkRrlGi1iSiqaQr1cIioB2GIIQoiQ5O9CqNVKaBTK0M8mvCgUAjyfjHsiyEiXzDEEAUR+2Hc4zJrIuoOhhiiIGKIcY/LrImoOxhiiIKIe8S4xxBDRN3BEEMURKzEuDcwta0nRhRFl/uKqpvww9d2YUt+RSiGRkRhjCGGKIh4grV7/ZJjIAiAsaUVVQ1ml/tWbTuN3QU1eG93UYhGR0ThiiGGKIhYiXFPp1YiJzEagOuUkqnVis+PlAEAapvMbh9LRL0XQwxREDHEeCYfP+AUYrafrJL/m9U2MsQQkSuGGKIgkvaJYYjpSG7urWhbZr3u4Hn53zWsxBBROwwxREHESoxn7c9QajC1YlNeuXy/odmCVh5LQEROGGKIgohLrD0bkOI6nfTVsTK0WGzol2zvlRHFtv9+REQAQwxRULES45lUiTlf14xmsxXrDl4AANw0LhvxOhUANvcSkSuGGKIgYojxLDlGA32UGqII7C+sxY7TVQCAeWMzkRSjAQDUNrESQ0RtGGKIgsRmE2Fs4T4xngiCIK9Q+vvXp2C1iRiTrUf/lBgkOkJMDVcoEZEThhiiIKk3tULajJaVGPekFUrfnasBANw4NgsAkBTtqMQwxBCRE59DzPbt23HDDTcgMzMTgiDgk08+cblfFEUsW7YMmZmZiIqKwrRp03Ds2DGXa0wmEx555BGkpKQgJiYG8+bNQ0lJics1tbW1WLRoEfR6PfR6PRYtWoS6ujqfXyBRuDA6ppJ0agW0KmWIRxOepL4YAFAIwNzRGQDQVolhTwwROfE5xDQ2NmLMmDFYuXKl2/ufe+45vPDCC1i5ciX27t2L9PR0XHfddaivr5evWbp0KT7++GOsXbsWO3bsQENDA+bOnQur1Spfs3DhQhw8eBAbNmzAhg0bcPDgQSxatKgbL5EoPNRxj5guSZUYAJgyMAWp8ToAaOuJYSWGiJyofH3AnDlzMGfOHLf3iaKIl156CU8//TQWLFgAAHj77beRlpaG999/Hw888AAMBgNWr16Nd999FzNmzAAArFmzBjk5Odi0aRNmzZqFvLw8bNiwAbt378bEiRMBAK+//jomT56M/Px8DB06tLuvlyhk2NTbNaknBrA39EoSo6WeGDb2ElEbv/bEnD17FmVlZZg5c6Z8m1arxdVXX42dO3cCAPbv3w+LxeJyTWZmJkaOHClfs2vXLuj1ejnAAMCkSZOg1+vla4h6GnmPmChNiEcSvvomRSMrIQopsRrMGpEu354UYw9+XGJNRM58rsR0pqzMflBbWlqay+1paWkoLCyUr9FoNEhMTOxwjfT4srIypKamdnj+1NRU+Zr2TCYTTCaT/LnRaOz+CyEKAJ5g3TWVUoFPl1wBm+hasWqrxDDEEFGbgKxOEgTB5XNRFDvc1l77a9xd39nzLF++XG4C1uv1yMnJ6cbIiQKH00neSY7Vok+c1uW2tn1iGGKIqI1fQ0x6ur38275aUlFRIVdn0tPTYTabUVtb2+k15eXlaK+ysrJDlUfy1FNPwWAwyB/FxcUX/XqI/Ikhpvu4TwwRuePXENO/f3+kp6dj48aN8m1msxnbtm3DlClTAAATJkyAWq12uaa0tBRHjx6Vr5k8eTIMBgO+++47+Zo9e/bAYDDI17Sn1WoRHx/v8kEUThhiuk/aJ6a+pRUWHgJJRA4+98Q0NDTg9OnT8udnz57FwYMHkZSUhL59+2Lp0qV45plnMHjwYAwePBjPPPMMoqOjsXDhQgCAXq/Hvffei8cffxzJyclISkrCE088gVGjRsmrlYYPH47Zs2fjvvvuw6uvvgoAuP/++zF37lyuTKIeq7Le3rOVFMvGXl/FR6mhEACbaJ9SSo3ThXpIRBQGfA4x+/btw/Tp0+XPH3vsMQDA4sWL8dZbb+HJJ59Ec3MzHnroIdTW1mLixIn46quvEBcXJz/mxRdfhEqlwm233Ybm5mZce+21eOutt6BUtm0A9t577+HRRx+VVzHNmzfP4940RD1BSW0TACA7MSrEI+l5lAoBCdEa1DSaUdtoYYghIgCAIIrSRuiRxWg0Qq/Xw2AwcGqJQk4URYz8/ZdoNFux6bGrMchpZ1ryzrXPb8WZykb8675JmDwwOdTDIaIA8eX3N89OIgqC2iYLGs32HalZiekerlAiovYYYoiCoLjGPpWUFq+FTs1zk7qDe8UQUXsMMURBUOQIMTmJ0SEeSc/F85OIqD2GGKIgKHY09eYkMcR0F0+yJqL2GGKIgqC4phkAkMN+mG6T9ophJYaIJAwxREFQwkrMRWurxPAkayKyY4ghCgKpsZchpvvkk6xZiSEiB4YYogCz2kScr3NMJzHEdBtXJxFRewwxRAFWZmyBxSpCrRSQHs+dZruL+8QQUXsMMUQBJk0lZSZEQakQQjyankvqiWkyW9FisYZ4NEQUDhhiiAJMCjF9OZV0UeK0KqgcIZDVGCICGGKIAq641t4Pk82N7i6KIAhtK5TYF0NEYIghCri2lUncI+Zite0Vw2XWRMQQQxRwxTxywG8SHcusuWsvEQEMMUQBxyMH/CeRu/YSkROGGKIAarFYUW40AWBjrz8kcpk1ETlhiCEKIGmTuxiNEonR6hCPpufj+UlE5IwhhiiAipyOGxAE7hFzsXh+EhE5Y4ghCqASR4jh8mr/4PlJROSMIYYogKQ9Yri82j94fhIROWOIIQog7tbrXzw/iYicMcQQBZC8vJrTSX7hXIkRRTHEoyGiUGOIIQqgomruEeNPUiXG1GpDMw+BJOr1GGKIAsTQbIGxpRUAkJ3Inhh/iNYooVHZf2yxL4aIGGKIAkTqh0mO0SBGqwrxaCKDIAg8P4mIZAwxRAFS4uiHyeZUkl+17RXDSgxRb8cQQxQgRVyZFBDcK4aIJAwxRAFSXOPYI4b9MH7FvWKISMIQQxQgPL06MLhXDBFJGGKIAkRq7OUeMf7FSgwRSRhiiALAZhNRwiMHAoKVGCKSMMQQBUBlgwmmVhsUApCZwBDjT/LqJFZiiHo9hhiiAJCmkjL0UVAr+W3mT9wnhogk/OlKFABcXh04iY4l1l3tEyOKIhpNrcEYEhGFCEMMUQAUOs5Myk1miPE3uSfGwyGQoihi84lyzH95J0Yt+xJf55UHe4hEFCTcC50oAOSVSazE+J20OqnVJqLe1Ip4nb0yY7OJ2JhXjhWbT+HoeaN8/Y7TVbh2eFpIxkpEgcUQQxQA0nQSKzH+p1MrEa1RoslsxZ6CGlQ1mHCouA7fna1BQVUjAPtBkcMz4rG/sFauihFR5GGIIQqAQvbEBFRitAZN5mbc984+l9tjtSosnpKLe6cOQF6pET96Yw/OOYINEUUehhgiP2s2W1FZbwIA5CbFhHg0kWlc3wScr2tGnFaF0Tl6jM5OwJjsBEwemAx9lH16qV+K/b99UU0TWq02qLhKjCjiMMQQ+Zk0lRSvU0EfrQ7xaCLTS7ePxVM/GI6MeB0UCsHtNRnxOmhVCphabThf14zcZAZKokjDP02I/KytH4a/NANFpVQgKyHKY4ABAIVCkHuSznJKiSgiMcQQ+Vlhtf0XJvthQq+fI0iyL4YoMjHEEPmZtLy6L1cmhVx/R1/MOa5QIopIDDFEfsaVSeFDau7ldBJRZGKIIfIzuSeGISbk5OmkaoYYokjEEEPkR1abiJKaZgDcrTccSNNJJbXNsFhtIR4NEfkbQwyRH5UbW2C22qBSCMhMiAr1cHq9tHgtdGoFrDZR7lUiosjBEEPkR9IW99mJUVB2svyXgkMQBE4pEUUwhhgiP2pbmcQ9YsKFFGLOVrESQxRpGGKI/KiwRtojhlNJ4UJaoVTISgxRxGGIIfKjIkdTL89MCh/9U7hrL1GkYogh8qMix1/7XJkUPtgTQxS5GGKI/Kjt3CSGmHAhLbM+X9sMcyuXWRNFEoYYIj8xtlhQ22QBwEpMOOkTp0WMRgmb2BYyiSgyMMQQ+UmRY3l1SqwGsVpViEdDEkEQ5BPFeRAkUWRhiCHyE+mvfFZhwk/bQZAMMUSRhCGGyE94ZlL46scVSkQRiSGGyE+k3Xp5enX44QolosjEEEPkI5tNxNHzBrS2O1CQu/WGL3k6ibv2EkUUhhgiH31xtAxzV+zAo2sPQBRF+fa23XpZiQk30q69FwzNaLFYQzwaIvIXhhgiHx0+XwcA+PxIGb44WgYAsFhtuFDXAoB7xISj5Bj7ijGRy6yJIgpDDJGPyg0t8r9/t+4o6prMuFDXDKtNhFalQJ9YbQhHR+4IgsDmXqIIxBBD5KMyoz3EKBUCqhrM+NNnefJf932ToqFQCKEcHnkgNffyIEiiyMEQQ+SjMkcl5omZQyEIwIffl2DN7kIA7IcJZ1Jz79kumnsLqxux6Xh5MIZERBeJIYbIB6IoypWYOSPTcc+U/gCAL4/Zf+n1ZT9M2Orn5a69j39wCD95Zx++PFYWjGER0UVgiCHygbG5FS0W+9LqdL0OT8waguzEKPl+VmLCVz8vdu0VRRHHS40AgLe+PReMYRHRRWCIIfJBqbEZAJAQrYZOrUS0RoW/LBgt388QE76k6aRSQwuaze6XWVc2mNDkuG9XQTVOltcHbXxE5DuGGCIfSP0w6fE6+bapg1Pwi1lDceXgFEwZmBKqoVEXEqPV0EepAXiuxkiHeEre3VUY8HERUfcxxBD5QA4xep3L7Q9PH4R3752IKI0yFMMiLwiC4NTc6z7EnHOEmIRoe9j56PsS1LdYgjNAIvIZQwyRD6SmXudKDPUcA7oIMUWOCs2ckekYlBqLRrMVH31/PmjjIyLf+D3ELFu2DIIguHykp6fL94uiiGXLliEzMxNRUVGYNm0ajh075vIcJpMJjzzyCFJSUhATE4N58+ahpKTE30Ml8lm50X0lhnoGqRJTUNl5JaZfcgzumpwLAHhn1zmX4yWIKHwEpBIzYsQIlJaWyh9HjhyR73vuuefwwgsvYOXKldi7dy/S09Nx3XXXob6+rYFu6dKl+Pjjj7F27Vrs2LEDDQ0NmDt3LqxWnnlCoVXqpieGeo7+faRKTIPb+wsdmxbmJkdjwfhsxGpVOFPZiJ1nqoM2RiLyXkBCjEqlQnp6uvzRp08fAPYqzEsvvYSnn34aCxYswMiRI/H222+jqakJ77//PgDAYDBg9erVeP755zFjxgyMGzcOa9aswZEjR7Bp06ZADJfIa1JPTBorMT1SVz0x0m6+uckxiNWqsGB8FgDg7Z3ngjI+IvJNQELMqVOnkJmZif79++OHP/whCgoKAABnz55FWVkZZs6cKV+r1Wpx9dVXY+fOnQCA/fv3w2KxuFyTmZmJkSNHyte4YzKZYDQaXT6I/E2aTspgiOmRpA3vapssqG00u9xnaLKgrsnexCstlZemlDblleN8XXMQR0pE3vB7iJk4cSLeeecdfPnll3j99ddRVlaGKVOmoLq6GmVl9h0w09LSXB6TlpYm31dWVgaNRoPExESP17izfPly6PV6+SMnJ8fPr4x6uxaLFbWOX3KcTuqZYrQq+b07226ZdWGN/fM+cVrEaFUAgEGpcZgyMBk2kcuticKR30PMnDlzcPPNN2PUqFGYMWMG1q9fDwB4++235WsEwfWAPFEUO9zWXlfXPPXUUzAYDPJHcXHxRbwKoo6kKoxOrZD3G6GeZ4DUF9OuubfQ0dSb227Dwrsm9wMAvLr9DP7+9SnYbGzyJQoXAV9iHRMTg1GjRuHUqVPyKqX2FZWKigq5OpOeng6z2Yza2lqP17ij1WoRHx/v8kHkT85NvV2FbgpfnvpinPthnM28JA0/mtgXogi8sPEkfvz23g5TUUQUGgEPMSaTCXl5ecjIyED//v2Rnp6OjRs3yvebzWZs27YNU6ZMAQBMmDABarXa5ZrS0lIcPXpUvoYoFKRKTBqnkno0zyGmbWWSM4VCwJ9vGoX/u3UMtCoFtuZXYu6KHThUXBeU8RKRZ34PMU888QS2bduGs2fPYs+ePbjllltgNBqxePFiCIKApUuX4plnnsHHH3+Mo0eP4u6770Z0dDQWLlwIANDr9bj33nvx+OOP4+uvv8aBAwdw5513ytNTRKEirUxiU2/PJk0nFXgZYiS3TMjGJw9fgX7J0Thf14xbX9mFgwwyRCGl8vcTlpSU4I477kBVVRX69OmDSZMmYffu3cjNtXf5P/nkk2hubsZDDz2E2tpaTJw4EV999RXi4uLk53jxxRehUqlw2223obm5Gddeey3eeustKJXc0p1Cp5TLqyNC/5RYAMC5qkbYbCIUCvvUoNTY2346ydnwjHh8+shU3Pf2Puw5W4PPj5RibE5CwMdMRO75PcSsXbu20/sFQcCyZcuwbNkyj9fodDqsWLECK1as8PPoiLqvnEcORITsxCioFAKaLVaU17cgQx+FZrMV5UYTAKCfh0qMJF6nxvWjM7DnbI3HnX+JKDh4dhKRl0o5nRQR1EqFvA+MtEKpyLFTb7xOhYRoTZfPIfXVeDoNm4iCgyGGyEts7I0c8hlKjr4YKYz0S/E8leTu8YXVjbByyTVRyDDEEHnBahNRUW+fbsjQR4V4NHSx2q9QKnI09fZN6nwqSZKpj4JGpYDFKuJ8LXfyJQoVhhgiL1Q1mGC1iVAIQEps19MNFN7aDoJsV4nppKnXmUIhyL0z7Xf+JaLgYYgh8oK0vLpPnBYqJb9teroOlRhHT0zfLpp63T5HpfsTsYko8PjTmMgLZdLKJE4lRYQBjmXWRTVNsFhtPldigLb+GU8nYhNR4DHEEHmhTD5yQBvikZA/pMVrEaVWwmoTUVDZKPe1eNrozp0BUohx9NMQUfAxxBA5sdlEGFssHW4v4x4xEUUQBHk66JtTlbCJ9oM9U+O8D6nSpnlnqzidRBQqDDFETl7ZfgZj/vAVNp8od7ldrsRwOiliSMcPbDtZCQDITYrx6WDPfin2qs352maYWq3+HyARdYkhhsjJF0fKIIrAm9+ec7m9LcRwOilSSNNBewpqAPg2lQQAfWK1iNWqYBOB4hpOKRGFAkMMkUOLxYq8UiMA4NvTVaiob5HvaztygJWYSCEtszZbbQB8DzHOU1I8foAoNBhiiByOlxrR6th91SYC/ztUCgAQRVE+ciCdRw5EDKmnRdLZwY+ecIUSUWgxxBA5HCquAwColfa+iHUHzwMAjC2taLbYex7Y2Bs5+rcLLb5WYgCeoUQUagwxRA6HSwwAgIWX94VSIeBwiQFnKhvkqSR9lBpRGmUoh0h+pI9WIzmmbfdlX/aIkQzgdBJRSDHEEDlIlZhrhqfhqsEpAIB1B863TSWxChNxpEqKSiF063RyTicRhRZDDBEAQ5NFPtF4dJYe88dlAQA+OXgBZQb7Rmhp7IeJOFKIyUmK7tZxEtKUVEW9CY2m1m6NYfvJShwoqu3WY4l6O1WoB0AUDg6frwNg74tIjNHgukvSEK1RoqimCV8cLQMAZLASE3GkFUrenl7dnjQlVd1oxtmqRozM0vv0+E8OnMfSfx8EAIzvm4D7rxqI6y5Jg1Lh/X41RL0ZKzFEaOuHGZOdAACI1qgwa0Q6AGBrvn0zNFZiIs+8MZm4cnAK7rmiX7efo7tTSufrmvHbdUcBAIIAfF9UhwfX7MeMF7bhvT2FEEWx22Mi6i0YYogAHHT0w4zJSZBvu3Fspss13emZoPCWnRiNd++diGlDU7v9HPIKJR9CjM0m4vEPDqK+pRXj+iZg56+uwcPTByJep8LZqkY8/fFRvLOrsNtjIuotGGKo1xNFsS3EZLdNB0wdlIKU2LbVK2zsJXf6d6MS889vz2J3QQ2iNUq8eNtYZOij8ItZw7DrqWtx95R+AICPD5wPxHCJIgpDDPV6ZcYWVNaboFQIGJHZFmJUSgXmjm6rxqQxxJAb8q69XoaY/LJ6PLchHwDw27mXyNNRABCjVeGn0wYCsFcHpeMuiMg9hhjq9aSl1UPT4jrsAyOtUgI4nUTu+VKJMbVa8bO1B2C22nDtsFT88LKcDtekxeswrm8CAGDj8TK/jpUo0nB1EvV6h6SmXqd+GMmYbD0euHoA1AoFEp02RiOSSJvkGZotqG00y/8/abFY8cG+YpyrakJdkxl1zRaU1DbhZHkDkmI0+MvNoz2emj1rRDoOFNXhy2PlWDS5X7BeClGPwxBDvd4hN/0wEkEQ8NSc4UEeEfUkURolMvQ6lBpaUFDViAkxGoiiiMf/cwjrD5d2uF4hAH9ZMAp94jyfiD5rRDr+8sUJ7C6ohqHJAn20OpAvgajHYoihXs1mE9uWV7upxBB5o39KDEoNLThb1YgJuYl4bXsB1h8uhVop4J4r+iM5RoOEaDX0URoMTY+Tp6A6e76haXHIL6/H1yfKsWB8dpBeCVHPwhBDvVpBVQMaTK2IUisxODW26wcQudE/JQY7z1TjXFUjdpyqwrMbTgAAfnfDCCyalNut55w1Ig355fXYcLSMIYbIAzb29hJWm4gXNp7EzjNVoR5KWDlUbK/CjMrSd2vbeSKgrbl3V0E1HvnX97CJwK0TsnHnxL7dfs6Zjs0Wt5+qRLPZ2uX1uwuq8bdNp9BqtXX7axL1NPyp3Ut8e7oKf//6FJZ9eizUQwkrh0rqAACj3fTDEHlLCjH7C2tR22TB6Gw9/jR/pMfGXW+MyIxHVkIUWiw2bDtZ2em1NY1m3PfOPry46STWH+nYh0MUqRhieonTFQ0AgHPVTbDZuJ255JCbnXqJfOXc45IUo8GqOydAp1Z28oiuCYKA2SPt1ZivjnW+1PqFjfmob7EfQLnlRMVFfV2inoQhppeQ9rAwt9pQUW8K8WjCg6nViuOlRgDAWIYYugg5SdFIiFZDqRCwcuE4ZCVE+eV5pfO7NuWVw+Jhmii/rB7v7ymSP992shJW/qFCvQRDTC/hvBFXUU1TCEcSPo5fMMJiFZEUo0F2on9+6VDvpFYq8J8HJuPTJVdgysAUvz3vhNxEJMdoYGxpxZ6Cmg73i6KIP312HDYRuO6SNMTpVKhtssjHaPhLUXUTNhwtYxWXwg5DTC/hHGKKGWIAALsdvxTG9028qN4FIgAYnBbncmyFPygVAq67JA0AsOFYx16XzScqsON0FTRKBX57/SW4akgfAMDWfP9NKbVabVj85nd4cM1+PL8x32/PS+QPDDG9QIvFiguGZvlzVmLsdhVUAwCuGJQc4pEQeSZNKX1xpAz7zrVVY8ytNvx5fR4A4MdT+6NvcjSucZzGvdmPfTH/O3xB/iPoH1vO4KPvS/z23EQXiyGmFyisboLoVAVmJcb+C2DvWfsvBH+W/4n8bcqgZGTqdahuNOOWV3Zh4eu7sbugGu/uLkRBVSNSYjV4eLr90Mirh/aBIADHLhhRbrz4wyOtNhErNp8GAHkfpV99eMQlTBGFEkNML9D+YDpWYuxLq5stViTHaDAkjZvcUfjSqpT4z0+n4I7Lc6BWCth5pho/fG03/rz+OADgiZlDEaezH0uQEqvF6OwEAP6ZUlp/pBQFlY1IiFbjw4emYNaINJitNjzw7n7+MURhgSGmF5BCzADHMlCGGGDnaftU0qSByeyHobCXlRCF5QtGY+svpmPRpFxolArYRGB4RjxuvdT1JGx/TSnZbCJWfH0KAHDvFf0Rr1PjxdvHYkRmPKobzfjJ2/tQ32K5qK9BdLEYYnqBs1X2PWKkpr+KehNaLF3vABrJpJ2LpwxkPwz1HFkJUfjT/JHY/uR0LLvhEqxefCmUCtcQPn2Y/ft8x6kqmFs73723usGERav3YMHL36Ko2vWPmw3HynCqogFxOhUWX9EPABCtUeGNxZciNU6L/PJ6PP7BIYgiVyxR6DDE9AJSJWZc3wTEae3HZZXU9t5qTLPZigNFdQDYD0M9U7peh7uv6I9MN/vRjMzUIyVWi0azFXs76V0pqW3Cra/swjenqvB9UR1u/McOfOfoE7PZRPzdUYX5saMKI8nQR+GNxZdCo1Tgq+Pl2JTHzfUodBhieoGzVfbAMiAlFjlJ0QB695TS/sJamK02ZOh16JccHerhEPmVQiFg+lB7NcbT7r35ZfW4edVOFFQ1IishCqOy9KhtsuBHb+zGf/YVY2NeOU6U1SNWq8KPr+jf4fGjsxPwkyvtt//xs2O9vrJLocMQE+GMLRZUNdh36O2XEo2+Uoip7r0hRppKmsx+GIpQ04c5+mLcNPfuO1eDW1/ZiXKjCUPSYvHhT6fggwcm4/pRGbBYRfziv4fx5H8PAwDuntIP+mh1h+cAgCXXDEKGXofimma8uq0gcC/GoaupMV+eh1NgkYMhJsKdc0wl9YnTIk6nRt9kqRLT3NnDLtreczVY8v73KDNc/DJPf5P2h5k8gP0wFJmmDk6BSiGgoLIRhdX2nwE1jWa8vPU0fvTGHhhbWjEhNxEfPDAZ6XodojRKrLhjHB69ZhAAwNBsQbRGiXundqzCSKI1Kjx9/XAAwMtbTwd0tdI7u85h2G+/wNrvirq+uBOV9SZMWv41rv/7Dq6uihAMMRFO6ofpn2xfmZTj2F4/0NNJL206ic8Ol+KlTScD+nV8Vd9iweESAwB7JYYoEsXr1Li0XyIA4J87zuLxDw5h0vKv8dyGfJhabbhmWCrW3DsRCdEa+TEKhYDHZg7FS7ePRU5SFJ76wXAkxmg8fQkAwPWjMjBlYDJMrTb86bPjAXktLRYrXtp0CjYR+N26Yzji+P7tjv8duoCaRjOOlxpx08vfYn9hrR9HGl5arTZUN5hQXNMU0WdpqUI9AAosOcQ4lldLPTGB/CvEahNxqNj+g2bdwQv49fXDXRoDQ2nvuRpYbSJyk6ORnch+GIpc1wxLxe6CGry9q1C+bVSWHndNzsVN47KgUrr/G3b+uCzMH5fl1dcQBAF/mDcCc/72Db46Xo6t+RWY5lji7S//2V+CmkYzAMBsteHh97/HZ49O7dbPlM8OXwAAxGpVqGow447Xd+O5m0d7/XrD3f/77Dg2HCuDocmCelOrfPvN47Px/G1jQjiywGElJsLJIaaPPcRIPTHFtU0Bmxc+VVGPBsc3ULPFik8OnA/I1+kOaX8YLq2mSDd7RAZ0agU0SgVuGpeFjx+agk+XXIFbL83xGGC6Y3BaHO6e0g8A8If/HYeptfMm37NVjdhfWOvy4Wna2WoT8cY39n6bx64bgqyEKBTVNOGX/z3s88+v83XN+L6oDoIA/O+RqZh5SRrMrTYs/fdBPP9Vfo8/3DKv1Ig3dpxFSW2zS4ABgA+/L5F7ASMNKzERTuqJ6eeYTspKjIIgAE1mK6obzUiJ1fr9a0rLl5UKAVabiDW7C7FoUm5YNNHuPOPoh+HSaopwfZOjsfWJ6dCqFF1OC12sn80YjE8O2s9YeurDI3j2ltFQtwtKNpuIZz7Pwxs7znZ4vEohYOXC8Zg9Mt3l9i+PlaGwugmJ0Wr85Mr+uGpIH9z6yk58cbQM7+wqxGJHePLGekcV5vJ+SeifEoNX7pyA577MxyvbzmDF5tP48lgZllwzGNePyuiw905P8N4ee8Xt2mGpePr64UiI1iBep8If/ncc7+4uxLJPj2H9o1d2eF96ush6NeRCFEUUSLv1OioxWpUSGfE6AIHrizlQZJ9nXnh5X0SplThZ3oB9YTD3XOuYCwfY1Eu9Q7peF/AAAwBxOjWeuWkklAoBHx04jwfe3Y9mc1tFxmK14fH/HJIDTN+kaOQm2z/S43VotYn4xX8PuayaFEURr247AwC4a3I/RGtUGJuTgKfm2JuJ/7w+DweL61DbaMbZqkYcKKrFt6er0GR2rUJIPjtsPwV87phMAPYeoF/NGYb/u3UM4rQqnCxvwKP/OoDrXtyGj74vQavVP6uhgqHB1IqPv7dXvO+d2h8D+sQiKUYDlVKBx2cOQVKMBifLG/CO09RiZ1qtNhwpMXRZ7QqHVa4MMRGsutGM+pZWCELbNBIQ+L4YqRJz9ZA+mOf4gbFmt3ffPIG027EqaXBqLPrE+b8CRdSbzRyRjtfvmgCdWoHNJyrwozd2o67JjCZzK+57Zx8+PnAeSoWA528dg+1PTse2X9g/vvnldIzvm4D6llYs+df38nTU7oIaHCoxQKtS4K7JufLXueeKfvIZTvP/8S3G/Wkjpv/fVtz08k786I09ePi97zv88i2sbsThEgMUAjCnXbXnlgnZ2PGra/DYdUOgj1KjoLIRj31wCDe/sqvLqbFwse7geTSarRiQEtNhwUJCtAZPzhoKAHhp40lU1He9YvSVbWdww8odeHnrGY/XHCquw1V/3YKH3tsf0qk4hpgIJk0lZSVEQadWyrfnBHCvGEOzBacq7MccjO2bgB9N6gsA+OJIGaod+9WEijSVxH4YosC4Zlga3vvJROij1Pi+qA63vrILC1/fg635ldCpFXjjrktx84Rsl8eolQqsWDgeCdFqHC4xYPnnJwAAr263/wK97dIcJDtNewuCgOduGSOfBQfYG3WzEqKgUgjYkl+Jr46Xu3wNqQozZWCK2yl0fZQaj147GDt+OR1Pzh6KWK0Kh4rrsDW/0j//YQJIFEWs2W1fer5wYl+30/a3XZqDMdl61Jta8ZcvTnT5nJ8esk+9vbrtjNzf2N6KzfYdnaPUKihCOP3GEBPBCtqtTJL0DeCuvYeK6+SvIZ2oOzpbD7PVhv/uL/H71/OW1SZii2PjLy6tJgqcCblJ+M+Dk5Eer8OpigYcLK6DPkqN934ySd6Er72shCi84Fg989bOc3hp00lsza+EQoC8M7AzfZQaG5ZehX2/mYFTf56Do3+YhW9/dQ3uv2oAAOCP/zvusouwPJU0OqPTscfp1Hho2iD88DL7oZrSL/NwdqC4DnmlRmhVCtzSLiBKFAoBf7hxJAQB+Oj789jXxXEUJ8vtf4gaW1rxnpsq+tHzBmzKq4BCAB6ePtA/L6SbGGICZH9hLY6e7/5+Bv7Qfnm1xHmFkr9JU0nj+ybIt/1oor0a8/53RS5lx6oGEz47fEHejCuQNhwtQ0ltMxKi1fJBmEQUGEPS4vDhQ1MwIjMe/ZKj8Z8HJ2NCbmKnj7lmWBoeuNoeQl7aZP8rf86oDOQmx7i9XqNSICVW69KoKu0ifL6uGascUyFnKhuQV2qESiF0aBz2ZN5Y+zT413nlaPRQiQg2TzsNv+eowswdnemy7097Y3MScLvjxPPfrTvmce+YLY7qk05t/+/6+jdnOxwrIVVh5o3JxIA+sT6+Ev9iiAmArfkVuOWVnbjt1V0whvCo+nMeQkxbT4z/d+09UGxv4B3Xt+0H1g1jMhGnU6GwugnfnK7C90W1+Pm/D2LK8s1Y8v4BTPu/rbjnze+w5URFQOZWRVHEK+0aBIkosLISovDZI1Ox+fFpGJIW59Vjnpg51CXsPOCorHgrWqPCb66/BACwatsZFFU34bND9irM1MEpnf6SdzYqS49+ydFosdiwsd3UVCjklRox5S9fY/ZL3+BUeb18e12TWd77Rpq678wvZg1FvE6F46VGrD9S6vYa6byth6YNQlZCFKoaTPiPUxU9r9SIL4+VQxDsoTHUGGL8rKi6CT9bexCiaF/G/HWe998AFqsNH+wtxjenKv3yy1yqxPTzUIm5YGj223kkgH0JpVSJGedUiYnWqHDzeHuZ86dr9mPByzvx8YHzMFttyE2Ohija0/89b+3F9Oe34o1vCnz+66fFYnVZDeFsV0E1jpy3NwgudmoQJKLAEgTBp34JtVKBFXeMw9C0ONw6IRujsxN8/po/GJWOKQOTYW614Y+fHZd/yc8dnen1cwiCIC9KCPWUUmW9CT95ex+qGszIL6/Hjf/4FusO2lci/Xd/CUytNlySEY9xOQldPldyrFbe0+eDvcUd7m+xWOX9ZGaOaKuMvbrtDCyO1VorN58GYN+teVCqd+E0kBhi/KjJ3Ir7390HQ7MFGkeJc/3hMq8ea2i24J439+LJDw9j0ervMOOFbXjz27PdruTYbKIcYga0CzEpsRpEqZUQRfsGUP5ytroRhmYLtCoFhqXHu9wnTSk1ma3QqBS4eXw21j18Bbb9Yjq2PjENP5naH/GOas3/W5+Hqc9uxj+2nEa9F69/5+kqTFr+Na55fisuuHk9r223b5bVvkGQiMJPZkIUvvz5Vfjrrd3bYVbaRVilELAprxynKhqgUSowc0SaT88jTSltP1mJWseOwcHWYrHigXf34XxdM/qnxOCKQcloMlvxs7UH8ft1R/H+HvtU0o8muW/odedWx5TSjtNVHVao7iqoRovFhgy9DkPT4nDbpTlIidWgpLYZ/zt0ASfL6/H5UXsF55FrBvvxlXYfQ4yfiKKIX314BCfK6pESq8Frd00AAGw/VdnlL+JzVY246eVvseN0FaLUSsRpVSioasQf/ncck575Gr9bd9Tno+7LjC0wtdqgVgrISohyuU8QhIA090pVmFFZemhUrv/XGpwWh7/fMQ6/m3sJdj91LZ6/bQzGOP5y6JcSg9/MvQR7fj0DyxeMQr/kaNQ2WfDXL/NxxV8246VNJ1HX5P6HyPt7inDXP79DXZMFpYYWPLhmv8t/q7xSY6cNgkQUeQanxeGeK/rJn181pI/PxxQMSo3D8Ix4tNpEfHHUuz9G/UkURfzyw8P4vsjeGL168aV458cTsWS6fQrn7V2FKKhqRIxGiRvHen9sQk5SNK4YZF/c8J92iy2kqaTpw1IhCAJ0aiV+7DgE9OWtZ/D3r09BFO3L1Iemh74KAzDE+M3qHWfx6aELUCkE/GPheFw9pA8G9ImBudWGr/MqPD5ud0E15r/8LQoqG5Gh1+G/P52M3b++Fv9v/kgMSYtFk9mKd3YV4m9fn/JpPFIVJicp2u0W4zlJ/j8IUtrkbryHBr55YzLx46n9keRh860ojRJ3XN4Xmx67Gi/dPhYD+8TA2NKKlzadwqTlX+NXHx7GsQv2ZmmrTcSfPjuOX398BK02EbNHpMtLNH+37qjcAPe6owrTWYMgEUWeR68dLO8HJVVVfHWj43HS9E0wrdx8GusO2n+nrPrReAzoEwulQsATs4bin3dfCn2UPZQtGJ+NWK1vfX63Oaox/91XLDf4iqKIzY4Qc43T+Vd3TspFnE6F0xUN8iqvcOiFkTDE+MGuM9VY7lh7//T1wzFxQDIEQcD1o+zL+Tw1UH1y4DwWrd6DuiYLxmTrse7hKzAiU48YrQp3TsrFl0uvwrM3jwJg3yzO03r9mkYznt1wAltOVMi/vAs8TCVJpObekm6EmJpGM046NZdJ5H4YL+ZmO6NSKjB/XBa++vnVWLlwHIZnxKPFYsPavcW4/u87cMuqnVj8z++w2rH752PXDcGqO8djxR3joBCAD/aV4L09RThf1yzPZ/vaIEhEPVucTo01907EMzeNwtxRnS+t9uQGR1/Md+dqPJ7vJLHaRLy+vQDv7i7stHJeWN2IvFKjx91wm81WvPFNAZ7feBIA8McbR2LKINdjUq4Zlob1j07Fn+aPxK9/MNyXlwQAmDUiHfE6FS4YWvDtaXsPzJnKBpTUNkOjUmDKoLZtKOJ1aiye3E/+/LpL0jAiU+/z1wwULtO4SBfqmrHk/e9htYm4aVyW3DQFAD8YlYEVm09j20n7lFKcUznzfF0zfvnhYVisIq4fnYHnbx3jsiEdYJ/2uXVCDl7dXoCCykas/a4IP7my4y/jpz8+gi+OlmEVzmBUlh6PXDMIBZX2df7tVyZJujud1GKx4pZVO1FQ1Yi/3zFObn5rNLXiRJl9S3/nlUkXQ6kQMHd0Jq4flYG952rxzq5z2HC0TD7CQKtS4PnbxsgNe1cO7oNfzBqGZzecwB/+dwxfHitDq03E5AHJ3WoQJKKebWh63EVNe2QlROHS3ETsK6zFZ4cvuP35K/n33mL8+fM8AMDfNp3CA1cNwI8m9UW0RoVWqw2b8irw7u5z+NZxCG1ucjTmjcnEjWMzMSg1DoXVjXh3VyE+2FcMY4v9D9YfX9EfCye6X3WUnRiNRZO6t1BBp1Zi/rgsvLOrEP/eV4yrhvTBlhP2pdWTBiR3WMF5zxX98M9vz6LJbMWjYdILI2GIuQgtFiseXLMf1Y1mXJIRj2duGuXSXDUsPQ4DUmJQUNWIzScqXOYtn/3iBEytNlzePwkrfjjOYwe/QiHggasG4JcfHsHqHWdx1+R+Lv0muwuq8cXRMigE+7lIR84bcP+7+yE9XfuVSZLuhpg3vimQqzxP/OcQchKjMK5vIg6XGGATgQy9Dul6nU/P2RVBEHB5/yRc3j8J5cYWvL+nCIdK6rB0xhCMbVf1efDqAThyvg6fHynDN6fsf2FIHfZERL6aNzYT+wpr8ekhzyGmttGM5760V+PjdCpUNZjw58/zsGrbGfxgVDo251XggqOSoxDse9wUVjdhxebTWLH5NPomRaO4tglScaZvUjTuntLPpwMufXXbpTl4Z1chNh4rR22jWZ5Kmj604z5aybFarL1/EupbWjEqO3yqMACnk7pNFEX8bt1RHC4xICFajVcXTUCUpmMl5QfSlNLhtiml/YU1+PTQBQgC8Lu5l3S5BHH+uCz0idOi1NCC/zkt95P6QgD7dtM7fjkdD00biBiNEtIK7QEp7jci6ut09IC3R9qfr2vGyi2nHc9r7/e57539OF/XLO8PM95PVRhP0uJ1+Pl1Q/DWPZd3CDBA25bkg1Ptr3tYehyu5uZ2RNRNP3Ccan24xCD3Grb3f1/lo67JgmHpcdj79Aw8d/No9E2KRk2jGWt2F+GCoQWJ0Wr8dNpAbH9yOvb/5jr87Ydjce2wVKgUAopq7AFm2tA+ePPuy7D1iWn48dT+AT1Ne2SWHiMy42G22vDu7kLsdeziO32o+12VR2cn4Ip201rhgJWYbnpvTxE+2FcChQCsuGOc3GPS3g9GZWDlltPYerISDaZWRKuV+ONn9pLjrROyMTKr61SrVSnx4yv649kNJ/Dq9jNYMD4LgiDgw/0lOHbBiDidCj+fMQTJsVo8OXsY7r9qAN7eWYiqBhMu6+c+VGQn2sdbb2qFodni1SZQf15/HC0WGyb2T8Lquy/DLat24kRZPX7y9j4kxdinypz3hwmVWK0Kqxdfhr99fQp3+rD0kIiovZRYLaYMTMY3p6qwdm+RfIq25Oh5A97/zr7U+Q/zRkCnVuK2y3KwYHwWPj10Ad+ersaUgcm4fnSGS8vAjWOzcOPYLNQ2mvHduRoMTYvzWDkPlNsuzcHvPz2GlZtPo9UmYkBKTNDHcLEYYrphf2Et/vC/YwCAX8wahisHe/5Lf3hGHPqnxOBsVSO+ziuHTRRxqLgOMRolnnCcLOqNhRP74h9bTuNkeQO25lfi0n6JeO7LfADAz64d7LL/SUK0Bj+b0fm8ZZRGiT5xWlTWm1BU09RliNlxqgqfHymDUiHgDzeOQKxWhTcWX4r5//gWeaVG+bpwCDEA0Dc5Gs/f1r19JoiInN0yIRvfnKrCq9sKoBAE/GLmUCgUAmw20bEa0r6SaeKAtoZYlVKBBeOzsWC8+/OMJIkxGswa4d1xCP42f2wW/vx5nrzpqaezrcIZQ4yPKowt+Oma/bBYRfxgVDoe7KLfwj6llI5/bDmDD78/j5Nl9lU9D18zCKlx3veO6KPUWDixL17bXoBXtp3B+HOJqGowoX9KDO5y6hz3Rd+kaFTWm/DQe9+7LNEb2CcWD149UJ77NLfa8PtPjwIA7pqcK29kl50YjdfuuhQ/fG03zI49acKpa52IyB/mjcnE6YoGrNh8Gqu2nkFBZQNevH0s1h8uxfdF9j9Ku7NKKNT00WrMHpEur+K8pgeGGPbE+GhjXjkq6k0YkhaLv94yxqupCqkvZvvJSpQZW5CdGIUfX+H7xmv3XNEPaqWAPWdr5P1Pnv7B8A4by3lL6ikpqW3GibJ6+WP9kVLcsHIHfvzWXhwoqsVbO8/iTGUjUmI1WDpjiMtzjO+biL/eMhqCYO9qb7/CioiopxMEAY/PHIoXbx8DjVKBL4+V49ZXduHZDfZm3kevHYy0eP8uaAgW6cTuOK0Kl3poPwhnrMT46EcTc6GPUsv7uXjjkgz7Sa7nqu0rgX79g+Hd+mWfoY/CjWOz8N/9JWi1iZg6KAXXDu9+cv7VnGGYPTLd5fwki9WGTw9ewCcHz2PziQpsPlEhN5f9cvYweYMlZzeOzcK4nEQkxXp3uBoRUU9007hs9E2Kxv3v7MexC/Zp9IF9YnBPN/4oDReTBybj2ZtHITsxGlpVz/sjVBC9XZrSwxiNRuj1ehgMBsTHx3f9gAB7/qt8rNh8Gpf3S8K/H5jU7WbTk+X1mPnidigE4POfXdnhjCJ/OVfViH9sOY2PDpyH1SZiXN8EfPjgFJ8OcyMiikTFNU247519KKhsxFv3XNZhMzq6OL78/maICZJmsxVr9xZh7uhMeSvs7tp8ohwqhQJXBWHpcHFNE746Xo4bxmT41MNDRBTJbDYRtU1mHiobAAwxCL8QQ0RERF3z5fc3G3uJiIioR2KIISIioh6JIYaIiIh6pLAPMS+//DL69+8PnU6HCRMm4Jtvvgn1kIiIiCgMhHWI+fe//42lS5fi6aefxoEDB3DllVdizpw5KCoqCvXQiIiIKMTCenXSxIkTMX78eKxatUq+bfjw4Zg/fz6WL1/e6WO5OomIiKjniYjVSWazGfv378fMmTNdbp85cyZ27tzZ4XqTyQSj0ejyQURERJErbENMVVUVrFYr0tLSXG5PS0tDWVlZh+uXL18OvV4vf+Tk5ARrqERERBQCYRtiJO235xdF0e2W/U899RQMBoP8UVxcHKwhEhERUQiE7QGQKSkpUCqVHaouFRUVHaozAKDVaqHVcvtnIiKi3iJsKzEajQYTJkzAxo0bXW7fuHEjpkyZEqJRERERUbgI20oMADz22GNYtGgRLr30UkyePBmvvfYaioqK8OCDD4Z6aERERBRiYR1ibr/9dlRXV+OPf/wjSktLMXLkSHz++efIzc0N9dCIiIgoxMJ6n5iLYTAYkJCQgOLiYu4TQ0RE1EMYjUbk5OSgrq4Oer2+02vDuhJzMerr6wGAS62JiIh6oPr6+i5DTMRWYmw2Gy5cuIC4uDi3S7KpLe2yWhU++J6EH74n4YfvSXjy1/siiiLq6+uRmZkJhaLz9UcRW4lRKBTIzs4O9TB6hPj4eP4gCDN8T8IP35Pww/ckPPnjfemqAiMJ2yXWRERERJ1hiCEiIqIeiSGmF9Nqtfj973/PnY7DCN+T8MP3JPzwPQlPoXhfIraxl4iIiCIbKzFERETUIzHEEBERUY/EEENEREQ9EkMMERER9UgMMRFu+fLluOyyyxAXF4fU1FTMnz8f+fn5LtfcfffdEATB5WPSpEkhGnHk8+Y9AYC8vDzMmzcPer0ecXFxmDRpEoqKikIw4sjnzXvS/ntE+vjrX/8aolFHPm/el4aGBixZsgTZ2dmIiorC8OHDsWrVqhCNOPJ5856Ul5fj7rvvRmZmJqKjozF79mycOnUqIONhiIlw27Ztw8MPP4zdu3dj48aNaG1txcyZM9HY2Ohy3ezZs1FaWip/fP755yEaceTz5j05c+YMpk6dimHDhmHr1q04dOgQfvvb30Kn04Vw5JHLm/fE+fujtLQU//znPyEIAm6++eYQjjyyefO+/PznP8eGDRuwZs0a5OXl4ec//zkeeeQRrFu3LoQjj1xdvSeiKGL+/PkoKCjAunXrcODAAeTm5mLGjBkdfu/4hUi9SkVFhQhA3LZtm3zb4sWLxRtvvDF0g+rl3L0nt99+u3jnnXeGcFS9m7v3pL0bb7xRvOaaa4I4KnL3vowYMUL84x//6HLd+PHjxd/85jfBHl6v1P49yc/PFwGIR48ela9pbW0Vk5KSxNdff93vX5+VmF7GYDAAAJKSklxu37p1K1JTUzFkyBDcd999qKioCMXweqX274nNZsP69esxZMgQzJo1C6mpqZg4cSI++eSTEI6yd/H0fSIpLy/H+vXrce+99wZzWL2eu/dl6tSp+PTTT3H+/HmIoogtW7bg5MmTmDVrVqiG2au0f09MJhMAuFSNlUolNBoNduzY4f8B+D0WUdiy2WziDTfcIE6dOtXl9rVr14qfffaZeOTIEfHTTz8Vx4wZI44YMUJsaWkJ0Uh7D3fvSWlpqQhAjI6OFl944QXxwIED4vLly0VBEMStW7eGcLS9g6fvE2fPPvusmJiYKDY3NwdxZL2bp/fFZDKJd911lwhAVKlUokajEd95550QjbJ3cfeemM1mMTc3V7z11lvFmpoa0WQyicuXLxcBiDNnzvT7GBhiepGHHnpIzM3NFYuLizu97sKFC6JarRY//PDDII2s93L3npw/f14EIN5xxx0u195www3iD3/4w2APsdfx5vtk6NCh4pIlS4I4KvL0vvz1r38VhwwZIn766afioUOHxBUrVoixsbHixo0bQzTS3sPTe7Jv3z5xzJgxIgBRqVSKs2bNEufMmSPOmTPH72NgiOkllixZImZnZ4sFBQVeXT9o0CDxL3/5S4BH1bt5ek9MJpOoUqnEP/3pTy63P/nkk+KUKVOCOcRex5vvk+3bt4sAxIMHDwZxZL2bp/elqalJVKvV4meffeZy+7333ivOmjUrmEPsdbz5XqmrqxMrKipEURTFyy+/XHzooYf8Pg72xEQ4URSxZMkSfPTRR9i8eTP69+/f5WOqq6tRXFyMjIyMIIyw9+nqPdFoNLjssss6LFs8efIkcnNzgznUXsOX75PVq1djwoQJGDNmTBBH2Dt19b5YLBZYLBYoFK6/ypRKJWw2WzCH2mv48r2i1+vRp08fnDp1Cvv27cONN94YkAFRBPvpT38q6vV6cevWrWJpaan80dTUJIqiKNbX14uPP/64uHPnTvHs2bPili1bxMmTJ4tZWVmi0WgM8egjU1fviSiK4kcffSSq1WrxtddeE0+dOiWuWLFCVCqV4jfffBPCkUcub94TURRFg8EgRkdHi6tWrQrRSHsXb96Xq6++WhwxYoS4ZcsWsaCgQHzzzTdFnU4nvvzyyyEceeTy5j354IMPxC1btohnzpwRP/nkEzE3N1dcsGBBQMbDEBPhALj9ePPNN0VRtJdjZ86cKfbp00dUq9Vi3759xcWLF4tFRUWhHXgE6+o9kaxevVocNGiQqNPpxDFjxoiffPJJaAbcC3j7nrz66qtiVFSUWFdXF5qB9jLevC+lpaXi3XffLWZmZoo6nU4cOnSo+Pzzz4s2my10A49g3rwnf/vb38Ts7Gz5d8pvfvMb0WQyBWQ8gmNQRERERD0Ke2KIiIioR2KIISIioh6JIYaIiIh6JIYYIiIi6pEYYoiIiKhHYoghIiKiHokhhoiIiHokhhgiIiLqkRhiiIiIqEdiiCEiIqIeiSGGiIiIeiSGGCIiIuqR/j/t34C200qXQAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(timeseries[0], timeseries[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\joche\\miniconda3\\envs\\pp_env\\lib\\site-packages\\pymc\\data.py:287: FutureWarning: ConstantData is deprecated. All Data variables are now mutable. Use Data instead.\n", + " warnings.warn(\n", + "Sampling: [L, alpha, area, baseline_intercept, baseline_slope, mean, noise, std]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "

Sampler Progress

\n", + "

Total Chains: 4

\n", + "

Active Chains: 0

\n", + "

\n", + " Finished Chains:\n", + " 4\n", + "

\n", + "

Sampling for now

\n", + "

\n", + " Estimated Time to Completion:\n", + " now\n", + "

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ProgressDrawsDivergencesStep SizeGradients/Draw
\n", + " \n", + " \n", + " 800000.623
\n", + " \n", + " \n", + " 800000.623
\n", + " \n", + " \n", + " 800000.607
\n", + " \n", + " \n", + " 800000.637
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [L]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65de9276e99248e8a1dedd3f35be1c50", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
baseline_intercept-43.9787.255-57.960-30.5080.0790.0568511.06241.01.0
baseline_slope6.6570.5135.7577.6750.0060.0046862.05687.01.0
noise_log__4.6380.0724.5094.7780.0010.0019353.05750.01.0
mean25.9490.01325.92425.9720.0000.0002928.03445.01.0
std_log__-0.6430.041-0.722-0.5700.0010.0012733.03353.01.0
alpha2.9630.3962.2103.6740.0070.0053023.03830.01.0
area_log__7.3210.0257.2747.3680.0000.0005421.05390.01.0
noise103.6547.52590.303118.2700.0780.0569353.05750.01.0
std0.5260.0210.4860.5650.0000.0002733.03353.01.0
area1512.65637.4241442.8531584.4550.5080.3605421.05390.01.0
std_skew0.3450.0100.3270.3650.0000.0003575.04874.01.0
mean_skew26.3460.01226.32226.3680.0000.0004179.05737.01.0
delta0.9450.0140.9190.9680.0000.0003023.03830.01.0
mue_z0.7540.0110.7330.7720.0000.0003023.03830.01.0
sigma_z0.6570.0120.6350.6800.0000.0003023.03830.01.0
mode_offset0.4800.0230.4390.5230.0000.0003023.03830.01.0
mode_skew26.2010.01526.17126.2280.0000.0003411.03972.01.0
height1880.50838.7561811.1391958.1030.4040.2869193.07168.01.0
sn18.2371.36615.60620.6920.0140.0109724.06250.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", + "baseline_intercept -43.978 7.255 -57.960 -30.508 0.079 0.056 \n", + "baseline_slope 6.657 0.513 5.757 7.675 0.006 0.004 \n", + "noise_log__ 4.638 0.072 4.509 4.778 0.001 0.001 \n", + "mean 25.949 0.013 25.924 25.972 0.000 0.000 \n", + "std_log__ -0.643 0.041 -0.722 -0.570 0.001 0.001 \n", + "alpha 2.963 0.396 2.210 3.674 0.007 0.005 \n", + "area_log__ 7.321 0.025 7.274 7.368 0.000 0.000 \n", + "noise 103.654 7.525 90.303 118.270 0.078 0.056 \n", + "std 0.526 0.021 0.486 0.565 0.000 0.000 \n", + "area 1512.656 37.424 1442.853 1584.455 0.508 0.360 \n", + "std_skew 0.345 0.010 0.327 0.365 0.000 0.000 \n", + "mean_skew 26.346 0.012 26.322 26.368 0.000 0.000 \n", + "delta 0.945 0.014 0.919 0.968 0.000 0.000 \n", + "mue_z 0.754 0.011 0.733 0.772 0.000 0.000 \n", + "sigma_z 0.657 0.012 0.635 0.680 0.000 0.000 \n", + "mode_offset 0.480 0.023 0.439 0.523 0.000 0.000 \n", + "mode_skew 26.201 0.015 26.171 26.228 0.000 0.000 \n", + "height 1880.508 38.756 1811.139 1958.103 0.404 0.286 \n", + "sn 18.237 1.366 15.606 20.692 0.014 0.010 \n", + "\n", + " ess_bulk ess_tail r_hat \n", + "baseline_intercept 8511.0 6241.0 1.0 \n", + "baseline_slope 6862.0 5687.0 1.0 \n", + "noise_log__ 9353.0 5750.0 1.0 \n", + "mean 2928.0 3445.0 1.0 \n", + "std_log__ 2733.0 3353.0 1.0 \n", + "alpha 3023.0 3830.0 1.0 \n", + "area_log__ 5421.0 5390.0 1.0 \n", + "noise 9353.0 5750.0 1.0 \n", + "std 2733.0 3353.0 1.0 \n", + "area 5421.0 5390.0 1.0 \n", + "std_skew 3575.0 4874.0 1.0 \n", + "mean_skew 4179.0 5737.0 1.0 \n", + "delta 3023.0 3830.0 1.0 \n", + "mue_z 3023.0 3830.0 1.0 \n", + "sigma_z 3023.0 3830.0 1.0 \n", + "mode_offset 3023.0 3830.0 1.0 \n", + "mode_skew 3411.0 3972.0 1.0 \n", + "height 9193.0 7168.0 1.0 \n", + "sn 9724.0 6250.0 1.0 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pmodel = models.define_model_skew(\n", + " time=timeseries[0],\n", + " intensity=timeseries[1]\n", + ")\n", + "idata = pl.sampling(pmodel, tune=6000, draws=2000)\n", + "idata = pl.posterior_predictive_sampling(pmodel, idata)\n", + "summary = az.summary(idata, var_names=[\"~y\", \"~baseline\", \"offset\"])\n", + "summary" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\joche\\AppData\\Local\\Temp\\ipykernel_5868\\1943866237.py:9: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " plt.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHWCAYAAAAciQ/OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqHklEQVR4nOzdd5iV5Z3/8fdTTy/TCwww9Kqi2BAVomJMxJpo1DWSsok/TUJi28TEgg2zGlMWyyarsSRZk9XENYlrrGDEghUBRXobprfTy1N+fxwYHGkDzMgMfF/XNdfMeep9Dpw5n7mr4rquixBCCCGEGJDUA10AIYQQQgix7yTMCSGEEEIMYBLmhBBCCCEGMAlzQgghhBADmIQ5IYQQQogBTMKcEEIIIcQAJmFOCCGEEGIAkzAnhBBCCDGA6Qe6AD3hOA5btmwhFAqhKMqBLo4QQgghRJ9xXZd4PE51dTWquud6twER5rZs2UJNTc2BLoYQQgghxGdm06ZNDB48eI/HDYgwFwqFgMKTCofDB7g0QgghhBB9JxaLUVNT05V/9mRAhLltTavhcFjCnBBCCCEOCT3tWiYDIIQQQgghBjAJc0IIIYQQA5iEOSGEEEKIAWxA9JnrKdu2yefzB7oYQogeMgwDTdMOdDGEEGJAOyjCnOu6NDQ00NHRcaCLIoTYS9FolMrKSplDUggh9tFBEea2Bbny8nL8fr98KAgxALiuSyqVoqmpCYCqqqoDXCIhhBiYBnyYs227K8iVlJQc6OIIIfaCz+cDoKmpifLycmlyFUKIfTDgB0Bs6yPn9/sPcEmEEPti23tX+rsKIcS+GfBhbhtpWhViYJL3rhBC7J+DJswJIYQQQhyKJMwNQIqi8PDDDx/oYvS6m2++mWHDhh3oYgghhBADyl6HuVdeeYVZs2ZRXV2Noig89dRTezxn4cKFHHXUUXi9XoYPH84DDzywL2U96CWTSW666SbGjx+P1+slEokwY8YMnn766QNdNCGEEEL0U3sd5pLJJIcffjjz58/v0fHr1q3jC1/4AieeeCLvvfce119/Pd/73vd48skn97qwB7N4PM60adN45JFH+MlPfsKKFStYtGgRU6dO5bzzzuPWW2890EUkm80e6CIIIYQQ4lP2emqSM844gzPOOKPHxz/wwAMMGTKEX/ziFwCMGzeOt99+m7vvvpvzzz9/b29/0PrJT37CRx99xPLlyxkxYkTX9ttvvx2fz8eNN97ImWeeyeTJkwHo6OjgK1/5Cn/729/w+Xx8+9vf5pZbbkFVC/n8f//3f7n55pv5+OOPMU2T0aNH85//+Z9d569du5brrruOF198Edd1Ofroo7n77rs5/PDDAViwYAEzZszg73//O//+7//Om2++yfXXX89DDz3EpZdeyi233NJVRtd1GTFiBJdccklX6PzTn/7EvHnz+Oijj6isrOTcc8/ltttuIxAIAIVg+P3vf58//OEPqKrKRRddRCQS6fsXWgghDhDXdYEdB/3YjoumFrY5jovjuriuSzpjYbs2luPg2A4ewyCezaOrUNcaJxoKsqm5DVdR0Nw861syVEW8rK5voCOeIJtzSFuQ6gDdB9kcJOOQyUJrHlygGXCAJDAU6ACMrdvCwHogANiAufW4kVv3a0CRDlkLLKC2AlwD7FyeYYMMAuEgmkPhbE1hbEUVpdEIdY0tGB4vRWEPpu4h6DNwLRe/AU4+ieFkUO08JlkM1yKXz+M6Dt5hR+OoOkrhRcR1HNSNr6FjgeuC64Dr4Lo2yrbHbN9OZAjUHN39H6V9A2x+q+f/iCM+B/7inh//GenzeeZef/11Zs6c2W3b6aefzoMPPkg+n8cwjB3OyWaz3WqBYrHYXt1z22SkB8reTlzsui6/+93vuPjii7sFuW2uvvpq7rjjDh577LGuMDZ37lx+/OMfc8stt/Dqq69y5ZVXUlZWxpw5c2hsbOTLX/4yt9xyCxdccAG5XI733nsPXS/8czc1NXHCCSdw9tlns3DhQjweD/Pnz2f69OmsWLGCioqKrnvPmTOHn/70p0yePBlVVbEsi0ceeYS5c+d2PcdXXnmFdevWcdlllwHw2GOP8b3vfY9f/vKXnHDCCdTV1fGd73yHhoYG/vu//xuAH/7wh/zP//wPDz/8MOPHj+c3v/kN9957L8XF/e9NIoQQ+2Ndc4L6zgyGpjKmKkTYW/jc60zleenjRrI5m9MmVOI3NJ5eUscba1ppjmVY05KgLZkn63w25dzwqcdtW78nt37PbP3+8ScPsgrfXNdl8Tsfklz+MqkVrzL54qsZVeGngnaqlDbecMYxz+3+uXy59jTf0v+GlzxecqiKu9NybUsJR2T+kw5C3fa95/kWRUqi27Zdffq+aJzMI5XXY+gKrgO243Bc8iX+X9u/7+KMHW360jOkSg9jcJGPgKf/TNXb5yVpaGjoFg4AKioqsCyLlpaWnc76Pm/ePObOnbvP90ylUgSDwX0+f38lEomuGqieaG5upq2tjYkTJ+50v8/nY+TIkXz88fa30MyZM7nmmmsAGD16NB9++CF33303c+bMoa6ujnw+z8UXX8yQIUMAGDt2bNe5999/P4MGDerWd/FXv/oVzzzzDI899ljXdQF+9KMfcd5553U9vuyyy7j11ltZuHAh06dPB+CRRx5h2rRpjBw5EoAbb7yRW2+9la9+9asAjBgxgvnz53PyySfzH//xH/h8Pu6//35+/vOfc+655wJw9913s2DBAlpaWnr8ugkhRH9l2Q4d6TwdqRwrG+Nk8y6VYS+dqXxXmItlcqxuTJC1HPQVTXSmc/xjaT0rG+Mkcg7WzrNNvxAixRnam+hta/lo6XLeWLaBxs7tlTBfXD2PuTXersd357/Me/aobtfQsSn+VBDbHZUdXxBnl9FtR4mMxbsbO/BoKpqqoCoKI9i77kPZvE3OcrCc/vWP85nEyk/XUu2qqnmbH/3oR1x11VVdj2OxGDU1NX1XwANsT6/HJ4/ZZurUqd0eT5s2jZ/97GfEYjEOP/xwZs6cyYQJEzjllFOYMWMG5513XtdruHjxYpYsWbJD4E2n06xatarbtmOPPbbb4+HDhzNt2jQeffRRpk+fTiqV4oknnuDnP/85UAim69ev59prr+WHP/zhDuVftWoVgUCAbDa70+fQkwE1QgjRH7muSyxj0ZHKEc9YuC7Yrks27+IzVQYVeVFwWVrXyZaOFG+sbWF5XQzbdnhvQwurmhLEsv0rJPjIUKs08KE7rGubneyg46N/8PJHv+ftLdurDUMmfGm8wb8cZnDy0O6ruVQqbXxaBnOX93VchXShoRUHFXcXoW2TW06nG8BFwUHFQdka8JRP/KyCotBqVDIo6CXk1QmaOiG/zrB8DVuaJ6JrCrqqoiigKQqapqCioKoKisLWKypUlJaglgXw6P1rMpA+D3OVlZU0NDR029bU1ISu67tcfsvj8eDxePb5nn6/n0Si52m/t+3tahRlZWUUFxezdOnSne7PZDKsXbuW0047rWvb7oKfpmk8++yzvPXWW7zwwgs88cQT/PCHP+RPf/oTs2bNwnEcpk+fzv3337/DueFwuNvjndUwXnbZZfzgBz9g/vz5PPnkk9i2zQUXXACA4xTe2Pfcc0+38m4zaNAgVq5cucfnIIQQA0U6Z9OayNKcyJLJO1iOQ9ZyyOVt4tk8jZ1ZMnmbZRs7WNuaoCGWoTWRpTWRJZUv9D/rL1QcjlBWc5r2Dsery5mgbMBGZXz8XuKr3yG5/GXS694F12EzoKvw+ZE6/zLJYNYYHb9R+L1uuwoNbpQGt5gGt5jlnwiD2zxtT+UtZwwZTNJ4yLgmGQpfOXR23WC6raxwKbcS8ZkUBzwUBwyKAh4qwl4GRb2UhX1EfAYhr07A1PmiqXGWpqKrClrX12Q05RtoqtKjz6TQHo84MPo8zB1//PH89a9/7bbtueeeY8qUKTvtL9cbFEXZq2bOA01VVS655BJ+/etfc8MNN1BbW9tt/z333EM6nebSSy/t2rZo0SK+973vdXs8aNCgrjCmKArHHHMMxxxzDNdffz2f//zn+a//+i9mzZrFlClTeOihh6iurt6nZdAuuOACvve97/HnP/+ZRx55hPPOO49QqPBfvKKigpqaGj7++GP+3//7fzs9f+TIkZimyaJFizjssMO6tr/22mt7XRYhhDiQ2pKFZtSGWAbXAU1VMDWFuo40yaxNIpunPZWjrj3NupYEiayN47ik8s5OGg0PDC9ZpqnLOE19h89p71KmxMjZLm9ttpm3zualdRYbNl+CY9td55hVY/jyJB+nTSgm7a/kI7eYl91iGrLFNLhFNBPFZvdrLTdRRJNb1KMy+jQI+nSiPpOwz2DCoAiHDyqiMuqhJGBSHDAJeQ28hnZIVhTsdZhLJBKsXr266/G6det4//33KS4uZsiQIfzoRz+irq6ORx99FIDLL7+c+fPnc9VVV/Gv//qvvP766zz44INdHeFFwa233sqCBQs45ZRTuOOOOzj++ONJJBI8/vjjXX0Itw1+gEIgvueee5g1axaLFi3i3nvv5fbbbwcKoejFF1/k9NNPp7KyklWrVvHBBx90DVD4zne+w4MPPsjZZ5/NjTfeSE1NDZs3b+bZZ5/l9NNP58QTT9xtWUOhEOeeey533303S5cu5bnnnuu2//bbb+frX/86JSUlnHvuuRiGwYoVK/jb3/7Gb37zGwKBAJdffjk33XQTVVVVjBs3jgcffJAVK1bIAAghxIDSFM/Q0JnB1FXKIx5CPp2GzixeQ8PUVPK2Tc6yyVs2qqrgui6ZfhDkIiQ4XXuL09R3maYuxXSzLGl0eHitxUvrLf65wSb5qeWS9WglgfEzCEyYjlE8iFeBV6FrEERv0wCfqVIUMCnyFQLbsLIAJ48q5fiRZXiN3YfFQ8leh7m3336bGTNmdD3e1rftsssu4+GHH6a+vp6NGzd27a+treWZZ57hBz/4Affeey/V1dX86le/kmlJPiUSifDaa6/x7//+79x8882sW7cOj8fDkUceyZNPPsnZZ5/d7fgbb7yRRYsWccMNN+Dz+ZgzZw5z5szputbrr7/OvffeS3t7O5WVlVx00UXcfPPNQKH27PXXX+fHP/4x559/Pp2dnVRWVjJt2jSqq6t7VN7Zs2dz2mmnUVNT0+3/A8Cll15KOBzmzjvvZN68eWiaxogRIzjnnHO6jrnzzjvJZDJdAfPCCy/kyiuvlJAvhBgwOtN5NrelcV2oing5oiZKXXsalSytyQx17WnWt6Zo7EzR2JEl3Y/aU8cqG/haxwO8uM7m/nUWC9ZbtGe6H+P3eYkMHUdu6PF4hhyOXlTd57VeUa9KedhDbUmAkRVhRpcHGVISIJbO4zV1RpWHKA7uuq/doUpxP92zvh+KxWJEIhE6Ozt36NOVyWRYt24dtbW1eL3eXVxBCNFfyXtYDDTxTJ7GWIaVjQlWbOmkM53H1BUa4zk2taUK/eHiGTJWYX62A0nH4ghlNW+7Y3Edm+RHr5Be+zbZDR9gJ9u7HeszNSqG1JIdMhWGHo1RNhRF6buO/gEDKqM+RpT4mVRTzFFDihhZGSLqMzE/McCgOZ6loTODx1AZVR48JJpRd5d7dqb/TJIihBBC9GOZvM3Kxjhrm5NsakuxqS1BQyxHOm+Rt1w60znaUzniafuAh7ghSiMXaS/xJe0ViolxfPJulv31IdIrX+86xtA1Rg0uxhw6mZYhp6JWjsFVtd2MMd0/CoUBE0V+g0mDIgwvD1Ls9zCyPERJ0OSImiiq2j2otSayNMYKVYZlQc8hEeT2hYQ5IYQQYhdsx6UjlaM9mWN9W4qmeJrVjUnakllaEjk8hkrOVnAUB8e2yWYOXJBTcDhZ/YDLtH8wQ1vStT2WdWl74kbSG+pB0wkffQ6+YUfiGTSWpG6ShD0MVdifMhXoGnh0ldriIMcMj1IVCVAW8jCs1E/Qa1Aa9HQLcrbjsqUjTUeq0HEv7NOJ+vtm0OTBQMKcEEII8QmF+eLytCZydKTyWI7D5rY0Kxpi1HWksWybhs4s2bxFSzJLKmuT6qNBAD0RJMX52j+5TPsHw9VPTQWWdPj879OsqY+jmD7Kz7sB79DDdnGl3qEApgJeU8FrqAQ8JoOiPg4bEmVcZYQhxX6qoz5CPh2PvmOMzORtNralyOYdFAUqwl7KQvs+XdmhQMKcEEKIQ1pTPEMya2M7Dm3JPE3xDPmtyy/kbJsV9XHe3dhGXXuaTN4mnXdwXA74iNRapZ6vas/xZW0hQSWzw/7H10f4zl9jtLbZqP4I5V+ei6dyZJ+URQcMA0xNwe8xcJ1Cc2pxwENV1McJI0o4cXQZxYFCDZztuFiOQzJrYdkueccpfLcdOtN5XBcMXaGmyN+vls3qr+QVEkIIcciybKdrGSrLcahrTwOgquA3NDa0pFhR38GG1iTpvE3e6j+T/P7cuI8j1DXdtjmuwi83DOenC+M0ri9MI6aFy6m48FaM4kF9Ug4V0HXwaBp+j4auKAQCOqVBLyPLg0yuiTJxcJTOjEVrMk/edtjT0MugV6emyIeu9a+VFvorCXNCCCEOWXbXcopQ5DexilwCHo3SoMnb69t48eMmPm6Ik8nZ5O3+E+QAHrFmcoRZWMmn0/Vzx8ZJ/HrhFjrWvVc4QNUITjqN6LRL0II9m5x3b6gUmlRDXhWvoRP26gS8BgoQ9pkcOSTC6MowlWEvyeyOPQkVBQxNRdcUDFXduqSWgsfQiPikf9zekDAnhBDikGXbLjnLIWvbbOlIsaYpSUcqx4dbOvioPk5byjqgAW6EUsdXtedQgButr3Xb93fnOL5sL+TXm2t54pUVJNc+X9ihqAQnnUpk6oXokYpeK4tfA59Hx2tqKC54TI2qiIfB0QAlQRMHcB1I521qiv2cNKoUv0cvBDa1sPaprild4e3TI1fFvpMwJ4QQ4pCTtWw2tqbY0Jri/U0drG6M05LMEkvlaIpn6MgcuAin4DBdXcLXtGc5SSus2Z11dX5lnUezG8ZqqyO7ZQXZuhVM39JAvvmNrSeqBCZ+jsjUr2BEK3ulLIYCHkPBa2h4DI2AoRP0GkT9OsUBL4OLvJQETfweHdt2SeZsBkf9DCv1Mapiz/Ojid4hYU4IIcRBzXFcspZD1rLJWg4dyTxrWgrzxTV0Zkhm86xvTRDPWnQmsyTye75mXwiR4svaQr6qPccwtRGAeNZlcZ3N65uzJDf+kM11HTiZePcTFZXAhBlEpl6IUdSzVXx6otAXTsXQVIJeA5+hEfWbBE0dRVMoCxlURryYukYia5HK2oyrDFMcNIn4ZZWGz5KEObFP1q9fT21tLS+//DLTp08/0MXpFQ8//DBf+9rX2LYoyoIFC5gxYwbr1q1j2LBhvXZdIUTfsB2XTN7eHtzyDlnLIWc5XaMnO9N5VjXEWdEYo7EzS2c6R1sqS3s8T/YAvUXHKBv5F+0FzlVfoa4tzYLNNq9vsnl9s82ypk+u47qp8E0z8FSOwjNoLJ7qsXgGjevVPnEq4DOgKOChyG9SHvZQGvAS8euEfIVQVxowifg9ZPI2tuNSE/UT8RsEvToVIS8RmRPuMyVhrh+YPXs2jzzyCACqqlJVVcWMGTO44447qKmp6ZV7DBs2jNmzZ3etz7q/ampqqK+vp7i4uFeu1x9NnTqV+vp6ysrKenT8rgLuhRdeyOc///k+KqUQh6Zk1iK9Lbht/Z7K2oX+b5ZNImuRzTu0JbO0JnPEs3kaO9KsbknQkcyTsx3ylkv+AP6N5XFSfLf+Rjrq1vH4Zpvvb7ZpS+9YIC1c/ongNhazvBZF692wZGoQ8eoMKwkwdWQphw2OUh314jH0roCsKQouhVG/uqaStxyK/CaaWugHVxH2UuQ3ZJWGA0DCXD9x/PHH8+c//xnHcVi+fDmXX345s2bN4t1330VV+9fQ7Gw2i8fjobJy//tkbLtWb+nN65mm2SvP0efz4fP5eqFEQgiAze0p2pPd20Kzls2mtjQ5yyaRtUFxaY5l+bghTlsqSyxj0ZbIkc5ZWM6BHZVqxVtJfPAcifef5buJ1m77vDoMqiojXTWF/KDJmNVj0YN990ezDgwt9TOpJsyZEwdRW+Ynb0Msk6cxlsNysliOi+04aKpCwNQJenRUFDy6hqpCWchDacAjAxoOoP6VEg5h24JDdXU1p512GnPnzmXJkiWsXl2YJ+jxxx9n0qRJeDweqqqqmDNnDul0uuv85cuXc/rppxONRvH7/YwdO5bHHnsMgIkTJ7Jhwwbmzp2LoigoisL69esBWLt2LV/60pcoKioiGo1y2mmnsWTJ9mVgFixYgKIoPPPMM0yfPh2fz8ddd93F+vXrURSFBQsWdB27Zs0azjnnHCKRCIFAgFNPPZX333+/a/+2c373u99x1llnEQwGufLKK3f6ejz88MMoisLChQs57LDD8Hq9HHbYYbz88ss9ut6LL77ItGnT8Pl8VFdXM3v2bJqbm7vOdV2XG264gfLycoLBIF/5yldob+++6PS2577ttdr2HC+44AJKSkrw+XxMmDCBP/3pT7S0tFBbWwvAjBkzUBSlq2l223MBSCQSBINBHnrooW73SiaTBINBHnzwwa5t9957L+PGjcPr9TJq1ChuvfVW8vkD1JlHiH6iLZnrCnIhr05ZyMPgIh+lIRO/R6OwLrzL+pYkKxtjtCYzJDM54skMsYxF7gAEOQ85ZimLqNjwD5qfmkfdA1+n89XfYyda8ft9XDRR599Or+aS2Zcw5PuPY138W4wZV+IfPbVPg5xPh2FlAUZVBDlmWAnxrM0Hm+N8VB+nrj1DeypP1nLwGRpVER+Don6ifhNDVzF1ldKQyZiKEOUhrwS5A+ygrJlzXZd0/sAtc+wztP2uZt5Wk5PL5Xjuuee4+OKLuemmm/jKV77CqlWruPzyy2lvb+fRRx8F4KKLLmL8+PEsWrQIn8/HypUrsazC+jILFy7kiCOO4MILL+Saa64BoKysjKamJk444QTOPvtsFi5ciMfjYf78+UyfPp0VK1ZQUbF9SPucOXP46U9/yuTJk1FVdYf+X9lslpkzZ1JdXc3zzz+Px+Phlltu4XOf+xwrV66ktLS069jrrruO22+/nV/84hd77Ec2Z84c7rnnHqqqqpg3bx5nnnkmq1evpqqqapfXW7BgAbNmzeKnP/0pv/3tb+ns7OTaa6/lnHPO4dVXX0VRFH71q1/xs5/9jPnz5zNt2jSeeuop5s6du9uyNDQ0MHXqVMaPH89TTz3FoEGD+Oijj8jlcpSUlLB48WKOOeYYnnzySaZOnYqm7bhMTTAY5Pzzz+eRRx7h61//etf2J554Atd1ueCCCwC49dZb+c1vfsMvf/lLjjjiCFasWMG3v/1tUqkU8+bN2205hThYpXIWWzoKf8RWRDwU+02yeYfVLQkWftzAivoE8VSeeM6iI5GlJZUlneMArZXqcpiyli/kn6dz2UIefifJipbtMdIzeAKhyV+gfPQRZIxGHndHsX0l075hABGfQsBjUhzyMLTIz6AiP6UhLz7DQFEg4NEJejTCXoOQT8draBiqiqEXphcxNBVNglu/c1CGuXTeZvyN/zhg9//wltPxm/v+0q5bt44777yTmpoaxowZw5VXXslZZ53FTTfdBMCYMWOYP38+5513HnPnzqW2tpb169dzzTXXMGHCBACGDx/edb2SkhI0TSMYDHZrNrz//vsZNGgQDzzwQNe2X/3qVzzzzDM89thjXcEP4Ec/+hHnnXde1+NP1lYB/OEPf6Curo5FixZ13eP3v/89tbW1zJ8/v1tfvW9+85t87Wvd50valXnz5nHqqacC8NBDD/Hyyy9z3333ceutt+7yet/85je54oor+O53v9u17ZFHHmHo0KG88847TJkyhbvuuovvfve7XYHquuuuY/HixTz55JO7LMu9996L67o8/fTThEIhoPvrvK1vXXFx8W6bZy+77DJOPfVU1q1b11Wb98gjj3DeeecRCoVIpVLceeed/PGPf+TMM88EoLa2lttuu40rr7ySO+64Q/qkiENK3nZo7MywsjFOQzxD3nbJrbXY0JLiw/pOmhM5YukcqYzDga67LqODs7TXOCn1Ar9buI6rluZJb123NWgqGBNOwzv5LMyyYQAkgXfdSJ+VxwDCAZ0Sn86w0iCWqxDwaIytDOEzdaJ+k5HlQYYU+wl5DQlqA9RBGeYGon/+858Eg0EcxyGdTnPMMcfwl7/8BcMwWLZsGTfccEO3408++WRc12XZsmXU1tZy7bXX8o1vfIOHHnqIk08+mbPPPpsjjzxyt/dcvHgxS5YsIRgMdtueTqdZtWpVt23HHnvsbq+1bNkyxo4d2y3EeL1ejjnmGJYuXbpX1/qkqVOndv1smiZHH300y5cv3+31Fi9ezOuvv94tpG6zatUqRo8eTV1dXbdrA0ybNm23Ye6dd97huOOO6wpy+2rGjBkMGTKExx57jBtvvJENGzawYMECnn++MOHn8uXLSaVSXHjhhd1Cm23bZDIZGhoautVMCnEwc12XDS1JXlvdyorGGPGMRd6yaYjlaImlaE3lyVnuAap9KwiS4vPaW5ytLmKqupyPmi3O+H2KzbFCy8OkcpWvT/ETHX8S92oX0Uzvr8awM9sGNQRMg6DXg6rrVPgNxlWFqQx5KQt70FWVsVUhDFk2a0A7KMOcz9D48JbTD+j999aUKVP4/e9/j6ZpVFZW7rHD/LYP+W3fb7jhBi655BKeffZZXnzxRebNm8c111zDHXfcsctrOI7D9OnTuf/++3fYFw53n+wxEAjstjy7ay79dC3Snq61J3u6nuM4XHPNNcyePXuHcysqKnAcZ6fX2Zd77wtFUbj00kt59NFHufHGG3n00UepqalhxowZAF3le/zxxxk3btwO5/d0dK0QA43juGQsm3TOJpWzaYyl2dSW4p0N7XxQ10kyY5GzbJIZi0TOJtcP1tb6sraA2/Tf4lEKdYIvrbM4748pOrMwpkTlB2eOZlX1F/m1czwpvJ9JmTTAb2oUBQ1CHoPSkMmIsiBDSwMMLfKjaypeQ0NXVaqiXglyB4GDMswpirJfzZwHgs/nY+TIkTvdN2HCBBYsWMD3v//9rm3bBh5sa1aFQpPfFVdcwRVXXMGdd97JvHnzusKcaZrYdve/XadMmcJDDz1EdXU1fr9/v8o/ceJE7rvvPhoaGrpq5zKZDIsXL+bb3/72Pl/3tdde44wzzgAK/QffeuutPTbRTpkyhWXLlu3y9QQYNGgQixYt4qyzzuratmjRoj1e94EHHiAej++0ds40C5Nkfvp13pnZs2dz22238eqrr/Loo4/y1a9+tWvU8oQJE/B6vaxZs4ZZs2bt8VpCDES245LOWcQzFm3JLFs60mxuTVHXkWFzZ5qmzjRtySztqRydB2oCuB5Y6QzuCnK/+yDH1/83Q96BETVllJ13PfO8o/p0xIUOeAzwe3SqIl6GFPkYXh5iQnUUy3HxGxrjqyOUhTwkchab2lI4DmiqwpASP0HPwPqsFDsn/4oDwI9//GPOOOMM5s6dy0UXXcTKlSv5zne+wyWXXEJtbS2JRIJ/+7d/4/zzz2f48OG0t7fz7LPPMn78+K5rDB8+nEWLFrFp0yZ8Ph/FxcV85zvf4cEHH+Tss8/mxhtvpKamhs2bN/Pss89y+umnc+KJJ/a4jBdffDG33norF1xwAXfffXfXAIhMJrPLEas9cf3113dNg3LnnXfS3t7OFVdcsdtzbrnlFmbOnMmcOXOYPXs24XCYVatW8cQTT/Dzn/+cUCjE1VdfzU9+8hPGjx/P1KlTefrpp3nhhRd2e90rr7yS//zP/+Sss87illtuYfDgwaxcuZJ0Os0555xDRUUFfr+f5557jokTJ2KaJkVFO29OGTFiBCeccALf+973WL16NZdddlnXvmAwyPXXX88NN9yApmnMnDkTy7JYunQp77zzDnfdddfev5BC9BONnRkWrWlmZUOc5VvitCez5ByXZCZPLG2RtWzyDvSf+FYYyHCm9gbjlA1cmv8Rnxyo8G6qjF997OeVVZ08uSwDgH/sNPJfvIpNeu+vgmAAxQGDgEfH79EI+gz8hkZ11MO4qig+Q6cq6qVi6+L2edtBVWFze5rOdCF0+kyNIcV+TF1q5A4WEuYGgNNPP53HHnuMefPmcfvtt1NUVMSXv/xlfvrTnwKg6zrt7e184xvfoL6+nnA4zPTp07n77ru7rnHbbbfxrW99i9GjR5PJZLpWNXj99df58Y9/zPnnn09nZyeVlZVMmzaN6uq9WxLG6/Xy3HPPcfXVV3PKKadg2zbHH388L7744n41C95zzz1897vfZdWqVYwaNYqnn356j2WbMWMGL730EnPnzuWkk07CcRyGDBnCzJkzu+agmzNnDs3NzVx99dWk02nOOOMMbrzxRq666qpdXreiooJFixZx3XXXMWvWLLLZLCNGjOgamKJpGvfddx8333wzP/vZzxg8ePAOA0U+afbs2fzrv/4r06ZN26EW8YYbbqC6upr/+I//4Nprr8Xn8zF69Gi++tWv9vCVE6J/yeZtVjTGeHNtG/UdaZbWddKRyoPrksxZdKZyZKwDO//bNioORysfc7r2FjO1txmstHTtG59fy3v1Num175Be+za5+lXMcbeXOnz0uURnfA1F6f2gZKpQ5NMIBzz4DZWI36Ai7KU86KEs5MVvGvhMFVBY35oklbPBpVszanHQpDrilUFUBxnFHQBrDMViMSKRCJ2dnTv05doWTGpra/F6P5v+CKLvyRJYhw55Dx/cbNthVXOCDzZ10BzL8tb6Vja0pnBcl4xtYVvQmbIO+ChUHxmmqcs4RX2XU7V3KVViXftaUg7/WG3zf6st/neNSiKV7XauUToU3/Cj8I06Du/g8Z++9H5RAY8GQa9GZcTHiLIQ1UVeSoOFBe5DHgMU0FUF2wVNUVAAVVFQVQWfoRH06oS2fg20LkiHqt3lnp2Rf1UhhBD7JJOzaEnkSGQs4rk8qYxFRzpPSzzHlvYkq1sS1LWniWXypHIWqVz/qHn7pDI6uM14iJPUD/ApOaDQn+/NukJ4+7/VFm/VOd2afRXTh2/YZLy1R+IbfhR6uHcGJUVNCPpMhpYFmFgVJu8UBjIMKQowrDRAxG8wuiJE1nJIZC0SGYtkzsL51Itq6ipBb2GlhqBHl+lGDgES5oQQQvRYJm8TS+fZ3J7i2WWNJLOFSdRsxyWeydOazLKxNUksY5F3XKwDPG3IJ2nY2HSfbaDD9VPduYSnt6RYXGfz1habd+ttPrVaGEbZMHzDp+AbfhSeQeNQtN77+PTqEPYalAY9BL0GpQEvDgqGquLRNXwejaZ4lrRlk7N2snarqhSC29YAJ33hDj0S5kS/NHv27J1OLSKE+Gy5rksyZxPfOkAhZxWqgT7Y3Ek8ncfCRQVsx6EjnaMhliaRtcnmHSz3wA9kqKKVk7UlnKwu4QR1Gae2/ZD19W3k6leRrV9FrmEVh6VjO5ynevx4hx6Bd/gUfMOPRA+V7uTq+08DFBRcx8VyQVHAa6iksg4Bj0JxwINlg6K6BLY2kW5bqSHg0Qh5DHzm3k+HJQ4uEuaEEEJ04zgu8axFLJ0nnrGwne2RzLYd2lJZlm3uIJ6zKA14aE+kWdkQZ0tnltQBroYzyXO0uoKT1Q84KvcOnY2bWVxn819bbL5dZ7Mp9oMdzlE1jaLySqzKw9CrxmJWjcIoHoSi9n5I8qiFAOfRoSTspbYkQGnQQ0nIR9irEfF7CPt0ivwGYZ+J36MTMDV8hoauFZbU0mVeOPEpEuaEEEIA0JHK0ZnO05HK0RzLsqUzTWcqTyybpzOdp7EzQ3Msw8bWJAnrQJd2uyFKIyerSxjV8QbNaz9kyZYs99TZfNy6Yw89BdBLhmBWjcZTNQqzahRmWS2KbvRqmQzAa0J5yEvQa1AZ8VEe8hD1mbQkc0QDBtNGljKsJIjf1PAYhSZV6d8m9oWEOSGEOMRl8jaNnRlWtyTI5m0aO7Osa0mypTONZTvEUjnqOjO0J3P9YtWFTzJjGzlz1VX8aXmO2+p3LNywqML4qgCBquHEqqawtmwGOU/fLKelAJpCYXUFTSHqMygNeQhuHUXqM3U8psaRpUWEvDoTB0WJ+Ho3RIpDk4Q5IYQ4hORth1Ru25JZFum8jWW7NHZmqI+l6UxmWdEY56P6GJ2pPOm83bVQ/IHjMlKp42R1Cf9jT6c9kSP58aukPnqFbN1H/NvWozQFpg/TOG6IB1/VcFoqjucd33Esdyv6vIQaoKmFkaR+j0ZxoDCfW8Rv4tMLjyuiXor9Jn5TZ3CRj7BXPoJF75D/SUIIcZByHJdU3iaZzRNP23RmcqSyNvGsRUcyS2M8w5b2NBvakmxqSxPP5MnkXA54dqOweP0J6nJOVt/nZO0DPOlm/rzMonXp/7Fl40bomqhXYfiQCi6dqBAcfRzv+o7lT84Ycmyt8eqDERheFQy9sIRWWdDLyLIAxUEPjgshr8HI8iCVkULzqt/U8Bl64bupyTqook9ImBNCiINMXXua1U0xNrVnyORtUlmLze0p6mMZtrSliGUtEpk8OYt+M22IgsN4ZQPT3PcZk3wLf8daNnZYfNDu8EiDzUvrbAoDadcDYFaPITDuJPxjpuGEiniYrSGpF5uBNaA4oFIc8FId9mKYGh5dw9RUVEVBUxUmDQozpiqC19BI5SxMTeWwwVFU6fsmPkMS5oQQ4iCSyFpsaE2yqjFBczxLxrLZ2JZiU2uKRDZPMuuQztkHrPbNdV2cTAKrowGrowG3cwuTYwvIdTTxUXuOf3S62LuoTRtb6aVm3BF8OOZf0SPbm057u/JNAQKmStSnUxryEvGauCrYNri6QmTrKFO/qTGiPIRH13Bd8BmFVRYkyInPmoQ5sU/Wr19PbW0tL7/8MtOnTz/QxekVn15CbMGCBcyYMaNrHdveuq4QfcF2XGKZPB/Wx1iysZ2VTQk8mkomm2NVQ4zmzhzZPV+mV7h2HivW3BXYtn3ZnfXkOxpxsqlux7/wqfM9GtQWqdREDYxoBcnoSFpqv0CieCwr6bsPLhWIeFWKg14qI15KAh5CPh2PruHfuixWediLqat4dJViv4eykIm2dcoQTVVkQIM4ICTM9QOzZ8/mkUceAUBVVaqqqpgxYwZ33HEHNTU1vXKPYcOGMXv2bG6++eZeuV5NTQ319fUUFxf3yvX6o6lTp1JfX09ZWc+W6tlVwL3wwgv5/Oc/30elFAc713WxHBfbcXG2/uw4Ls2xLKubYnxU187KphjrmhO0xvO0fAaJzXVdnHRse1DrbMTqaCC/LbTFWz7Rp23ntEARerQSPVrJKUWNnFeylqFRjUy0luX+KbziHsFSdzgOvd/HzK9CVdRkTFWEokChr1vQqzO2IsyQEn9XX7eAqeMzVXRNRdvarCoL1Iv+SMJcP3H88cfz5z//GcdxWL58OZdffjmzZs3i3XffRVX7V4fZbDaLx+OhsrKy167VW3rzeqZp9spz9Pl8+Hy+XiiROJi5rksm75DOF0aZZvI2mbzDtgrdnG3Tkczxl3c3896mDtqSWTLWZ7vCgmvliS3+M7G3nsLJxHd7rKmrDC9SGVkEw6Mqw4sUhhepvBk+hUcDs1FNb9exWWUjbyj1/MyZSIxAnyzgaijgN1VGV4QYXOJnZFkQv0fH1DQMXWV4aYBJgyN4dFlNQQw8/SslHMK2BYfq6mpOO+005s6dy5IlS1i9ejUAjz/+OJMmTcLj8VBVVcWcOXNIp9Nd5y9fvpzTTz+daDSK3+9n7NixPPbYYwBMnDiRDRs2MHfuXBSl8Jfl+vXrAVi7di1f+tKXKCoqIhqNctppp7FkyZKu6y5YsABFUXjmmWeYPn06Pp+Pu+66i/Xr16MoCgsWLOg6ds2aNZxzzjlEIhECgQCnnnoq77//ftf+bef87ne/46yzziIYDHLllVfu9PV4+OGHURSFhQsXcthhh+H1ejnssMN4+eWXe3S9F198kWnTpuHz+aiurmb27Nk0Nzd3neu6LjfccAPl5eUEg0G+8pWv0N7e3q0M2577ttdq23O84IILKCkpwefzMWHCBP70pz/R0tJCbW0tADNmzEBRlK6m2W3PBSCRSBAMBnnooYe63SuZTBIMBnnwwQe7tt17772MGzcOr9fLqFGjuPXWW8nnP7Vg5Cdsez3+8Ic/MGvWLPx+P7W1tfz5z38mFotx2WWXEQ6Hqamp4Te/+c0O9//+97/PoEGD8Pv9TJ48mSeeeKLbMT/5yU+YMGECgUCA6upq/uVf/oXGxsZuxyiKwvz58/n6179OJBKhqqqKa6+9FtvuL93s+wfXdUnnbNqSOeo60qxuirN8S4zVTYWF6duTeVI5m0TWojmRYWVjnHc3tPHwovU8v7yRus4s6c84yKU3LGHLb79Lxz8f6wpyWrAY7+BxjJ04ifNPHMPPzy7n1a/52XJVkMz1AT66ws9fL/LzyzO8zDnOw6wxBp8vb+0W5ABWuEP4P+fYQpDrZZpSaLb1mhoVET8TBkU5traE6miAqM9DwKMztNhPecgrQU4MWAd3zVw+A1am58d7I4VF7z4p0wk97eukmWD6e36/3dhWk5PL5Xjuuee4+OKLuemmm/jKV77CqlWruPzyy2lvb+fRRx8F4KKLLmL8+PEsWrQIn8/HypUrsaxCF+eFCxdyxBFHcOGFF3LNNdcAUFZWRlNTEyeccAJnn302CxcuxOPxMH/+fKZPn86KFSuoqNjewXjOnDn89Kc/ZfLkyaiqukP/r2w2y8yZM6murub555/H4/Fwyy238LnPfY6VK1dSWrp9XcPrrruO22+/nV/84hd77Ec2Z84c7rnnHqqqqpg3bx5nnnkmq1evpqqqapfXW7BgAbNmzeKnP/0pv/3tb+ns7OTaa6/lnHPO4dVXX0VRFH71q1/xs5/9jPnz5zNt2jSeeuop5s6du9uyNDQ0MHXqVMaPH89TTz3FoEGD+Oijj8jlcpSUlLB48WKOOeYYnnzySaZOnYqm7fjBEAwGOf/883nkkUf4+te/3rX9iSeewHVdLrjgAgBuvfVWfvOb3/DLX/6SI444ghUrVvDtb3+bVCrFvHnzdlvO66+/nrvuuot77rmHO++8k3/5l3/h5JNP5txzz+WGG27gkUce4fLLL2f69OmMGjUKgLPPPpt8Ps8f//hHqqureeGFF7j44osJhUKcfvrpAHg8Hu677z6GDh3Kpk2buPrqq7nooot46aWXut1/7ty53HjjjVx//fW8+eabXHbZZYwfP56vfe1ruy33wcp1XbJWYdBBKl+Y3y2Tt3f4teLiks5ZxDIWHckcDbEMzfEMa5vibGxL09CZJXcAul3aiXbaXv4vUh8uBEANRCma8Q38o6eiGh4UHP7puYJSZdv6pt0/VvKuxnvuSF61J/GqM5El7og+L7MKBEyFqrCX6iI/VVEfNUVehpQEtw5e0Ah6dAKewoAFj67hkcXpxQB2cIe5V38OC+/s+fH/tgF80e7bfj4Jsp09O//wi+Hc+3t+v11Yt24dd955JzU1NYwZM4Yrr7ySs846i5tuugmAMWPGMH/+fM477zzmzp1LbW0t69ev55prrmHChAkADB8+vOt6JSUlaJpGMBjs1mx4//33M2jQIB544IGubb/61a945plneOyxx7qCH8CPfvQjzjvvvK7Hn6ytAvjDH/5AXV0dixYt6rrH73//e2pra5k/f363vnrf/OY3e/zBPm/ePE499VQAHnroIV5++WXuu+8+br311l1e75vf/CZXXHEF3/3ud7u2PfLIIwwdOpR33nmHKVOmcNddd/Hd7363K1Bdd911LF68mCeffHKXZbn33ntxXZenn36aUCgEdH+dt/WtKy4u3m3z7GWXXcapp57KunXrumrzHnnkEc477zxCoRCpVIo777yTP/7xj5x55pkA1NbWctttt3HllVdyxx137LbfzhVXXMGXv/xloBAKH3roIWpra/nWt74FwE033cTPfvYzXnrpJUaNGsXChQt55ZVXaGho6OoD+a1vfYs33niD//iP/+gKczfccEPXPYYNG8b8+fM59thj2bJlC9XV1V37zjvvvK7XfuTIkfz2t7/l+eefP2TCXM5ySGatrc2lOw9uqZxFImvRFEuztrlQG7epLcmWjhSd6QM/z5vr2NiJdlKrXqfzn4/hZFMowPlTymmddh1rPWO3H4vKK85hnKe92rVtlTOIRc4E/ulM4g1nPEn6ppuBAXgMlUjAYFipnyHRANGASXHAZHx1hLDXwGuo+EwNv1kYferRVen3Jg46B3eYG0D++c9/EgwGcRyHdDrNMcccw1/+8hcMw2DZsmXdPkgBTj75ZFzXZdmyZdTW1nLttdfyjW98g4ceeoiTTz6Zs88+myOPPHK391y8eDFLliwhGAx2255Op1m1alW3bccee+xur7Vs2TLGjh3bLcR4vV6OOeYYli5dulfX+qSpU6d2/WyaJkcffTTLly/f7fUWL17M66+/3i2kbrNq1SpGjx5NXV1dt2sDTJs2bbdh7p133uG4447rCnL7asaMGQwZMoTHHnuMG2+8kQ0bNrBgwQKef/55oNBknkqluPDCC7t96Ni2TSaToaGhoVvN5KdNnjy56+dtx31ym67rlJWVdTWRLl68GMuyGDJkSLfr5HK5rrAJ8L//+7/8/Oc/Z9WqVcRiMRyn0LFp/fr13cLcUUcd1e06gwYNYtOmTT17cQa41kSW+s7MDuFNVcFnFCaNzeYdVjTEWN0Y4x9LG2jL5Elm7M90vrdCWGvF6mwqDF7obMLqbMKONW793ozrbC/RUVUqD5zpY0p1htvzq1lrj+12vf+zj8FB5TV7PK86k2iib5bLgsKHlqaBoWsEto4wHRT1MX5QhJDHoCLs4ahhRZSHvPgMTaYJEYcECXP9xJQpU/j973+PpmlUVlbuscP8tg/5bd9vuOEGLrnkEp599llefPFF5s2bxzXXXMMdd9yxy2s4jsP06dO5//4daxPD4XC3x4HA7vuy7K659NN/Be/pWnuyp+s5jsM111zD7Nmzdzi3oqKiK4Tsy1/nvfEXvaIoXHrppTz66KPceOONPProo9TU1DBjxgyArvI9/vjjjBs3bofz9zS61jC2T42wrbyf3LZt+7b7OI5DMBjk3Xff3eW13nzzTc477zyuvfZa7rzzToqKili/fj2f//znyeVy3c4xTXOX9zpYua5LXUehrxuAz9TwGoURkCigKgqJTJ41TXHeWtfG4vVtrKiP0Zm2+6KvP65tYcVbsGNNnwhszVifCGt7Gm2qq1AbVZlzrMnlU4yuBeBPVJfyG/vMbsc+70zheWdKHzyT7VTAo6tomoKhKvhMnZBXozrq44jBRYwoD1Id9TKmMkzAIx9t4tBycP+Pn/YDOO7/9fx4b2THbT9Yund95vaRz+dj5MiRO903YcIEFixYwPe///2ubdsGHmxrVoVCk98VV1zBFVdcwZ133sm8efO6wpxpmjt0Qp8yZQoPPfQQ1dXV+P3719dv4sSJ3HfffTQ0NHTVzmUyGRYvXsy3v/3tfb7ua6+9xhlnnAEUaoreeuutPTbXTZkyhWXLlu3y9YRCbdGiRYs466yzurYtWrRoj9d94IEHiMfjO62d2xZietLZf/bs2dx22228+uqrPProo3z1q1/tGrU8YcIEvF4va9asYdasWXu81v6aMmUK8XicRCLBEUccsdNjXn31VaLRKHfeub3bwhtvvNHnZevvXNclmbVY3ZSkM5UjbdldyzW1JzLUdWaoa0vREM/Q0JGmOZ6hI+Pu98CFwjxuLVidjd0DW6y5sC3eusewhqqjh8swImVcULySkVGXoRGFYVGVYVGV6pDSFeCyrsEb9mgWORN41Zm0n6Xfs4AOUb9B2KsT8BqEfSZRn0lpyGBYaYBR5SGqI34iPh2PqaPLlCHiEHdwhznDW/jaHzsLeJ+xH//4x5xxxhnMnTuXiy66iJUrV/Kd73yHSy65hNraWhKJBP/2b//G+eefz/Dhw2lvb+fZZ59l/PjxXdcYPnw4ixYtYtOmTfh8PoqLi/nOd77Dgw8+yNlnn82NN95ITU0Nmzdv5tlnn+X000/nxBNP7HEZL774Ym699VYuuOAC7r777q4BEJlMZpcjVnvi+uuv75oG5c4776S9vZ0rrrhit+fccsstzJw5kzlz5jB79mzC4TCrVq3iiSee4Oc//zmhUIirr76an/zkJ4wfP56pU6fy9NNP88ILn566tLsrr7yS//zP/+Sss87illtuYfDgwaxcuZJ0Os0555xDRUUFfr+f5557jokTJ2KaJkVFO29uGjFiBCeccALf+973WL16NZdddlnXvmAwyPXXX88NN9yApmnMnDkTy7JYunQp77zzDnfdddfev5C78bnPfY5TTz2VL33pS9x1110cfvjhtLe38/rrr2MYBt/+9rcZO3YsbW1tPPDAA5x++um8/fbb3Hbbbb1ajoGgMAI1y6a2FI3xDJvb0myJZUhk8nQks+Qcly1tGdpTWTKWg2Xv/ywbdqqT+HvPYLXVFUJbrKkQ1vYUCTUDPVyGHqnAGymhNgpHRhO8HjyFzsgotEARiloYpDPb+CnTte2j2B1XYalbyyJrIoucCbztjCHLvv+xuismMKbKT0XEh9cwGBT1csSQIkqCHmzHxXULU5x4DZXSoJeSoClrmwqxEwd3mDtInH766Tz22GPMmzeP22+/naKiIr785S/z05/+FCj0gWpvb+cb3/gG9fX1hMNhpk+fzt133911jdtuu41vfetbjB49mkwm07Wqweuvv86Pf/xjzj//fDo7O6msrGTatGnd+kD1hNfr5bnnnuPqq6/mlFNOwbZtjj/+eF588cUeT7q7M/fccw/f/e53WbVqFaNGjeLpp5/eY9lmzJjBSy+9xNy5cznppJNwHIchQ4Ywc+bMrjno5syZQ3NzM1dffTXpdJozzjiDG2+8kauuumqX162oqGDRokVcd911zJo1i2w2y4gRI7oGpmiaxn333cfNN9/Mz372MwYPHrzDQJFPmj17Nv/6r//KtGnTdqhFvOGGG6iuruY//uM/uPbaa/H5fIwePZqvfvWrPXzlek5RFJ5++mluueUWrrrqKurq6iguLuaII47oGgTzxS9+kZtuuom5c+fygx/8gGOPPZZf/vKXfPGLX+z18vRXruvy4ZYY61oTbGnPFEJde4pkJk9bysKyHTozOTpTFlYvjTp1cmka/3gD+aa1O+xTdBMtXI4e2fZVgb71sT9SxNGhZo7XVjBNXcZhyjsYSqHG+Nr8NP7HLu12rUXOBGqUJl51JvKaM5HXnXHECO5wz97i0xWiAZPJg6MUB0xKgiYVUS+jykJ4je0fS6oKpUEPJQETXUKcELukuANgjaFYLEYkEqGzs3OHvlzbgkltbS1e737Wwol+Q5bAOnT09/ewZTu0pXI0xjKs2BKnMZ5mU1uaDS1JYpksnek88XSeWG7P19obruvQ/Jc7SK96A9UfIXz0uYXAtjW8qf5oV9OijsXhyhqmqss5QVvOZGUVHmXnY2L/Yp/AD/Lda8sVHNzPYNpRrwZlIU9XU2ltWZCoz8Dn0Yn6DIJeHUNTMTUVr6FRHDC7mnqFOJTsLvfsjNTMCSEE4Dguecchm7NojWdZ15rgwy0Jlte1saE9Q0NHkra9mLZyf3UsfJT0qjdAMyg79yd4B+84GAbAQ463PFcQVlI73b9Np+vnDWc8r9iH7bCvN4OcDoS9CkV+g5qSICPLA0waXERlxE/Qo28dHKJ1hTZDV9BVFUOTfm9C7CsJc0KIQ5LjuGxqS7G0rp1XVrawsS1NXXuSzoxFOmeT/4wH4DrZFLnGNeQa15Dd8jGpFf8EoOSM7+EdPJZapZ6p6nKetqcSZ/uApSwma91KjlC6N8UmXQ9vO2N43RnPq85EPnSH9ck6pz4don6dcZURxlaHqQr5iAY9hD06Yb/BqPIgflOXKUKE6EMS5kS/NHv27J1OLSJEb8jkLJZtifHqqmbeWt/O5vYU7cks6bzzmYQ4J5sk17CGbMNqco2ryTWuwWqr2+G4Y084nmuPWMHx6pNUK20ANLnRHaYBed2ZwDhlE+84o1jkTOR1ZzwfuMOx+vBXfNBQKA15GBz1MboywuE1USojXvxm4Z4eQ6W2NCADFoT4DEiYE0Ic9FzXJZ23aYxleH9jO8vrYnzcGKOhM0NzLEM86/TZpL12Or61xm01uYY15BpWY3XU7/TYYDjMmMoAJ1blOHtYmpOHLtuh6XGqunyHMPeANYtfWOf3yYjTTwobUFnkp6bIx8iKMDVFPgYX+aiI+CkOmKhKYToTTVUIeaQ2TojPioQ5IcSAl7NsMnmHVM4imbGIZ/K0JDJsac+wuiHG0oZONrYl6Uz17VJZdjpGrqFQ05ZrWF0Ibp2NOz1WC5fjqRxJoHIotw1+nXOrWygLACS3HrHjr+cVTg1b3JIdtnf28sjToA4hv0FtSYApQ4upKvIxtCTA5CHF+ExZjF6I/uagCXMy6lGIgWl/37srG+OsbIjTEM/QmsjREs9Q35mlJZGhri1JvA9Xp7eTHWQ2LSOzcSnZjUvJt27c6XF6tBJPxXCGVBbTVnE0RuUoNN/2EWozzbcpU3dsjtzglPOaM4HXnAm87kyghb6b99JUCxP1Rrw6IZ9JWdjLxOowJ48pR0FhSLFfgpwQ/dSAD3PblhtKpVJ7XAJLCNH/pFKFUZifXnKsR+fmLFoTOfK2S1siy+a2FBua47SlsjTFLXK93P/NTraT2biMzKalZDcu22l404uqMCtGYlaOoLyikpnVCU4PfMw0dRlRZRlnZU/jA7f7VAOvOeMZpjbS5EZ5zRm/td/bBDa7+z5HY08pFAYxVIb9hHw6YZ9J0KMxuMjHoKgfVVGoCHuJ+Pf+30cI8dkY8GFO0zSi0ShNTU0A+P1+Gd4uxADgui6pVIqmpiai0SiatmOtj+u65G2HrOWQzTtkLJts3iFtWaQyFisbY/zz42ZWNydojGXJWC62u8e1EXqse3hbSr510w7HGGXD8A6ZhHfIJCKDR3JicDMnqkuZqi5mjLp5h+NP0d7lA2tEt22/sc/kIfsMVruDKMSrvmMAAY9KwNSI+A0mVIcYVhqmNOShPOyhNOChLOQh6NXxGjqaLJUlRL834MMc0LUW6LZAJ4To/xy3sFyTNxAipgRo2NhOWzJHZypHPGPTlio0myayFsmsRWsiS1syT0cqSyrr0Betp65jk171Jun175HZuBSrbccw9snw5qmZSMDn4TLtOU5SX2aK+sAuJ+sFyLkaZXTssH2dW9WbT6OLBvgNKA35OKY2yhE1RYytiuD3aiTSDiGvxujKPU9IKoTo3w6KMKcoClVVVZSXl5PP5w90cYQQe5DN22xoTYGqszmVY8OWNlriWdpTORzXJZa2iGXytCVzZG2btniWZNYi1wtrne5KvmUTLf/3C3JbPu623SivxVuzLbxN6NbXDSCPzRX6/xLZxaS9m91SXraPYIFzOG8440nSt91BdMCjKwS8OhG/yYgyP5OqixhTFaYiXFhhI5cvrHnqMw+KjwAhDnkH1TtZ07SdNtUIIfoPy3ZoSKRoSjnkrAyxdB7HcfGZGoZuksnb+AyVdC6Pz1BIZW3ylovj9k2Qc22L2JtP0vHaf4NtoZg+gpNOxTvkMDw1E/D6/ByprOIkbQknqX/lu/nvsv4TNWk2Gq86E/mithiAmOvjVWcSi5zCIvXr3Ur6uukUCgMYQh6dkM/A79Hw6hrDSv2MrYwwrCRARdjTNW2IpoKuqpSFPH1eLiFE3zuowpwQon9xXRfbcelM5+lI5WlPZ4mnbJriGZpiGUChKZ6kPWkRS+doTuToTOdoS+TJfAaT92YbVtP6f78k37QOAN/wKRSffiVDwgona0s4WX2QE9RlhJR01zknqR+w3u7eLPpn+0RWu4N5xZ7E++5IbPruj0oTKA8ZlEdMwn4P5SEf4ypDlEW8lAY9lIY8FPlNfIa2fd43RZE534Q4iEmYE0LstUzepjWZw7KdQo2Z6+K6hdqzvOXQnMgSz1o0dKRpjmdJZC3qO9I0J7K0xLMksnlytott02eT9W7j5NLYyQ7sZDvO1u92sgOrs4HkhwvBdVC9QY497QvMnqQwXft3Rqs7rsawzUnqBzxqn95t24vOUbzoHNUn5fcoMKjIy3EjSzmmtpjKsB+foZJzXFQFhhb7KQ15++TeQoiBQcKcEKLHXNelJZGjMZZhV9PDtSaytKfyNMczbO5IY9su9Z1pGuMZWhI5EukcGWv/mkydfBYn1YGdaMdObQ9ohe/dQ5ubz+z2WoGxJ/DeF1cxKvjsLo/JuAaLnbEsdA5joXP4fpS8ZxQg7FEoC/k5oibK5KFFTBocQflEc61XBV1TKA5IU6kQhzoJc0KIHslaNpvb06Syhbq0oFcn7NVRFQVVUVBUUBUFFxe/qZPM5Rla5KcsZPLmepdEJk9d3iK/iyDnWnns1CdD2Y61aV0BLbfzwQa7ohge9ECUooBJJlCF4y9BCxThGTQOX+1kmo3bGMWH3c5Z61Sy0Dmchc5hvO5M6POlslTAq0NJ0MPQkgBjKkOMrAhRHvJSEfbgM3V0tfBa61qh+TTsNaT5VAghYU4IsWetiSz1nRlsx8VxXYoCJl5NJZbJk8jkaY/naEymqW/P8FF9jPUtCera08QzFvlUB3ayA+dTtWefDGdOsh0nm9xzQT5B0U1UfxQtUIQW6P5dDUTRAlGGB7OcEtrI6d7lHKOuwFTSXJm7jL87x3W71iJnIkeoa3jNGb81wB3ORreiN1/CLgENoj6dQSVBJgwKc+KoUgZF/QS8Bl5Dw29o6JpaCG4S1IQQPSBhTgixS67rsr4lyYbWVKGZNJ7DxaUzlaOuI0N9R5qOdI7OTJ5EevuKC+m179D6j/nYsea9u6GqfyKUbQtmO4Y1LRBFMXecINxLlhPUZcxQ32e6toTBSssOt/ic9t4OYe4Reya/sb9Ijt5d5cAAykMapRE/Q4uDDCsNMLTUT3WkUGM5vDQogU0Isd8kzAkhdml1U4KPG+Kk8jbNsSwZy6a+M019e5qOZJamZJZExiZrb191wYq30vLXu3AyicIGVUPzRz5RY/aJUOaPogWL0PxFqMEiVE9gr1cbUHD4ivYyp6rvcoK6DK+y67kmO10/SXfHwQIJ/Ht1zz3xqOD36BQFTEqCJqVBLzXFfqYMKyLqNzE0lSHFAQlyQoheIWFOCLEDy3ZY0RBnVWOCdM5iS0eKzW1J1jYnaEtmaUtYZJ0dR6K6rkvr//0SJ5PArBxJ+ZduRvWHUZQdF5HvLS4q39D+j5Hqlp3uX+oMY4FzBAvsw/t82hCfDiUBD8NK/Awu8lMZ9VEZ9jKk2E911Le1KVXFbxaWyRJCiN4gYU6IQ9C29U5tpzAPXN5yiGVybOlIs6E1yUf1MVbUx9jUlqQ95fR4+pDEe8+QWfcuim5S+sWr0QLRXimvhxwnqMs4VX2Xv9jTeMsd223/C86RXWEu5vr4pzOJl53JLLQPp5neKcOnqRTCW9BnUhn2cOKoMoYW+6ks8jO6IoRX1/AYKh5dlbVNhRB9SsKcEIeYeCbPhtZUt6lFNrYleWt9O+tbEjTGMmxsTZDcy5Xx8m11tL/8EADRky/DKK3Zr3KW0sl07X1OVd/lZHUJPiUHQAIfb1ndw9zf7ePwkOcF50gWO+PI9+GvNp3CSN6gR2NERYjykIejhxUxvjqC6yqEfXrXsllCCPFZkDAnxCEkk7fZ2FYIcoauoKsqjuOwor6TDza1s74lRmfa3euJfF3HpuVvP8O1sniHHkboqFn7VL7hyhZmqm8zU3ubI9XVOz3mRPUD4JJu25a6w1lqDd+ne/aUoRbWPI34TEJegyK/SUXQw8TBEQYXBXBdBUWBqK9vpzARQohPkzAnxEEubzvkbYfOVJ73N7bTEMvQkcqTymZZ05JiVVOCLe3Z/VqJofP1P5GrX4niCVDyhR/sdR+5y7Wn+ZL2yi77vQEkXC8LncN4wT6KwnCLvm269CgQ9CpURfwMLQtiairFAQ+jygKUh70EvAampuI1NUJenbDPIOTRpUlVCPGZkzAnxEEik7fpSOVoSeRoTWTY2JqmJZmlLZFlS0eKLR0Z2lM5khmLdN7F6qX7ZutX0bnovwEoPu1y9HDZXl9jlFq30yC3xS3mZXsyzztH8ZozodenDtnGVKA8bDKiLMjwMj8uGu2pHH5TZ+KgCD5DRVFUysIeIl4DU1eJ+AzCPh2/Kb9GhRAHlvwWEmKAc12XpniWxs4M9Z0ZYpk8qxrjxNN5WhJZmuJZmuIZ2lN5LMfF6uUF7Dte/R24Dv6xJxIYP32nx5jkmaouY5b2Bm844/gfu/txL9qTOV/7JwDLnaE87xzFc/YUPnSH0pc1cCrgN2BoaZCigAcUhbrOPKpiYWgKhqbiNTQURSHo1RhdHiTsK0zuK4QQ/YWEOSEGsFTWYl1LkvZUjrqOFJm8w+a2NG2pLO2JHO3JHA0dSdrTdteEvr3JyaXJbFgCQOSEi7o1MepYTFOXcab2BjPVtwkrhSW4BiktO4S5V5zDuCV/Kc85U9js7n3N3t5SgZBHJejVKQ14iPo9KCp4DR1DU4j4DMpDHoaXBamOegv94yJeqYUTQvRL8ptJiH7OdV3ytks6Z5HO2yRzFqmcTV1bis3taTrTeTa1J8nlXZo6U6xvi9OZgr0cjLpPMuvfB9tCj1ZilNSgYXOc+iFnqm/wee0tipTEDucco6yglE5aiHRtS+DnIfuMPiunX4eQz6Q0aFBTFKA86iXiM9EAv6ER8htEvAY1JX6GFgfwm4UltYQQYiCQMCdEP5S1bLZ0pFnfkiKZswrNo5ZLOm/TkcryUX2Mze1pGjszxDI5srtYvL63OZkE+ba6rq/06jcBqB45jluMh/mi9ialSmyn56Zdk5edI/i7fRxxfH1aTg0Ie1WqIj7Kwj6KAttq2gLUlgQJ+gycrS+YrimUBE1KAh6ZyFcIMSBJmBOiH0lmLVoSWZrjWda1JEhlHZI5i2TGIms7W0NeinVNCRpiGVK9NYrhE1w7j9XRsDWwbcZq20K+bTP5ti04qY6dnnPq2DCX6c/vsD3rGrzsHMHf7ON40ZlMmr6ff82nq5QETcpDXqqjPoaW+jA0jWK/yeCiAH5PIch5DJXSoIeoz5BltYQQA5qEOSEOMMdxaIrn2NyeoiOVJ5HJs641SdayUVHRNZdk3qauLcn61iRbOjMkc+6eL7wbrutiJ9qwtga2fFtd4ef2OqyORnB3Xc/nC4ZxiodiFA/CKBqEWTWKDwdVAS8DkHM1XnEO42/28bzgHNnr657ujAqYukJpwGRQcYAhxV5GloWojPrIWw5eQ2NoiZ+KiBddVTF1lYCpyTQiQoiDgoQ5IT5jWcsmnbPpTOepa0+zpTNNRzJHZzpPSyJDfUeGZNYimbPI5m06Uhk60juug9oTTi69Pah1C21bcHPpXZ6nmD6Momr04sF4iis5oiTPl8vW85XSNbieAMdmb+22ykI98FvrdD5yh/CsfQwxAvtQ2p4LmlDq96BqKj5TZ2ipjxmjKxhfHaGm2EfIa5DK2axrSeK6UBw0GRTt26ZdIYQ4UCTMCfEZsGyHtlSO9mSenOXQEEuzoj5OMmfRHM8RS+VIWzYNnWniaYusZZPJ22T2cSZf18rTsej3xBb/BZxdXERR0aMVGMWD0YuqMUoGYxQPQi8ahBYsZrjawIXaAs7XXqFM6fzEiQmmq+/zvDOl2+XmWpftW2F7SAF8Bgwu8lMS9GA7YOoqtaV+Th9fRVWRF1BoiGXZ1J7u6hMX9ulUR2R5LSHEwUvCnBB9KJG1aEvkiGXyXWuhbm5PsqwuRs4upA1TU/B5VBJZi0TWIu842LaNvY8jGrINq2n9+z3kWzYCoPqjhSbR4kHoxYMwigdjFFejRytRtO6T8HrJcoa6mK/oL3OsumKn19/iFhMgs2+F2w9+A2qKAnhMHdtxKQl6qIr4OGl0GRG/SSq74wsW9OrUFPmlOVUIcVCTMCdEL7Nsh/ZUnvZUjmx+e8CwHIeGzjSrGhM4rouuKrQnc9R1ZoinC3PCpbMWOcshYxcWrNobrp2n87U/0vn6n8B1UP1RSk6/Ev/o4/d4bpgk1+h/4hxtUdd8cJ+UdXX+4RzNn+zpLHIm4NK303YoFKYT8Xt1wqZO2G8yuNjP4GIv5SEfleHC95KggaFr6Kqy9UtF1xS0bY9lehEhxCFAwpwQvSSds2lJZOlMb6+FUxSXRNaiNZ5jTVOc9a0pOtJ5EuksdZ1pWhJ58vb+TyuSa1pHy9/vId+0DgD/2BMpPu1yNH9kD2cWpPDwee2tHYLcCqeGx+0ZPGWfQAeh/SzlzumAz1SI+k2qoz6OrS3BYyhYjoKqgO3AkGI/U2qLqI74JKAJIcSnSJgTohfYjsua5kRXiPOZhUXZt3SkWF4X48P6GO2JLA7QmczwcWOi16YVsWLNNP7hhzjZJKovTPHMKwiMnbaLo12OVVaw1q2kmaLt10DnSftE/p/+VxKul6ft4/mjPYMl7gj6ajktU4Miv0l1xEt5xEdpwGBwUaBrmpAiv07Ao1Ea9FIe9jCkuG8HVQghxEAlYU6IXmA5Dq4LigIjyoL4TI269iQvftREfUcGy3EIenQ601k2tqd6Lci5rkPrMz/HySYxK0dR/qUb0QJFOxxXRgfna69wgbaA4WoD9+S/xK/s87od8wf7c6x1q/i7fRypPp4PLmAqFPlMKqJeinxeqsI+ysIGPo9GyDSwcfEbGlG/ScRvUCkDGIQQYpckzAnRC7bVyKmKQiyT4811cda3JNncnqI5niGVt2nsTNPYmd3nEao7E3/7r2Q2fIBieCiddU23IKdhc7K6hK9oL/M59T10ZXtj7gX6Aubb5+B8ou/bJreCTXZF7xXuU0q9EAp4qAoFGD8oRDRgEvV58JkapQETVVVwccnkbYr8HryGhs9UGVzkl4XthRBiNyTMCdELXBeSuTwrG+K4rsKmtgSvr22lsTNDImv1aoDbJt+yifaFDwNQNOMbGMWDABiiNHKBtoAvaa9QqbTvcJ7jKqxxqomSoI1w7xfsE7w6+A2dwcU+RpQFKQ2ahH0mNcV+FBR8pkpZ0IOLQiydJ23ZlGwNciVBk8qwV1ZnEEKIPZAwJ0QviKVzrG5K0hTPks7ZrGlO0pLIEcta5PogyAEkPlwAdh7v0MMJHnEGxygf8T39z0zTlu/0+M1uKf9jncwT9knUUdY3hfoEUwWvrlMZ8TK4KICpaySzDrabR1HSRPwmtquRzG6fvLgy4iXg1Rhc5CfiM3ZzdSGEENtImBNiP2XyNhtaU9S3p9jYnqLIb5LKWXQmc+T2d5jq7th5AMyKESiKwgh1yw5BLudqPOdM4U/2dF51JnVrVu0rpgohr05Z2EN11EdVxEfIq2NqGoaqEA4YlPg9eAwVj65iaBpeXSXk0wn7DKI+E1OXEatCCNFTEuaE2Ee249KezPLamhbe2dDOko3tJLM26VyezbF8n97bQ26HbX+2T+Qa/U+UKHFWOYN43J7OX+wTP5Om1PJgYVTq4JIgh9dEGFocoDTkxWtoePTCWqjbftZVVZpOhRCiF0mYE2Iv2Y7Lks0dfFQX49XVTaxpStEUT5PM2eT7siYOqFEauUJ9ipKG1zm3rrjbviwmN+cvo8kt4k13LH01pQhAQAefoRIN+jimtphJgyJURXwcObSIsDSPCiHEZ0rCnBB7qTGWob4jw4qmGOtaU8SzefK2jdWHQW4QzXwl9d90Ln+Fm5fkWNnqAC0A6EXVXcf91Znad4WgEA8DhkJxyEOx38PQEj9ThhUzoixIddQnQU4IIQ4ACXNC7IVM3qYpluHdjW00xzM4jkMsmSXZR4McSvP1HL3m16xe+h5z1lpdS3z5DfjcuCLeGn8tniGT+ubmn6ADIa9CdVGA0qCHirCPyUMiTB5SRHnIi9+jy/QhQghxgEiYE6KHXNflxeUNPPneZpZt7qAlae33Mly74qt7i/Jlj/L+R+t5J7t9ldaThmqcdVgxm0Z/hb/rp+Dto7ewR4GysEnEZ1IZ8TK81E9tWRhTV6mKeBldGaYs5OmTewshhNg7EuaE6KEn397Iz59fRVMi22d944rcDqIvzWXB26tYsXXbsKjCZYcbzDysnL+GvswD9snk++CtqwF+UyHkNykNmIypClMV8uI1C9OLlAY9RH0GVVGfBDkhhOhHJMwJ0QMbWhL8zzt1NMWz5N09H78vXDuP/czNLPhwNQrwL4cZfH2ywZghJdxnn8tsewY5u2/6pHm2rpMa8hlUhLyMqwoR8pqYusLQkgCVYS9eU6M85KEkKEFOCCH6EwlzQuyG7bisaoxx21+X8/7G9j4Lck4uQ/NTd7Bx3WoMFR4918cpE0q43zqbb+dOIYvZJ/etDOmMLAtSGfUzOOpjWFkQv6lRGvRQGfFRHDDRVQVNVVAUmU5ECCH6IwlzQuxEOmfxj2X1/Omtjby1vqNPQlw1LdS7UTINa2l7/j/J1X+MYng4+/wzWTu8lLnZ00j38oL3pgo+Q6M8ZHDahCqGl4XozFgU+02qol5GlQeJ+k00mQdOCCEGDAlzQuzEOxvaefDVdayoj/d6kNPySU7c9CDqmoUsXamTSCQBUL0hyr98M29Vj+GtPhgd69MVAh6D4oDO0JIAQY9BUyJL0NSoKfYxcmuQE0IIMbBImBPiU5LZPB9samddS7LXgpyVaCO9ejGe1S/SvmEFj1jbLpxFNb14hx1J9KRLMUpqeueGn6ACXkMh5NUZFPFRGfVRGfbi9+pUhr0UBzxURX2EvTJHnBBCDEQS5oSgMO1IfWeGVY0xVtTHeeq9OhL7sbCq67rkm9aSWr2Y9OrF5BpWdds/JKIwa7TOiaMi/LH6Gt7VJu7vU9hBkU9jUMRH2G8yrDTAhOowFWEv8YyF68LYqjBDS/z4TU36wwkhxAAmYU4c8rZ0pHjhwyZWNcbZ0pHiw/oY9bEd1z7tiXxHA4n3niH50T+x483d9h0zSGXWaIOzxuhMKNP4g3Mqt1sXEiPQG0+ji0eD4oCHSYOjHDUkwqiKMF5DQ9cUvIZGSdBFV1Wqo14CHvkVIIQQA538JheHvHc2dLC6KUFzIkdjLENrcu+CnOs6ZNa9R/zdv5Fe8zZsXadB0U3G1lbx/bFNnDVaozKoAvChM5Qv5b/Oe+6o3n4qGEphzdSykMmYiiCDigLoWmGRe0Mr3F/fOrjB1NVev78QQojPnoQ5cUhLZi1WN8VJWzaq4hDPWNg9HHxgZxIkl75A/L2/Y7XXd2331h5J5REnc9/oxZzhXQoU+qJZrsrPrS/xgD0Lm95d+koDTA3CPpPBJX7OOqyaiYPCmLqOrikYmoqpqRh64WefoeE35e0vhBAHA/ltLg5pq5viNMcyrGuK09CZoa4zy57GPOSa1hF/9+8kP3wZN58FQPEECE46ldDkL2AUD+Ja/XHO0Jd2nbPZLeV7ue/wrju618ru0aDYb1IeMlFVFZ+pM7kmypTaYo6uLcHQFAxVRZVpRoQQ4qAmYU4cshKZPEs3d7KiPs6Khjgpa88DHmKL/0z7yw91PTbKhhE68osExk9HNX1d239pnccJ6jIOV9fyvH0U1+S/TSfBXin3tmW3BkV91BT7CftNcGFEWYgx1SHKQl6C0hdOCCEOGfIbXxyyPm6MsbEtxZaONDm7ZyNX0+uXAOAdehiREy7GM3jCTkeCZjG5IjeHmdrb/Nb+PNA7tWMa4DVVIn6DgMcg5xRWqQh7TYqCBiV+E5/Zu024Qggh+jcJc+KQFEvnWLo5xpKNrbSmclg9nE/OzacBCE7+It6abdOJuNQqDaxzq7odW0cZv7XP6LUyRzxQGfFSFPDiNTQCHoPSgIfKqJcRZQGGl4UoC3kIe+VtLYQQhxL5rS8OGbbj0pHK0ZHK8dzyBv7+QT0r6uNYe3ENJ1cIc9ubVF1u0H/HhdrLXJz7MR+4I3q1zAYQDRQm9y0Jegn5DDyaSnHQpCLipbY0wJiKMKUhE48uNXJCCHEokjAnDgmu67K2OUEm77Bsczsvf9zExw17GeTyWex4KwCq6QfgKv1/+Ib+fwA8bP6UL+VuZq1b3StlNoCQX8PUNVwUwl6dqoiP8oiHcVVhxlWGifoNmfBXCCEOcRLmxCGhPZUnk3dQVWiIZelI5nvctLpN7M0ncdIxtFApRnkt/6r9je/pT3Xt3+yW0eKGe6W8GuD1FEao+g2dIcV+Jg8p4rAhUcZXhvHJAAchhBBbySeCOOg5jktjLAOAZTlsak/RltrzFCSflO9oIPbmEwAUfe6bXOxdxI+NP3TtX+HU8NXcD4n1wojVUr9GwGsQ8emUBr2cNKqMI4cWU1Pspyhg7vf1hRBCHFwkzImDXmsyh2W7JLN5/ve9OpZsaqcl2fMGVtd1aX/pv3CtHN6hh3H2OA+36/d37d/glHNp7od0ENqvcurA8DIvfo+HoFfn8MFRassCVEd81JYFCHmN/bq+EEKIg5OEOXHQ60wXludaWtfJmpYUrfHsXp3f8c/fkV71BqgaR512Nr8070NTCvV69W4xl+Svp5mi/SqjApiGgqFphLw6g4q8DCkOYGgqwyXICSGE2A0Jc+Kg57iFZbtaEzlSOYt4tmdzygF0vvkksdf/CED1qV/jd1WPE1AKYTDm+rgs929sdsv3u4weBcqCBlVRHxUhH1VFPiojHmrLAlSEvft9fSGEEAcvCXPikLChLUk2Z7GlPUkPl14l/v6zdCz4LQBFJ1/Gw8esYZjaCIDjKnwv/11WujX7VS5DhbBXpzri5bCaKGGfyYjyIGMqQoyvjqDJUlxCCCH2QMKcOOjFMnnq2tO8vLKZtnTPolxq9WLa/nEvAOHjvsT04w/nc+pTXfvvsb7EAueI/SpXsV/D1FRKAx5GVoQpDXoZXhZgWGmQkeUhCXJCCCF6RD3QBRCiLyWzFhtakmxqS1Dfme7ROa7r0rHwEcAlePjniZ50Ge+6o7k49xMa3Sgv2Udwr332fpXLb6jgKnhNjUFFfor8hSbWqqiPgEeXJbmEEEL0mNTMiYOW67psakuyujnBh5s7yPawfTWz/n3yLRtQDC9F02d3Tcr7pjuOL2TnYaHh7sffQaYGQa9O2KsxrCTAiIogQ0sCFPs9VEV8VEWkj5wQQoiekzAnDlrN8Swvr2jipQ8bWdOS6fF5sbeeAiB42Gmo3u7zxrUS2a8y+XSF0qDJ4CI/QY/OhMERBhcF8JkqRw2LUhzw7Nf1hRBCHHokzImDkuO4PP9RA39bsoWmeKbHy3blOxrIrHsHUKiechoZXAoTh+w/FYj6DUqCHooCHkaUBQmYBqUBk4mDIxLkhBBC7BMJc+KglHccNjSnSOVtcvmejl+FfMtGAMyKWh4v/y2dboCfWF9jk1ux32WKejUGF/nxmTqlQQ/DywIUB03KQ15KgxLkhBBC7BsJc+KglM7aNCcypHN5Mj1f7AE70QZATQiOUNcA8Jz6b5ySvZstlO5TWRSgOmxwVG0JlWEfIa/BpMERJlRHaOjMYOoyDkkIIcS+kzAnDjq247KkroP6jgytCavH88rB9jB3QriRwnL38IJz5D4HucI8chpHDytlXHWEsFdnSImfIcUBto6rwFAlzAkhhNh3EubEQaehM82apgTN8Qx5t+fn5ZrWkfjgeQBGRSxAI+V6uCN/yT6VQ9n6FfLoDCn1M6IsgKGrhL0mqqLQkiisJCE1c0IIIfaHhDlx0OlI54ll8qRyPa+TS61eTMtf78LNpRlVrPLNIwtrod5rnU09JftUDhUIejQ+N76So4cWY7kQ9ZnkbIfWZBYFBVNXKQ6Y+3R9IYQQAiTMiYNQMmvR0JmhM53b47Gu6xJ/+39pf+lBwGXSsBIWXJCj2KewySnjv+wv7FMZQqbC4OIAX5hUxRcnVZHMOTiuS8ay8eoaCgohr05NsV9WehBCCLFfJMyJg4rjuHSm8nywqZ1UDwY+dCx8hNibTwBQfcSJLP7iErx6IVz93DqfLHtfaxbxwKjKMEcNKWHS4CixrE0ya6EpEPAUavwqwh7KwzI5sBBCiP0nYU4cVNJ5m9ZUlo0tyT0e6zo2sbf+AkB0+tf45QkNeLe+I9Y4VTzlTNvr+xsKhP1eBkX9BL0ayaxFRypPadBDwGugqQo1xYURrUIIIURvkDAnDiodqTzvbmgj0dPpSJxCv7pxhx/OudqfuzbPt87B2Yclu4JejYqQh6BXZ2hpgJzlYmgK5WEPUZ9BUcDE0GTAgxBCiN4jYU4cFGzbYV1rkheWN/LPj5v2+vxvaM+iKYWhr+ucCp52pu71NQK6QnnYy5iqMMfWFlMZ9pLK2VRFvIyuCO319YQQQoiekDAnBrxM3ubVVc2saU7y96VbqI/3sFrO2T7a9QXnSCY6bRyrruA++2zsrXPM9ZQKlEe8jKmMMG1kKYfXREnnHXxZm7BPmlSFEEL0HQlzYsDrSOWIZ2zak1ksu+cTy8XeeRoANRDlNeNYXs9NZbKyiqVu7V6XIeLVOGZ4CZOqI4S8Bq2JfNe+oEfeZkIIIfqOfMqIAa8tuX0KkrzVs7nlrHgLnYseB6Do5K+hqIWauPfcUXt9fx2YPLSImqgfr6GTyFpEfCZhn05F2IvX2LtaPiGEEGJvSJgTA1rOckhkLRzXJZ21aIile3Re+8u/xc1n8FSPJTBxxn6VoTRsUuQzGV0RIpmzCXh0RpYH8ZkS4oQQQvQ9CXNiQItn8li2i6rApvY0n2jd3KVs/UpSHy0EFEbMvISksu+jSz0qFPlNjqotoihgEPWbVEQ8EuSEEEJ8ZmSOBDGgJbM2OcumJZFlVVOsR+fE3noKgKETJrNkyM+Yb/ySY5SP9un+Eb/BpEERTh9Xid+j4zM1mUNOCCHEZ0pq5sSAlsxZNMWzfFjXQX3HnpfvsmJNpFa8CsAPpnrQFYcztTcJk+Kr+XF7de+ADqeMq+Ab02rJOC6OA15DpcgvYU4IIcRnR2rmxICVtWwyOYslmzp5dXUTPZmQJP7O38B1CA2dwP+rWtG1/Xf2qXt9/4mDIhxTW0pF2EdbohAkq6I+FEXWWhVCCPHZkTAnBqxk1mZTe5o1zTHaks4ej3ddl8SyFwE495jBmEph5GuDW8SLzpF7dW+vBhMGFVEZ9RDLFmJkxGfINCRCCCE+cxLmxIC1uS1FWyJHeypPTyYkybdsxEl1ougm149a07X9j/aMvZ4kOOwzGF8dZGJ1hHRue5gTQgghPmsS5sSAlMnbbGhL0Z7Jkkj3YAgrkN20DICyQUMZYxSW/HJchT9a0/fq3iowvDTA5ydUEfToZPKFWkEZwSqEEOJAkDAnBqQ1TQmyeYd42qI9ueeBDwCZjUsBmD50+3/7V52JbKF0r+5t6nD8iDKCPpNUzsZ1QVMVTF3eTkIIIT578ukjBpyc5RDLWGTyNq7jkO5BG6sVbyG1+g0Avj2yuWv7E/ZJe33/Ip/JyLIAWctmY1sKkCW7hBBCHDgS5sSAYzsuruuSztusb0/Rk9VYY28+CbZFVc0QZgwuNMsmXC/POVP26t4+DY4bXsxJY8pZ15LEsl28hkp11LsPz0QIIYTYfxLmxIBjuy6W7dKRzvFx3Z4nCrbircTffxaA755Y0jV1yHPOFDJ4enxfFagtDXDJccPY0pkhb7l4DJVhpQF0Td5KQgghDgz5BBIDjm27JLMW65uTNMb3PPihc9F/g53HM2gsZw7fPhvd0/bxe3XfgKnyufGVWG6hqdfUVWpLAxgS5IQQQhxA0tFHDDgZyyaVt6jvSO1xSpL02ndILCnUykVP+iqz8pMYZ23kDO1NXnUm7dV9h5cFGF8dZlu77pBivwQ5IYQQB5yEOTHgJDJ56trTtO5hFKudjtH6f78EIHTULLxDDgPgI3coH1lD9+qeAUNhXFWYirAXUytMQWJostKDEEKIA0+qFcSAYtsOqxoTNCeyuw1zruvS9o/7sBNt6MWDiZ48e7/uWxo0GVYaoCxodm3TVAlzQgghDjwJc2JAaYhlaU/l6EzmSeZ2vYRXZv17pD5+FVSN0jOvRjV6PtBhZ0pDXsrCXrSttXKqiqzBKoQQol+QMCcGlFTOwnKgM5PZ5ZQkruvS+eofAAhN/iKeqlF8WVvAZGUVCntew/XTIh6F6qiP0oBJWyILQGlw/8KhEEII0Vukz5wYUDJ5m/ZkhtWNyV0fs2EJ2S0rUHST8HFfIkCaW/Xf4lXy1LvFXJz7Mevcqh7fsyzsoTTgwWvogELUb1ARlnnlhBBC9A9SMycGDMdxWduSYHVzkrbErvvLdS76bwCCh5+OHixmuroEr1KYwsRPhk1uWY/vqQJRvwdVBb+pE/TqDC7y7dfzEEIIIXqThDkxYLQmcyQyNo2dabK7aC11chmym5cDED7mXABmam937X/BORJrLyqkDRUcF6oiXnymypBiv/SVE0II0a9ImBMDRjydJ285JLLWrnu+udv3aP4oJnk+p77Xte05++i9uqfHVPGbGiPKggwtCcgIViGEEP2OhDkxYHSmczTE07Qksz0+51j1I0JKGoC0a7LQOazH56qAV9coD3qZPKRYJggWQgjRL8mnkxgwVjUlqWvPEEvtegkvO97a7fEna+VedSbu1VqsugI+U6e2LEDAK2OFhBBC9E/yCSUGhFTWoiOVJ5bKkbV2fkxm0zKa/3IHAEbZMNAMTlI/6Nr/kjN5r+5paFASMKkp9qNL86oQQoh+SsKcGBBakzls1yGeze+0v1xi6Qu0PjsfHAuzchRl5/2EGrWFEWp91zEL7cP36p5hv8nhg6NMHlIkgx6EEEL0WxLmxIDQnsyRzFrUdaS6bXddh46FjxJ78wkA/GNOoOSLP0A1vJykvth13Gqnmi2U9vh+hgKjykMMLQtQEjD3fIIQQghxgEiYEwNCezrHuuYkHcnubaypj1/rCnKR4y8kcuIlKEqhK+gnm1j/6Uzaq/v5TZWysIeKkAevoe1n6YUQQoi+IwMgRL/nui6ZvE1jPIP1qTZWq6PQjOofeyLRky7tCnIASbzE3cIEv3szihUg5DMoD3sZFPWjyyhWIYQQ/ZjUzIl+z3WhNZEllbWwd3GMYuw4SvXq/P9Dx2Kyspqlbm2P72eqMKoswMmjyxlS4t/HUgshhBCfDQlzot+zHZeGzixZa1dRbtcsdN5yx+7VORG/wZFDiwmYukwSLIQQot+T9iPR77WlcrQlsqQyu5iTpBdpQNinUxb2AqCr8hYRQgjRv8knlejXbMdlY1uKzkyeeK7vw5ypQ3nIi9/U0TUFryFvESGEEP2bfFKJfq2+M00slWNjW4pEzu3ROVOUFVyivcBgpWmv7xcwdYr8JoaqEPUbMr+cEEKIfk/6zIl+K5m1aE/meXtdG5taU3s+YasLtIVcoC8E4D+tLzLPuqRH5ylAkd8EFHRN3fqzEEII0b9JzZzotxJZi5xts6olQfbTc5Js5eazACiasW0LU7XlXfs/dIb2+H4q4DU1/B4Nj67K/HJCCCEGBAlzot9yXJdU1qIzmSOb33mYsxNtAGjBYgCGKE0MVlq69r/mTOjx/fwelaElfgZFvRi6vDWEEEIMDPKJJfot14WGzgztqRy7GvpgJ9uB7WFuqrq9Vm6VM4hminp0LwUoDZqUhrz4ZEoSIYQQA4iEOdFvucDKpjgdmfwuj/l0zdwJ6rKufa8543t8L68KUZ8JDvglzAkhhBhAJMyJfsuyHeKpPJnsricLdq0cAKrhRcHhePXDrn2LnIk9vpfPVFBVlazj4NFVykM7righhBBC9EcS5kS/lchYZC2HbL5nU5KMVzZSqsQAsF2FN/aiZs4wDFxcAqbOmPIQNcWBfSqzEEII8VmTMCf6rY50noZ4hl03snZ3/Cf6y33gjiBGzwKZDqgqGKrCiLIAo6tCe19YIYQQ4gDZpzB33333UVtbi9fr5aijjuKf//znLo9dsGABiqLs8LVixYp9LrQ4NLQmsmxpT+9yv2tb2Ol44YGqcqz6Ude+vekvpwCaolId9TGsJIjflOkXhRBCDBx7Heb++Mc/8v3vf58f//jHvPfee5x44omcccYZbNy4cbfnffzxx9TX13d9jRo1ap8LLQ5+rusSS+dIZHO7PCa5/CWcVAeqP4qnYjjHqNv/QFjsjOvxvXRdIWDqDCkJMLTMt1/lFkIIIT5rex3m7rnnHr7xjW/wzW9+k3HjxvGLX/yCmpoa7r///t2eV15eTmVlZdeXpsmErGLXXBeaEzlSuV1MFmxbdL7+JwAix55HmZFjg1uB7SrYrsLbzuge3ytgaoT9BhOqIoS9suqDEEKIgWWvwlwul+Odd95h5syZ3bbPnDmT1157bbfnTp48maqqKk455RRefvnl3R6bzWaJxWLdvsShxXZcNrSkyO5igrnkhwuxOhpQ/RGCR3yBFiKclbudw7L/xZdzN5GkZzVsOhD1m5QGTCoiXnyy6oMQQogBZq/CXEtLC7ZtU1FR0W17RUUFDQ0NOz2nqqqKX//61zz55JP8+c9/ZsyYMZxyyim88soru7zPvHnziEQiXV81NTV7U0xxEGhP5WiKp9l5vRykVhb+eAgdNQvV9HZtT+LjXbfntXJeD4S8BrWlAXymJvPLCSGEGHD2qae3onT/wHNdd4dt24wZM4YxY8Z0PT7++OPZtGkTd999NyeddNJOz/nRj37EVVdd1fU4FotJoDvENMYyNHZmdrnfTrQCYJYP36/7eDWdsF9jXFUIry61ckIIIQaevaqZKy0tRdO0HWrhmpqadqit253jjjuOVatW7XK/x+MhHA53+xKHjpzlsKKhk8Z4dpfHfHrlh32hAAGPQbHfS0XYj9eQmXqEEEIMPHv16WWaJkcddRTPP/98t+3PP/88U6dO7fF13nvvPaqqqvbm1uIQ0hzL8OzSBjK7Gvzg2NjJDgC0QBETlbWcpr5NlPhe3cfUIOTVKQqY+EwNj/SXE0IIMQDtdTPrVVddxaWXXsqUKVM4/vjj+fWvf83GjRu5/PLLgUITaV1dHY8++igAv/jFLxg2bBgTJkwgl8vxu9/9jieffJInn3yyd5+JOGisb02xsS3JLsY+4Fp5cAtBT/UEuFj7MxfrhUE1862zudu6sEf3MTSF4oBB2Fd4G0jNnBBCiIFor8PchRdeSGtrK7fccgv19fVMnDiRZ555hqFDhwJQX1/fbc65XC7HNddcQ11dHT6fjwkTJvD3v/+dL3zhC733LMRBw3FcVjZ00rybJtZuFDhG/bjr4Xq3ssf3CnoMKiJe/LqOooCpSZgTQggx8OzTAIgrrriCK664Yqf7Hn744W6Pr7vuOq677rp9uY04BDXFM7y3oYNEZlfjWLsrJs5IdUvX48XO2B6dZyoQ9uoETAPDUPEa6i4H8QghhBD9mVRFiH7l3Q3trGxJ7LKJFcDNbV/i60h1+0CaJjfKRre8R/cxTZWQzwDFxaOreGQkqxBCiAFKwpzoV+o7UqR2NVPwVrF3/waAWTGCYz3rura/5YymMEZ1zzyqSpHPQFdVgh4dXZNaOSGEEAOThDnRb1i2Q1vSIpu3d3mMnY4Tf+dpACJTL+xWM/eOM2ZXp+0g4DUpCnjwGho+U0OVJlYhhBADlIQ50W90pvO0p7LE0/ldHhN/+39xc2mMsmFERh3FYcr2mrmersdqKOD3qAQ8Gn5TR1dVJMsJIYQYqCTMiX4jls7T0Jkhu+uKOZIfLQQgcvwFTFI34FEKwS/tmnzoDu3RfTQVgh6NoM9AUxUMVUWTNCeEEGKAkjAn+o1UzqIxnmE3WQ7XKvSn04uquzWxfuAOx+rh4GyPruAzNIp8Jo7rEvLpBDz7NLBbCCGEOOAkzIl+Y2N7ivZUrsfHH6Wu7Pr5nR42sQL4PCYlQQ8oCiUBD35TwyurPwghhBigJMyJfqE1kWVTa2q3/eU+rVJp7/r5HWdUj84xAF1VqAx78ZkKXkMl4jf2trhCCCFEvyFtS6JfaElkaUpkyOTdHp9zbu4WKmhjirqSt3o4WbC2dT1WFPBqOrqmEvFJmBNCCDFwSZgT/ULOdtnQksDueZYDoJFi/u4c1+PjPbpKyGtgqIUVH8ZUBGXCYCGEEAOaNLOKfqE9maWuI0vPFvHaNzqgb11/tThgUBH2MLQk0Id3FEIIIfqehDlxwDmOy8a2FJ17MfhhX5gamIaGriqMrAhTU+zvCndCCCHEQCWfZOKAa4hlaE1kSed2v4zXJ41WNmHS88ESAJqu4NFUKsIeoj6T4oC5t0UVQggh+h0Jc+KAcl2XTe0pWuI5srmeN7LeYzzAUs83eNy8FehZR7ugxyDqN6ku8uMxVJlbTgghxEFBwpw4oDrTeZo6s7SnsmR2N1vwTngUCw95YM+rNyhAxGfg9+iFCYP9UisnhBDi4CBhThxQbcnc1mbW9G5XfgBwsimcbAIAfev/3PedET26jwYYqoKhFZbvKpK55YQQQhwkJMyJAyqds2noTFPfkdnjsR2L/oCbSzOs2GB8WeG/7rs9nCzY1CFruxiqyvjqoAx8EEIIcdCQTzRxQK1vTdGeztKW3P1I1lzzBuJvPw3AA2cYGFqhafU9d2SP7uP36OiqSkXYy3HDS/ev0EIIIUQ/ImFOHDDJbJ6NrUnWNCZI72Ega/uLvwbXoWb0OE4fWRi40OKG2eyW9eheuqrgMVVqS/0YMkmwEEKIg4iEOXHA1Hdm6EjniKVzWLsZyGqnY2Q2LAHgX06d1LX9A2c4PR38gKJiqCojy4P7V2ghhBCin5EwJw6YdN4hk7ex3T1MLuJsGxqhMKO4uWvzB+7wHt3HAExVIeo3GFYmKz4IIYQ4uEiYEwdMJmeRzttkrJ7PSTJJXdv1c6Fmbs80DQJeneElAUxNmliFEEIcXCTMiQMiZzlYDqSyNtm9WPmhUmnv+nnp/2/vzoPkLA9733/f9+23l5npac1opBmNNmQwBiMBRtggHLwmYAK2Eye52MfxUkmcS3LwAs7JgfJNgX2cg1P2tX1zy8SpeKn4Jjfm5kBSzjFJkI8NGEtALLAlhFgltM5Is/be7/rcP3rUaKQR0z2jrWd+H5fKvbxP9zvPvMX7m2eN1zVVJu06pBIOgz0ZrNl7ZUVERNqKwpycFUEUE0YxZT+iNsuWrLFfX7Yk4b66Y8OQ6WWEnqa+q8NN0JVOsCSTxLGV5kREZGHRfkZyVoSxYbzsUa4F+LPsxhWVxgCwOpdyo/c5LrV3k5h1ieFXZTMJVi3J0NOZJO2qm1VERBYWhTk5K8IoZihfo1QNZt1ZNSrVu1btrl52mnXsjJrrXoX65IeVvR0s6agHuYzCnIiILDDqZpWzYqzkk6/65L1g1mOj8jgATmdvy9+Tci0yboJch4vr2Lja+UFERBYY3dnkrKgFEWOlAC+YvbvURPXAZ7mplr8nk0pgWZBLuyzvTrZcXkRE5FynMCdnnDGGg/kqk1WfWhNh7piSLX2PBaQTFsu6UvQvSbMil2mpvIiISDtQmJMzbv94lUI1oFANaCXL3eQ8zrfdL/Pr9uNNl8kkXXIdLusHu7G0LomIiCxACnNyRpW9kHw1oFQNwcR4r7GN1/HSBLzbeZrV1sjsBwMJC7pSCVb1ZujtbL2LVkREpB0ozMkZFUb1rtLhQo04nltLWbPbeKUSFrmMS08mha1WORERWaAU5uSMio1hsuozVvEoNTGTFWAJpWnPd8bnNVUumbDJdbhkXAetFSwiIguVwpycUWEUc2iyihfUd39oxgprvPH45XgFBTqbKufYNj0dSTJJW+PlRERkwVKYkzPqYL5GoRpQ9WJK3iz7eE0p7nsOgKUZix2muQWDLep7si7pSJLSQsEiIrKAKczJGTNW8hgtehRrASXfp1KbffaDN/QCz7x8CNuCP3pzkh1xc+Plkg70drlctCJLb6fWlxMRkYVLYU7OiCCKGc7XyFd9CtWAfCWkiSxHfsv3AfjwBpcLem22NxnmOlMOK7s76M+m6elQmBMRkYVLYU7OiMOFGpUgpBZE7B0tE0TRrEsA+yN7qb70JLYFn7s2SWQsdprzmvq+zlSC1cvqS5IkE7rMRURk4dJdTs6Iih9R9WPAwo9iyt7skx/8I7sB+JU1Dm/oc3jJrKRCetZyNtDXkaSvM002nZjnmYuIiJzbFObkjPDDGC+I8cKQIDSU/dknP0Sl+izWNbn6ZbqjyfXl0gnoy2YYXJLGcTSLVUREFjY1W8hpF0YxxoAXRkyUA/zYUG1iIuvRMLe/4yIeivr4WXRJU9+XcGyWZV2y6SSOliQREZEFTmFOTruSFxIZQ9WPOFL0KNV8mllhLhjZC8D2jqv5w+D9TX9f0rXpSidxHRtHqwWLiMgCp25WOa38MObgZJUgjKmFERMVn0Jt9ijnDb9Ebe8vwLLJnH9lS9+ZtC1ymQTZtENKkx9ERGSB051OThtjDPsnKsQxlLwA24LxskfFC2cte3RJks6L34bbu7Lp73SAjqTL8lyG5dm0dn4QEZEFT2FOTpsjRY+KF1ENQjJugsN5j3I1xAtee4E5//Buqi8+Dljkrrm5pe90bUi5Dsu6kvRosWAREVkEFObktBgreRwpeABkXAfHgYmKjxcbglnKVl56AoCr3rCMr/U/yO86m+kj39T3Oo5FNuUw0J3BdXR5i4jIwqe7nZxyE2WfQ5M1AJZlU2SSCWIDFS/AD5uY+hDXj3lTd57/LfEIX3S/S7813tR3u47Nmr4O+rrUKiciIouDwpycUvlKwIGJKgBLu5IM5NLExhDHMFkLKNVmHy93lEO9O9YzCV4wq5sqk3JtzuvtIpdxWz95ERGRNqQwJ6dMyQvZP1EBoKfTZXBJBoAoNoRxxHjJoxY0syjJdLvMGoImV9HJplyW59Ik1MUqIiKLhO54ckrEseHgRBVjIJdxWTkV5KAe5qpeSKEaMocsx/b4/KaOs4DeriS9Ha5msYqIyKKhMCenxEjJww9jEo7Fyp7MtDBlDBRqIV4YN7VY8PF2mHVNHZdxYG1vJ50pdbGKiMjioTAn81YLIkaK9Zmrg7nMtF0X4tgA9WVKvKC58XLOcZFve9zcnqzZTIJVPR3a9UFERBYVhTmZtyMFD2Mgm06Q65jeKhabqTBX8qiEpqnP62Oy8bhiUrxkmls0uLcrRTbjKsyJiMiiojAn8+ZH9VmnMy3SG5t6oBsr1Lthm9FdGwZgSdpip1lLhNNUuWzaJe3aLOtKNXnmIiIi7U9hTk6BeovbTA1iBkMQRRycrBI1l+Wwy0cAGMza7Giyi9UFlnQkuXhFN6t6O5r7IhERkQVAYU7mbWpY3IwzSI2BA+NVRks1msxyeKX6bg8ruqymx8ul3frkh7VLO5v8FhERkYVBYU7mzRwNczO8FxvDc4cLVJpek8RwsFzvVl3S6bLdNBfmujMuvdkk3enm1qMTERFZKHTnk3mLpprmZpp44AUxE+UAz2+2Xc5iIu4Eynwk+jMSZkVTpZKuw8pcRosFi4jIoqM7n8zb0Rmr9gzdrBMVn+LUGnOtqk98mH1mqg1k3AR9mvggIiKLkMKczEscm0Y360wtc0cKVYYmqzTdMDcHjlVfFqUj1dysVxERkYVEYU7mJZzqYrWsmcPcs8NFJqpe058XTA4TFUcBsNNdTZVJJaArkyCVUJgTEZHFR2FO5sUL6xMbkokTL6WRYo0DY1UK1eZ2fuimzLon7gETs2TdJbg9zY2XSydsXr8sS2qGcxAREVnodPeTeTk6Fu74IFULIp4fLjJeqTUWFZ7NeYVtPLH9ZQC+/47hps8h15lkoDtNwtblLCIii4/ufjIvfiPMTe/iPDBRYbLqMzRZww+aC3Nj//EgYQy/+jqHzMqLaGbyA0BPJknSdUg42sZLREQWH4U5mZejYc49JkgZY6j6MUcKHpUgoskshzcxBMCH1je/vpwD9HSmSCcU5kREZHFSmJN5CeOpMHdMN2tsIF/1GS/7lGvh1GZfs8tSASBh0/Q2XmnXYmlXip5Ol5SjCRAiIrL4KMzJvPhhPaolj1msN1/xGS35VP2IfNVv6nN6KZC2Xj32l02GuVTCIeXa5DLJGSdhiIiILHS6+8mcGWMauz+4x4S5A5NVjIFiLaRQa24br0vt3Y3HBdPBML1NlUs4Nt3pBK5jK8yJiMiipLufzFl8TP/psaPVKn49wIVR8+PlNlivhrkDZhnNTH5wgK6Uw4pcB45tzbjOnYiIyEKnMCenxLE7eflhTBjFDOdrTZc/tmVuv1nWVBnXgZVL0nRnXLXKiYjIoqU7oJxyfhgzWvLYN1ZusoThcvvlxrN9ZnlTpTJJh8ElGRzb0oLBIiKyaOkOKHMWm5nnqXphxN6RImPl5iY/rGCcZVaeqd5ZDjDQVLkO1yXXmcS2LFKuLmUREVmcdAeUOTu6+0MyYWNN9bMGU61yz48U8Zqb+8Bya4I9cT+HS/VwWOkcnLWMDaSSFr0dKZIJm56O5Jx+BhERkXanMCdz5gX1tHZsF2ehFrB7pMTesSpNzn3gl+YC3ul/jeeKGQCczp5ZyyRt6M4kSScc+nOpabNpRUREFhPdAWXOGvuyHtPFuedIie37J6l4YUufFQceUa0+xs7pmn1Zko6kQzph4SQsVuYyLX2XiIjIQqIwJ3MWRieuMffLQ3kK1ZCo2W0fppSffQSoBzk73TXr8WnXIZ1I0JtJ0pV2W/syERGRBURhTk4ZYwx7RkpUw5Co2T5WwEQhha33AdD95t9sjL97zTKOTW9nkjVLM1pfTkREFrXE2T4BaX9Ho9RYscZIyadUi5oeL/d66wD5Z3/Mvvxh7I4ldL3phqbKdSZserMp+rrSczpnERGRhUItc3LKPHOoQM2PqIVNTmMFftfZTO3n/wOA9179Omx39nBmA11pl9U9maZa8URERBYyhTmZs6PrzB0NVPvGqxRrAU03ywGX2S9zqFj/nOXnX9JUmZQNXZkEPR0pEo7CnIiILG4KczJn0VSYc6bC3NBklUItoNl2uRQ+b7T2Np4/b9Y0Va4rbbOsy8W20M4PIiKy6OlOKHNmpsKcbcN42eNQvkrNa34m68XWPpLWq9Fvj2lu54febJpcOoVlWaQSTsvnLSIispAozMmcBVOpzbEt9o9VmCgHVFsYL3fZMfuxAkRNzsfpSCToSiVw7PruEyIiIouZ7oQyJ1U/IowMlgXphMNLo0UqfojXQpi73H5pTt/dmXZYmk2ytFNbeImIiCjMyZwUagEA2XSCohcyNFGlWA2JW5n8YL08+0HHSVqwPJuhpyNFX1eq5fIiIiILjcKczElxKsx1JhMcmqxyYKJKREyzDXM5SrzOHm75ezOuRS7jsjybJOVqvJyIiIjCnLTMD2Oqfr0JzrLqe7ROVAKi2BA2Ofnh2PFytaPbuDqzh7Nspt692pV2tSyJiIgICnMyByWvnr4ySYcoNpS9gKofUagFTS8xd/lUF2vRM5SDqYkUnT2zlluaTbKiJ4M19T8REZHFTmFOWlao1rtYu9MJvDDm0ESFyWpA1QtnKfmqN9j7ABgqTbXwJTPYycys5VZkM+Q63HoZZTkRERHtzSqtMcY0WuayaZeJ8Qq/PJCnWAtoIctxa/Ap/s9wmKVj/wu4D6erd9YyCWBlTwbX1t8gIiIiRynMSUu8MMaYeqtYwrGYrPgcytcoec3v/ABgsNltBnni6UMAJPsvmLVMOgnLsimiuN4tq90fRERE1M0qLQqnglQyYZOvBowUaxwu1FrqYj3KH91H5bnHAMhd/duzHt/XmSbtJki7DmnXJpt2W/5OERGRhUZhTloShPUxbq5jM1n22fryKJPlAC9o/bPyW+4DDJkLN5Fcvm7W4wdyGfwoxk1YWmNORERkisKctCSIpuarGsPLI2WeP1zCjyJaaZdbYx0mrk5S2fUoAEuu+eCsZWzAYJFwbDqTCZZ0qFVOREQENGZOWlQLpmaf2jBR9aj4UX0MHdDMEnNpPP5X8k/YVXa4DIPtpkj2nz9ruVTCoitls6wrRW9nCktTWUVERACFOWlRbWqLh4Rd72atBhHVoPn15S61duNaEVmr3i9rmlwrLp20WbEkxcqeDB0p7fwgIiJylLpZpWlxbPCmWuaMMRycrFGrhUQtTGPdaL84p+/uTiZ4ff8S3KluVhEREalTmJOmeVOTH/wwZjhfY6Tg4UeGuNlmOWCj/fycvrurI8l5vR2kXRvHVheriIjIUWrikKZFxlCsBUxUfNKuQ7EWEJqIqMn9WMHMuWVudU+GbMbFdfT3h4iIyLF0Z5SmDedrHC54WJZFLYyIjCGKTdOLBZ9vHaLHKgEQm+Zb1zIJi96uJK6jVjkREZHjKcxJUw4Xahwp1ADo60oSx4ZSLSQIm26W44pjWuX2mIGmy3WmHLrTSQC1zImIiBxHd0ZpymQlIDKGpZ1JBrozDE1WKdZCTPNZjiutFxqPd5jZFwk+KuMmWNpZX1dOLXMiIiLTKcxJU6LYEEYxnakEWIaRkk85CPBbCHMb7VfD3DPxeU2XW7kkzQV9WUBhTkRE5HgKc9KU2BjCCGwLxss+w/kKlRb2Y11CkQvsQ43nO8zrmirnWLCmt4ul3amp5wpzIiIix9JsVplVHBuMgSCOiWJDuRqyZ7RC0ML6cseOlxsxOQ6apU2VSydgXV9n47mtPz9ERESmUZiTWYVxvS81NoYgjtk3UWay4hO1sL7co/Gl/Ib3Bd5i7yJBDE3u/NCVchnsSRPH4NiQSmj3BxERkWMpzMmswqlVgaPYcHCywsuHC/hh3PQWXgAhCX5hLuAX0QVTrww3Va6/O8lgTweObZFM2CQTapoTERE5lu6MMqsgNARRzEjRo+obDkzWCJpfKXhe+rMd9E7NZO1K628PERGR4ynMyazCOOZIsYYxUPNDvDCiVG1+8sNcOcDavo7GdmFd2pNVRETkBApzMqvIGEpeiG3VJyCMlQKCFsp3UgVab8lLJizW9maoBfU015HSeDkREZHjqalDZuWHMVUvIl8NqAUBY2WvpfLfSX6ZVdYIT8QX8zfhjewya5sq15V06Jza+SHhWNr9QUREZAa6O8qsSl7I4UKNyUrAaMGnUG2+XS6Fz+XWy6y0xviA8xgZmg+C2YxDyq1foh1JtcqJiIjMRGFOZjVS8KgGEX4UcaTk47cwXO4y62VSVj38VUyK7UcXCw7rr1n2yUNaxnVJT7XGZVyFORERkZkozMlrimLDWMnHC2MsYP9EhRbWCuZqe1fj8bb49YRTPftReQIAu7NnxnIpB163rJOBng4A0mqZExERmZHGzMlrGit5hCamEkQcKVQp11qbxXqNs7Px+PH4jY3HYWkMAKerd8ZyuYzLNef3NWayqmVORERkZgpzclJxbBgpecSx4Ui+ykS5Ri1svl0ujcebrFe38dp6TJiLSvWWOadr5pa5ZdkUq5fWt/HS5AcREZGT0x1STsqPYsLIsGe0xGQ1oFiLiU3zS4xstF8gZdVb8kom/ep4OcAEVQDsZMcJ5RygryvJko763xop7fogIiJyUrpLykkFUcyhyQovHi7hhTExBi9oPsxdY7/axfpkfFFjvNw01ol7tGZcWJbNYFv1y1OtciIiIienu6Sc1HjZ56m9E0xWA6IoJopMS5Mf3mo/03j8s/iSpsulEwm60gnM1ELDCefEwCciIiJ1CnMyozg2bNs7TrEWUvFCsGjsxNCMbkpssPY0nm+J1zddtiuTwLEsKl79+xxbYU5ERORkFOZkRkEcM1EJKHkhFoZyLaLsNT+T9a32Thyr3rI2arp5zqxuumxnKkE1iIiNIeFYLMkkWz5/ERGRxUKzWWVGUWQYK9d3exivBNTCEL+F7VV/HL+J3/Xv5G32djxcTJN/N6QdSNgWGdchl3G5YHkXCY2ZExEROSmFOZnRZDXg4HiFg5MVqn5EqdZ8FyuAR5LH4g08Fm9oqVzSdejpcMl1uFzY34VtK8iJiIi8Ft0pZUYHxssMTVap+BFh3NrEh2YE4wcBsBx32usdCZuBJR30daUU5ERERJqgu6XM6KUjZSpBTBQbgqi1VrnZBOMHqTz3GACdl7xz2ntLOl2yaZelnalT+p0iIiILlcKcnKBYC9g/UcEPY2p+SAubPgDQS+E1389vvQ9MTOb8N5MauKDxetKCdDJBJuHQ361JDyIiIs3QmDmZJooNe8cqjJV9gjCiFrbWxZrGY0vqk7xiBvhx/CbuDd9HiVd3eQgmhynvfBiA3Fs/NK1sKuXQkXDIdbh0pad3v4qIiMjM1DIn01SDiELVZ7zkUfQC4hZmsAJssp8lbQVcZO/nI85mPKa3sHn7nwETk1r5RlIrLpz2nmtZpFMO2XSCzqT+zhAREWmGwpxMExvDUKHGSMnDj0zLYe4d9i8ajx+L1xMc1/gblcYBSPQMnlA2lXDIphL0dKTo7VI3q4iISDMU5mSaYiXgqb0TVP2QIIpobeqD4d3O041nD8eXn3BEVBoDwMn2TnvdAVzHoqcjxfLuFKmE0/K5i4iILEYKczLNlt2jFKshVT/GC1or+0ZrL6usUQBiY/Hj6E0nHBOVJgBwOnumve4mwE3YdKUdVvVm5nbyIiIii5DCnDTEccxLR8ocKVYJ47jFVjn4VfupxuNfmPMZYckJx5jQB8BOTg9sCdumw3Xo7UxpWRIREZEWKMxJw1C+xu6REhOVgJrf+tpy73JeDXM/iq5oqWw6adOXTbKmR61yIiIirVCYk4ZHnjvMcL5GLYjwo7Clsv2Mc7m9u/H8x3FrYS6bdBnIpUm6msUqIiLSCoU5AcALIx59aZQgjDFRTK3F8XK/5mxrPN4bL+c5s7ql8t3pBOlkAtexWvtiERGRRU5hTvDDmOeGChRrEbUopOSHLe/F+uv2E43HD8VXAs2HsrQDKTdBLuOyrq+zxW8WERFZ3BTmFrkgitkzWmai5OOFEWUvpFBtbbxcBzUuPaaL9cHoqpbKZ1yHzpTDW1+3lIGcxsyJiIi0QgOUFrE4NrwyWsYPY0ZLPmMlj2ItpLXRclAhzVXeN3i3/RTX2jv4hTm/pfIdaYeBXIYr1vbOfrCIiIhMozC3iBVrIbUgxrZg13CBshdQazXJTSmT4QfxW/lB/NaTHmPCAP/IHgDsZH2/VhvocF3esq4Xx1FDsYiISKt091zEvKg+Mm7veIlnh/IUqnNMck0q7dhMVBrD6eolc/6VAKRd6O9Osaqn47R+t4iIyEKllrlFzA9jXh4p8MC2gzx3qECt1VkPLTBRQH7rPwLQffXvYCXqe692JBKs6smQTGgWq4iIyFyoZW6RMsbwH3vG+PvH97FnrERhTknO8H77MZZQnPXI0vbNRMURnK5espddD9T3Y00lHZZnM7jqYhUREZkTtcwtUocmq2w/kKdQC6nOYSkSgEusvfxfyXvxjcMj8eX85+BT+LgnHBdVi0z+9O+A6a1yrmPRkbTp6XRJu858fhwREZFFS80hi9BoyWMoX2MoX6MWhATh3PpXf9t5BICkFdFrFWYMcgD5x/6OuFrA7VtD9vIbGq+nkw7LulLkOpJk0zOXFRERkdemMLfI5KsBQ5M1Dk1WGS/5VPyIvNf65yQJeJ+zpfH8f0Rvm/E4//Buik//KwC9v3oLllNvDE5YsCSToC+bImFbdCTVMiciIjIX6mZdRKLYsH+8zFjJZ+9ohXwtoDTHGay/Zm9jqVUfK1czLj+Mrp7xuPzW+8DEdFx0Lem1lzZedx1IODa9nSlcxyKjblYREZE5UZhbRMbKHgcmqlS9iEP5MuMlj2pk5vRZH3Z+1Hj8YHwVBWbehiuq5AHoeMP09edcxybp2KzqzdCZSmDbms0qIiIyFwpzi0TJC/nl/jzlWsT+yTJ7x6oUasGcPusC6wDXOM82nv99+O6WP6MrleC8vk56OtIs6UjO6TxEREREYW5ROFKscWC8ymTZZ+9YmbGKx57REt4c15X7uPPvjcfPxmvZZi5sqbwFZDMuK5d00J12tSyJiIjIPCjMLXCTFZ/t+/MUayGVIMILI54fKjBR8uf0eUso8lvOTxvPvxtdTz2eNc+m3s3an0uxpDOBoy5WERGROVOYW6DKXshI0WP3aIliLSSTtBkpRrxwuMS+sQq1eG6f+1FnMxmrHgTHTJYfRNe0/BkZF5Z3p1nVkyadSJBN6zIUERGZK91FF5hCLWCk6FHxIgyGYi3EsSyCKGbry6M8f7jAaGVuM1gz1Ph44t8az/82vB6P1sa7OcDrlnfxur5Ocuk0AD0aMyciIjJnGqy0QPhhzEtHiuwdrVDxIiwLHNvCxqIaBtz35H52HsozUZ5b9yqAR5L/I/g9no3XUjYpvhf9WsufkUnarO3toq8rhWVBZ8rR7g8iIiLzoJa5BSCMYl4ZK+MFMZYFS7uS9HWlePFIkTA27BkrM5Sv4ocx/hwnPQDE2DwYX82D/lWcbx1ikmxL5S0g6dqs6unAsSxcx1arnIiIyDwpzLW5ODbsHa/gBTEJx+L8ZV0kE/UG14mST6kWsOdImbIXUKxFzG1VueNZvGxWtlwqnbDp70qzLJviohVZkglbrXIiIiLzpDDXxowx7J+od6vaNqzr62wEuTg2DBdqbNs7zvYDkwwX57am3KmUdm02rOrmDQNZsul6i1wqoZ5+ERGR+dCdtI2NlDwK1RDLgrVLO6e1co2VPZ56ZZzHXh7hcGHu4+QA/nfnX3iddWhuhU29LdCxoCPlMJDrYFVPBoBkwtbODyIiIvOkMNem4tgwWqyHtMElGbpSrzay1oKIn704wouHSxSqIXNchQSATfZO7nT/gX9L/lfuSPy/JGmthS/2ygC46Qy5TJI1vR0s6UgBkHAU5EREROZLYa5N5asBUWxwExY9HW7j9TCKefSFI/zrzmFeOFKY14QHh4i7E38LQNKKuMp+joDWxrhFpXEAOpYsY8OKLFed30vUaK1TmBMREZkvjZlrU2NlD4DeziSWZdUnQoyVuf/pAzy1d5xXRsoU57oy8JRPOD/kDfaBxvO7go9hWsj/JgqIqwUAlvT1s2F1Dz0dKWpBPWFq5wcREZH5U5hrQ8P5GlW/vgzJkrTLWMnjhcNFfv7KGNv2TDBc8Jio+MyjUY4rrBf4bOIfG8+/H76D7eb8lj7DH9kLgOUkWLZsKcu7U3QmHSYr9e5hjZcTERGZP4W5NnNwssp4ySeIYlKuzYsjJSpexN7xMi8cLlGo+ZQ9n9rcNnkAoJcC30j+Ja5Vj4OHTC/3hP+p5c8pbP3/AMhddA0bVuZ405oevDBmslIfd5fLuK9VXERERJqgMNcmjDEcmKhyaLJKvhqQdh0qvkW+GmCMYbRQ45XRErtHSlTnEeRsYr7ufoMVVn2sW2AcbvU/RZ6ulj7HH3mFygtbAIt3f+iP+MjV57Esm2bPaBljoDuTmDZpQ0REROZGd9M28dxwgd0jFfwwImFbVPypvVcrPrtHyzz6wigHJyp48xsmx6cSD/A2Z0fj+T3hf+Ipc2HLn5Pfch8AfRuu5TffvYnl3RkKtYBSrb6UykAuPb8TFREREUBhri0cGK/w3FAJy6pvh5V2HRxgshIwWvbYdSjPofz8g9z77C18yvmnxvMHo7fwneg9LX+OMTGVF7cCcM0Hfo+OZALbgv3jFaC+3VgqoZ0fRERETgWFuXNcvhqw4+AkALlMgp7OFCUvxDKGih/y2IujvHC4OK8xcgAWMR9NPIRt1ZcN2R0P8KfBH1LfUbU1cbUIUf2Ebnz7VVx53hJGSj5xDJmkQ39WrXIiIiKnisLcOSxfCdg1XKAWGCzLkHIsXhgusH+ixPb9eX65f5LJeS4/cpTB5vf8/8L/k7yHVdYInwg+S4mOOX1WVBoDoGtJL+9840r8yOCHMW7C4rylHZrFKiIicgopzJ2jSrWAZw5Osm+8QqEWUKyG/PSFKrtHixwYrzJWnt/ODjMp0MlH/DtYbk3yslk558+JSxMALFm6nHzNJ+UksG04b2knCUfrVIuIiJxKCnPnmDCKGS/7PL1vgucPFynXIsqez8GJGi+PlBktV6kGYOb1LYbr7Z+zzhrim9H7pr1ToIuCaW3m6vHSpgqAm+7Ewppx71gRERE5NRTmzgFBFFOoBhwu1Ng3Xmb3aJmdBwscLtQII0OxFpCv+IxX5t8ad4F1gLsS3+Na5xkC47A53jivVrjjuRb0ZNPsBWzHJpdxWdXToSAnIiJymijMnQHGGKpBhB/G+FFMMDWGLIhiRosehyarjJY8DkxWOTBWYbxSY6ToUfZjyrVoXjs5HPV66wC/5/wrv+M8QsKqR0LXivhc4u/5veBPT8E31OU6ElhWvSs17dqcv6wLS3uwioiInDZzCnP33nsvX/7ylxkaGuKSSy7h61//Otdee+1Jj3/kkUe4/fbb2blzJ4ODg/zpn/4pt9xyy5xP+lznhzFVP6IShJS9iFoQMbW3PGFUD3QlL+RQvsorI2XyNZ/Rgk/VDzg4WWWi7FOe5+xUgPOsIW6yH+dG53Eutvef8P6j0Qb+PPzw/L9oSsIC13GwE/Xw1uEmFOREREROs5bD3H333cdnPvMZ7r33Xt761rfy13/919xwww08++yzrFmz5oTj9+zZw6//+q/ziU98gr/7u7/jZz/7GX/8x3/MsmXL+K3f+q1T8kOcTXFcb3Wr+BEVP6TiR4SRIYjqLW9lP6TshVT9qN46F8SMlWuMFj0OF6vsn6gwVvKp+RDMbyBcw+87D3Kz8xMutA/O+P4rcT9fDH+XH8VXMJelR04m6UB3xqWru770SMJRkBMRETndWg5zX/3qV/n93/99/uAP/gCAr3/96/z7v/87f/VXf8U999xzwvHf/OY3WbNmDV//+tcBuPjii/n5z3/OV77ylXMvzBkDXqH+/xgazWlTz40xVPyAihdSqAZMBDaHvRQTZY98NSBfDagUxokqk/hhRC2I8YKQahBS9SK8IKAaxBjAmprCsN/0EzF9PNkbrVfI4JG2fNL4pAhI45O2AnKU6bUK9FpFeinwP6NN3B+/bVr5ZdbkjEFuR3we34uu45+jXyE4hT3sFrC6J8llq3p49xsHeOyhXQA4WoJERETktGvpju77Ptu2beOOO+6Y9vp1113Hli1bZiyzdetWrrvuummvXX/99Xz7298mCAJc99zYbD2KDaMT4/T/36876TEW0Dn1bxnw9+5v8c3Eh+tj4cL6WLg/MA/wGee+mT/ABlLTX9pY+yvGyE177b7kfyNrVZs670Om74Qwtz1+9WfYFa/mf0ab+GF8Fa+YFU19ZisSFlw00MXV5/exad1SMqlXu1atU9jqJyIiIjNrKcyNjo4SRRH9/f3TXu/v72d4eHjGMsPDwzMeH4Yho6OjrFhxYsDwPA/P8xrPC4VCK6c5J8YYRooB/bMf2hDHZmrpDQvLBhOalpcMmSnu1HDJ0lyYW20dOeG1J+OL+S/BH/JkfBF7zUCLZ9S8BDCYS7FxbS9XrVuK49jEQHJqLTkNlxMRETn95tTXdvygdmPMaw50n+n4mV4/6p577uHzn//8XE5tzhzboreztVbCK9f2sOLKN1KsBRS8gOHxKm8+3Av7Tjw2NvWOVYM19a/+eCajZgkxNjWTpEYSD5caSWomSYkM4ybLGN2Mm272mhPj5yg5/jF6R0s/SysSQFfK4s3reljT181V65ayYVWOalAfL7jpivX84X/+FJdefOFpOwcRERGpaynM9fX14TjOCa1wR44cOaH17aiBgYEZj08kEixdunTGMnfeeSe3335743mhUGD16tWtnGrLLMtisK8X/usrR1+Zalo6/v9ffe9iO8HFznEBMP7vwH+vH3tMWD3Zvgc/n/HVG+f8c5wLXt+/iZveuelsn4aIiMii0FKYSyaTbNy4kc2bN/Obv/mbjdc3b97M+9///hnLbNq0iX/5l3+Z9tpDDz3ElVdeedLxcqlUilQqNeN7p5VlQaZnfp9ha7sqEREROXNaTh6333473/rWt/jOd77Drl27uO2229i3b19j3bg777yTj370o43jb7nlFvbu3cvtt9/Orl27+M53vsO3v/1t/uRP/uTU/RQiIiIii1TLY+ZuvvlmxsbG+MIXvsDQ0BDr16/nwQcfZO3atQAMDQ2xb9+rg8bWrVvHgw8+yG233cY3vvENBgcH+cu//Mtzb1kSERERkTZkmaOzEc5hhUKBXC5HPp+nu7v7bJ+OiIiIyGnTau7RAC8RERGRNqYwJyIiItLGFOZERERE2pjCnIiIiEgbU5gTERERaWMKcyIiIiJtTGFOREREpI0pzImIiIi0MYU5ERERkTamMCciIiLSxhTmRERERNpY4myfQDOObh9bKBTO8pmIiIiInF5H887R/DObtghzxWIRgNWrV5/lMxERERE5M4rFIrlcbtbjLNNs7DuL4jjm0KFDZLNZLMtqvF4oFFi9ejX79++nu7v7LJ7h4qD6PrNU32eW6vvMUn2fWarvM2u+9W2MoVgsMjg4iG3PPiKuLVrmbNtm1apVJ32/u7tbF+cZpPo+s1TfZ5bq+8xSfZ9Zqu8zaz713UyL3FGaACEiIiLSxhTmRERERNpYW4e5VCrFXXfdRSqVOtunsiiovs8s1feZpfo+s1TfZ5bq+8w60/XdFhMgRERERGRmbd0yJyIiIrLYKcyJiIiItDGFOREREZE21hZh7rzzzsOyrGn/7rjjjmnH7Nu3j/e+9710dnbS19fHpz71KXzfn3bMjh07ePvb304mk2HlypV84QtfaHqrjMXu3nvvZd26daTTaTZu3MhPf/rTs31Kbenuu+8+4VoeGBhovG+M4e6772ZwcJBMJsM73vEOdu7cOe0zPM/jk5/8JH19fXR2dvK+972PAwcOnOkf5Zz06KOP8t73vpfBwUEsy+Kf//mfp71/qup3YmKCj3zkI+RyOXK5HB/5yEeYnJw8zT/duWe2+v74xz9+wvV+9dVXTztG9d2ce+65hze/+c1ks1mWL1/Ob/zGb/D8889PO0bX96nTTH2fU9e3aQNr1641X/jCF8zQ0FDjX7FYbLwfhqFZv369eec732meeuops3nzZjM4OGhuvfXWxjH5fN709/ebD37wg2bHjh3m/vvvN9ls1nzlK185Gz9SW/n+979vXNc1f/M3f2OeffZZ8+lPf9p0dnaavXv3nu1Tazt33XWXueSSS6Zdy0eOHGm8/6Uvfclks1lz//33mx07dpibb77ZrFixwhQKhcYxt9xyi1m5cqXZvHmzeeqpp8w73/lOc9lll5kwDM/Gj3ROefDBB83nPvc5c//99xvA/NM//dO0909V/b7nPe8x69evN1u2bDFbtmwx69evNzfddNOZ+jHPGbPV98c+9jHznve8Z9r1PjY2Nu0Y1Xdzrr/+evPd737XPPPMM+YXv/iFufHGG82aNWtMqVRqHKPr+9Rppr7Ppeu7bcLc1772tZO+/+CDDxrbts3Bgwcbr/3DP/yDSaVSJp/PG2OMuffee00ulzO1Wq1xzD333GMGBwdNHMen7dwXgre85S3mlltumfbaRRddZO64446zdEbt66677jKXXXbZjO/FcWwGBgbMl770pcZrtVrN5HI5881vftMYY8zk5KRxXdd8//vfbxxz8OBBY9u2+bd/+7fTeu7t5vhwcarq99lnnzWAefzxxxvHbN261QDmueeeO80/1bnrZGHu/e9//0nLqL7n7siRIwYwjzzyiDFG1/fpdnx9G3NuXd9t0c0K8Bd/8RcsXbqUyy+/nD//8z+f1oW6detW1q9fz+DgYOO166+/Hs/z2LZtW+OYt7/97dPWfLn++us5dOgQr7zyyhn7OdqN7/ts27aN6667btrr1113HVu2bDlLZ9XeXnzxRQYHB1m3bh0f/OAH2b17NwB79uxheHh4Wl2nUine/va3N+p627ZtBEEw7ZjBwUHWr1+v38csTlX9bt26lVwux1VXXdU45uqrryaXy+l3MIOHH36Y5cuXc+GFF/KJT3yCI0eONN5Tfc9dPp8HoLe3F9D1fbodX99HnSvXd1vszfrpT3+aK664gp6eHp588knuvPNO9uzZw7e+9S0AhoeH6e/vn1amp6eHZDLJ8PBw45jzzjtv2jFHywwPD7Nu3brT/4O0odHRUaIoOqF++/v7G3Urzbvqqqv43ve+x4UXXsjhw4f54he/yDXXXMPOnTsb9TlTXe/duxeoX6vJZJKenp4TjtHv47WdqvodHh5m+fLlJ3z+8uXL9Ts4zg033MDv/M7vsHbtWvbs2cOf/dmf8a53vYtt27aRSqVU33NkjOH222/nV37lV1i/fj2g6/t0mqm+4dy6vs9amLv77rv5/Oc//5rH/Md//AdXXnklt912W+O1Sy+9lJ6eHn77t3+70VoHYFnWCeWNMdNeP/4YMzX5YaayMt1Mdad6a90NN9zQeLxhwwY2bdrE+eefz9/+7d82Bs7Opa71+2jeqajfZv57I3DzzTc3Hq9fv54rr7yStWvX8sMf/pAPfOADJy2n+n5tt956K9u3b+exxx474T1d36feyer7XLq+z1o366233squXbte89+xCfhYR296L730EgADAwMnJNiJiQmCIGj8lTLTMUebQ4//S0Ze1dfXh+M4M9ad6m3+Ojs72bBhAy+++GJjVutr1fXAwAC+7zMxMXHSY2Rmp6p+BwYGOHz48AmfPzIyot/BLFasWMHatWt58cUXAdX3XHzyk5/kBz/4AT/5yU9YtWpV43Vd36fHyep7Jmfz+j5rYa6vr4+LLrroNf+l0+kZyz799NNAveIANm3axDPPPMPQ0FDjmIceeohUKsXGjRsbxzz66KPTxto99NBDDA4OntD9Kq9KJpNs3LiRzZs3T3t98+bNXHPNNWfprBYOz/PYtWsXK1asYN26dQwMDEyra9/3eeSRRxp1vXHjRlzXnXbM0NAQzzzzjH4fszhV9btp0yby+TxPPvlk45gnnniCfD6v38EsxsbG2L9/f+O/3arv5hljuPXWW3nggQf48Y9/fMLQIF3fp9Zs9T2Ts3p9Nz1V4izZsmWL+epXv2qefvpps3v3bnPfffeZwcFB8773va9xzNGlSd797nebp556yvzoRz8yq1atmrY0yeTkpOnv7zcf+tCHzI4dO8wDDzxguru7tTRJE44uTfLtb3/bPPvss+Yzn/mM6ezsNK+88srZPrW289nPftY8/PDDZvfu3ebxxx83N910k8lms426/NKXvmRyuZx54IEHzI4dO8yHPvShGZcWWLVqlfnRj35knnrqKfOud71LS5NMKRaL5umnnzZPP/20ARr/7Ti6jM6pqt/3vOc95tJLLzVbt241W7duNRs2bFh0SzcY89r1XSwWzWc/+1mzZcsWs2fPHvOTn/zEbNq0yaxcuVL1PQd/9Ed/ZHK5nHn44YenLYVRqVQax+j6PnVmq+9z7fo+58Pctm3bzFVXXWVyuZxJp9PmDW94g7nrrrtMuVyedtzevXvNjTfeaDKZjOnt7TW33nrrtGVIjDFm+/bt5tprrzWpVMoMDAyYu+++W8uSNOkb3/iGWbt2rUkmk+aKK66YNj1bmnd03SfXdc3g4KD5wAc+YHbu3Nl4P45jc9ddd5mBgQGTSqXM2972NrNjx45pn1GtVs2tt95qent7TSaTMTfddJPZt2/fmf5Rzkk/+clPDHDCv4997GPGmFNXv2NjY+bDH/6wyWazJpvNmg9/+MNmYmLiDP2U547Xqu9KpWKuu+46s2zZMuO6rlmzZo352Mc+dkJdqr6bM1M9A+a73/1u4xhd36fObPV9rl3f1tRJi4iIiEgbapt15kRERETkRApzIiIiIm1MYU5ERESkjSnMiYiIiLQxhTkRERGRNqYwJyIiItLGFOZERERE2pjCnIiIiEgbU5gTETmGZVlYlnW2T0NEpGkKcyIiIiJtTGFOREREpI0pzImIiIi0MYU5ERERkTamMCciIiLSxhTmRERERNqYwpyIiIhIG1OYExEREWljCnMiIiIibUxhTkRERKSNKcyJiIiItDGFOREREZE2pjAnIiIi0sYSZ/sERETORVdfffVJ37vtttu4+eabz+DZiIicnMKciMgMnnjiiZO+NzQ0dAbPRETktSnMiYgcwxhztk9BRKQlGjMnIiIi0sYU5kRERETamMKciIiISBtTmBMRERFpYwpzIiIiIm1MYU5ERESkjSnMiYiIiLQxhTkRERGRNqYwJyIiItLGFOZERERE2pjCnIiIiEgbU5gTERERaWMKcyIiIiJt7P8HIWLPu466dvoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "axs = az.plot_ppc(\n", + " idata,\n", + " # data_pairs={\"L\":\"L\"},\n", + " var_names=[\"L\"],\n", + " kind=\"cumulative\",\n", + " # backend_kwargs=dict(sharey=True),\n", + ")\n", + "fig = plt.gcf()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "plots.plot_posterior_predictive(\n", + " identifier=\"peak_fit_skew_normal\",\n", + " time=timeseries[0],\n", + " intensity=timeseries[1],\n", + " path=path_result,\n", + " idata=idata,\n", + " discarded=False,\n", + ")\n", + "\n", + "plots.plot_posterior(\n", + " identifier=\"peak_fit_skew_normal\",\n", + " time=timeseries[0],\n", + " intensity=timeseries[1],\n", + " path=path_result,\n", + " idata=idata,\n", + " discarded=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exemplary result with a double peak" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "path_result = Path(\"./paper raw data\")\n", + "path_d = Path(\"./paper raw data/exemplary results raw data/A2t2R1Part1_132_85.9_86.1.npy\")\n", + "timeseries_d = np.load(path_d)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsJElEQVR4nO3deXxU9b0//teZPetkIxuEfRUQEZTFDRURLOLWaktLtbXorUsvV217bW9v6b1WW3/fVnvl1lpr3dDqvbeiVlsU3JEdjCwiggQIkIVsk33W8/vjnM+ZM8lMJrPPkNfz8eChJCeTkwCZ97y3jyTLsgwiIiKiDGNI9Q0QERERRYNBDBEREWUkBjFERESUkRjEEBERUUZiEENEREQZiUEMERERZSQGMURERJSRGMQQERFRRjKl+gYSxefz4dSpU8jLy4MkSam+HSIiIhoEWZbR0dGByspKGAwD51rO2CDm1KlTqKqqSvVtEBERURRqa2sxYsSIAa85Y4OYvLw8AMo3IT8/P8V3Q0RERIPR3t6Oqqoq7Xl8IGdsECNKSPn5+QxiiIiIMsxgWkHY2EtEREQZiUEMERERZSQGMURERJSRGMQQERFRRmIQQ0RERBmJQQwRERFlJAYxRERElJEYxBAREVFGYhBDREREGYlBDBEREWUkBjFERESUkRjEEBERUUZiEENEFCen2nrw+PtfwtHtTvWtEA0JZ+wp1kREyfbf7x3GC9uOw2Iy4NYLx6T6dojOeMzEEBHFSW1rDwDA0e1K8Z0QDQ0MYoiI4qSxvRcA4PT4UnwnREMDgxgiojhpUIOYXrc3xXdCNDQwiCEiigOnx4tWtaGXmRii5GAQQ0QUB43tTu3/GcQQJQeDGCKiOGjs6NX+3+lhOYkoGRjEEBHFgT4T0+tmJoYoGRjEEBHFgWjqBZiJIUoWBjFERHHQ0KHriWEmhigpGMQQEcVBYCaGQQxRMjCIISKKg8DpJJaTiJKBQQwRURzoMzFs7CVKDgYxRERxwMZeouRjEENEFKMelxftvR7t9+yJIUoOBjFERDHSL7oDOJ1ElCwMYoiIYtSgNvVmW4wAlHKSLMupvCWiIYFBDBFRjEQ/zMiibACATwbcXgYxRInGIIaIKEZ9gxiAzb1EycAghogoRo3qtt6qgCCGfTFEicYghogoRiITU5ZvhcWk/FhlEEOUeAxiiIhi5A9ibLCKIMbNchJRojGIISKKkThyoDTPBptZmVDi1l6ixGMQQ0QUI305ScvEsLGXKOEYxBARxaDT6UGXSwlYSvXlJPbEECUcgxgiohg0qlmYXKsJuVYTrCax8I5BDFGiMYghIoqB2NZbmm8FAFjNyo/VXjb2EiUcgxgiohiIc5PK8mwAABszMURJwyCGiCgG+qZewJ+J4Yg1UeIxiCEiioEoJ5XlK5kYNvYSJQ+DGCKiGIhMTKkWxLCcRJQsDGKIiGLQqGVilHKSjY29REnDIIaIKAYNHf4jBwBmYoiSiUEMEVGUZFn2l5Py1MZebuwlShoGMUREUWrv9WhnJJWqI9b+6SRmYogSjUEMEVGUxLbefJsJWRaljMRyElHyMIghIopS3/FqwN/Yyz0xRInHIIaIKEr+RXf+IIaZGKLkYRBDRBSlU209AIByuz6IYWMvUbIwiCEiitLR5m4AwOjibO1tWmMvMzFECccghogoSseauwAAo4pztLdp5SROJxElHIMYIqIo+TMx/iBG29jLchJRwjGIISKKQqfTg6ZOZTpppL6cxEwMUdIwiCEiisJxNQtTmG2GPcusvZ2NvUTJwyCGiCgKwfphAI5YEyUTgxgioigEm0wC/NNJPMWaKPEYxBARRSFUJsbGTAxR0jCIISKKwlE1iBldEjwTwyCGKPEYxBARReGYWk7q3xOj/Fj1+mR4vAxkiBIpoiDmoYcewnnnnYe8vDyUlpbi2muvxcGDBwOuueWWWyBJUsCvuXPnBlzjdDpx9913o6SkBDk5OVi2bBlOnDgRcE1raytWrFgBu90Ou92OFStWoK2tLbqvkogojnrdXtQ5lHOTRodo7AWYjSFKtIiCmA8++AB33nkntm7dig0bNsDj8WDRokXo6uoKuG7x4sWoq6vTfv39738PeP+qVauwbt06vPTSS9i0aRM6OzuxdOlSeL3+Rrjly5ejuroa69evx/r161FdXY0VK1bE8KUSEcXH8RYlC5NnM6Ew2xzwPpGJAdjcS5RopkguXr9+fcDvn376aZSWlmLXrl24+OKLtbdbrVaUl5cHfQyHw4GnnnoKzz//PBYuXAgAWLt2LaqqqrBx40ZceeWVOHDgANavX4+tW7dizpw5AIAnn3wS8+bNw8GDBzFp0qSIvkgiong62qT2wxTnQJKkgPcZDBIsRgNcXh8zMUQJFlNPjMPhAAAUFRUFvP39999HaWkpJk6ciJUrV6KxsVF7365du+B2u7Fo0SLtbZWVlZg2bRo2b94MANiyZQvsdrsWwADA3LlzYbfbtWv6cjqdaG9vD/hFRJQI/n6Y7KDv9y+8YxBDlEhRBzGyLOOee+7BhRdeiGnTpmlvX7JkCV544QW8++67+M1vfoMdO3bgsssug9OprOeur6+HxWJBYWFhwOOVlZWhvr5eu6a0tLTf5ywtLdWu6euhhx7S+mfsdjuqqqqi/dKIiAZ0rMWfiQnGP6HEchJRIkVUTtK76667sGfPHmzatCng7TfddJP2/9OmTcPs2bMxatQovPnmm7j++utDPp4sywFp2b4p2mDX6N1///245557tN+3t7czkCGihAifieH5SUTJEFUm5u6778brr7+O9957DyNGjBjw2oqKCowaNQqHDh0CAJSXl8PlcqG1tTXgusbGRpSVlWnXNDQ09Hus06dPa9f0ZbVakZ+fH/CLiCgRjoZYdCdway9RckQUxMiyjLvuuguvvPIK3n33XYwZMybsxzQ3N6O2thYVFRUAgFmzZsFsNmPDhg3aNXV1ddi3bx/mz58PAJg3bx4cDge2b9+uXbNt2zY4HA7tGiKiVHB5fDjZ2gOg/5EDAs9PIkqOiMpJd955J1588UW89tpryMvL0/pT7HY7srKy0NnZidWrV+OGG25ARUUFjh49ip/85CcoKSnBddddp11766234t5770VxcTGKiopw3333Yfr06dq00pQpU7B48WKsXLkSTzzxBADgtttuw9KlSzmZREQpdaK1Gz4ZyDIbMSzPGvQaNvYSJUdEQczjjz8OAFiwYEHA259++mnccsstMBqN2Lt3L5577jm0tbWhoqICl156KV5++WXk5eVp1z/yyCMwmUy48cYb0dPTg8svvxzPPPMMjEb/kqgXXngBP/jBD7QppmXLlmHNmjXRfp1ERHGh74cJ1aPnD2JYTiJKpIiCGFmWB3x/VlYW3nrrrbCPY7PZ8Nhjj+Gxxx4LeU1RURHWrl0bye0RESWcdmZSiH4YALCa2dhLlAw8O4mIKAJaJqYkeD8MANjUTEwvMzFECcUghogoAszEEKUPBjFERBE4HmZHDMDGXqJkYRBDRDRIHq8Pta1KEDNgJoaNvURJwSCGiGiQ6hy9cHtlWEwGlOfbQl4n9sT0spxElFAMYoiIBqm2RcnCVBVmwWAIPl4NADaenUSUFAxiiIgGqanLBQAhl9wJ3NhLlBwMYoiIBqm50wkAKM4NE8SITAzLSUQJxSCGiGiQmjuVTExxjmXA69jYS5QcDGKIiAapuUsEMQNnYmxmNvYSJQODGCKiQRLlpKJcZmKI0gGDGCKiQRKZmJKw5SQ29hIlA4MYIqJBahHlpHCNvdzYS5QUDGKIiAapSZSTwmVitOkklpOIEolBDBHRIDg9XnT0egAAJWF6YkRjLzMxRInFIIaIaBBau9wAAJNBQr7NPOC1WjmJmRiihGIQQ0Q0CKKUVJhjGfDIAYCNvUTJwiCGiEjn0Y1fYMVT2/qNR/t3xAxcSgLY2EuULAxiiIh01m49jo8ONeHTWkfA21u6lExMSZjJJEDX2Ms9MUQJxSCGiEinV+1jOdXWE/B2ceRAuMkkALCp5SS3V4bXJ8f5DolIYBBDRKQjgpiTfYMYbUfMIMpJZv+PVmZjiBKHQQwRkcrt9cGjZk76Z2IGX06yGHVBDM9PIkoYBjFERKpe3Uh0LOUkk9EAkzrBxOZeosRhEENEpOoJCGJ6A94XyXQS4J9Q6uWuGKKEYRBDRKTSl376ZWLU6aRw5yYJ3NpLlHgMYoiIVPpMTIfTA0ePW/u9KCdFmolhYy9R4jCIISJS9S39iGxMj8uLbpfyvsFMJwGAlZkYooRjEENEpOpxBQ9iRCnJYjIg12oa1GP5z09iEEOUKAxiiIhUvX2yJloQoyslSdLA5yYJIhPDxl6ixGEQQ0Sk6puJOalOKLVEsOhO4PlJRInHIIaISNW3CVdkYsQJ1sU5g5tMAtjYS5QMDGKIiFQiEyMqRv6emMgmkwDAamJjL1GiMYghIlKJ/pXhBVkA/EFMVOUkcZI1e2KIEoZBDBGRqkedJBo3LBcAUN/eC7fXp5WTiiIoJ4mTrPs2CxNR/DCIISJSiUzMiMIsWIwG+GSgob3XP50UVSaGQQxRojCIISJSiSAm22JERYENgHKGkignlUQ1ncRyElGiMIghIlKJIMZmNqLS7u+LaY6inMTGXqLEYxBDRKTq0QcxanPvybYeNEU1ncRMDFGiMYghIlL1qv0rNrMRw9Vy0qGGDrjUbEokPTE2bWMvMzFEiTK4Q0CIiIYAkYnJMhuRo2Zi9px0aG/Ltgz+RyY39hIlHoMYIiKVvyfGgGF5Sv/LkdNdACLLwgDcE0OUDCwnERGpenWZGNETIxTnDr6pF2BjL1EyMIghIlLpe2LEdJIQSVMv4C8n8RRrosRhEENEpNJPJ2VZjCjSBS6RBjGisZeZGKLEYRBDRKTS98QAQKU6oQREU05iYy9RojGIISJSaT0xFiWLoi8pRVtO4p4YosRhEENEpNJ6YtSmXH1zb+TTSWo5iXtiiBKGQQwRkaqnTyZmeEAQE1k5SZSkmIkhShwGMUREANxeH7w+GYA/EzO8MJZyEjMxRInGIIaICP4sDADYLKKxN4ZyEht7iRKOQQwREfxNvZIEWIzKj8YRaibGaJACxq0HQwQxLq8PPjXDQ0TxxWMHiIgA9LqUjEmW2QhJkgAAJblW/GzpWbCZDVp5aLBEYy+gBDI2Q2QfT0ThMYghIgLQ6/EvutO79cIxUT2ezeRPdPe6vf0el4hix3ISERGAHpcaxJji82PRZDTAaFAyOuyLIUoMBjFERNBt67XEL2OiNfdyQokoIRjEEBFBd25ShL0vA+HWXqLEYhBDRAT/tt6suGZieAgkUSIxiCEiQv/DH+NBPFavm5kYokRgEENEBN3hj3GcImImhiixGMQQEcHfE2ONZxCjZmLE5BMRxReDGCIi6Hpi4hjE5NmUVVwdTnfcHpOI/BjEEBFBN50Ux54Ye5YZAODoZhBDlAgMYoiIADgT0BOjBTE9nrg9JhH5RRTEPPTQQzjvvPOQl5eH0tJSXHvttTh48GDANbIsY/Xq1aisrERWVhYWLFiA/fv3B1zjdDpx9913o6SkBDk5OVi2bBlOnDgRcE1raytWrFgBu90Ou92OFStWoK2tLbqvkogoDH8mJn5BTL4WxDATQ5QIEQUxH3zwAe68805s3boVGzZsgMfjwaJFi9DV1aVd8/DDD+O3v/0t1qxZgx07dqC8vBxXXHEFOjo6tGtWrVqFdevW4aWXXsKmTZvQ2dmJpUuXwuv1N78tX74c1dXVWL9+PdavX4/q6mqsWLEiDl8yEVF/vQkIYuwMYogSKqIDINevXx/w+6effhqlpaXYtWsXLr74YsiyjEcffRQ//elPcf311wMAnn32WZSVleHFF1/E7bffDofDgaeeegrPP/88Fi5cCABYu3YtqqqqsHHjRlx55ZU4cOAA1q9fj61bt2LOnDkAgCeffBLz5s3DwYMHMWnSpHh87UREmh61sZdBDFHmiKknxuFwAACKiooAADU1Naivr8eiRYu0a6xWKy655BJs3rwZALBr1y643e6AayorKzFt2jTtmi1btsBut2sBDADMnTsXdrtdu4aIKJ4SsSdGBDHtDGKIEiKiTIyeLMu45557cOGFF2LatGkAgPr6egBAWVlZwLVlZWU4duyYdo3FYkFhYWG/a8TH19fXo7S0tN/nLC0t1a7py+l0wul0ar9vb2+P8isjoqEoERt7mYkhSqyo/7Xedddd2LNnD/7yl7/0e58kSQG/l2W539v66ntNsOsHepyHHnpIawK22+2oqqoazJdBRAQgsZkYBjFEiRFVEHP33Xfj9ddfx3vvvYcRI0Zoby8vLweAftmSxsZGLTtTXl4Ol8uF1tbWAa9paGjo93lPnz7dL8sj3H///XA4HNqv2traaL40IhqiehPQE1OQZQHAIIYoUSIKYmRZxl133YVXXnkF7777LsaMGRPw/jFjxqC8vBwbNmzQ3uZyufDBBx9g/vz5AIBZs2bBbDYHXFNXV4d9+/Zp18ybNw8OhwPbt2/Xrtm2bRscDod2TV9WqxX5+fkBv4iIBisRI9YiE9Pj9sLF85OI4i6inpg777wTL774Il577TXk5eVpGRe73Y6srCxIkoRVq1bhwQcfxIQJEzBhwgQ8+OCDyM7OxvLly7Vrb731Vtx7770oLi5GUVER7rvvPkyfPl2bVpoyZQoWL16MlStX4oknngAA3HbbbVi6dCknk4goIRLRE5NnM0GSAFlWsjHD8qxxe2wiijCIefzxxwEACxYsCHj7008/jVtuuQUA8KMf/Qg9PT2444470Nraijlz5uDtt99GXl6edv0jjzwCk8mEG2+8ET09Pbj88svxzDPPwGj0vwJ64YUX8IMf/ECbYlq2bBnWrFkTzddIRBSW1hNjiV8mxmCQkGc1ob3XwyCGKAEkWZblVN9EIrS3t8Nut8PhcLC0RERhTfv5W+h0evD+fQswuiQnbo970cPvoralB3/9/nzMGlUY/gOIhrhInr95dhIREfw9MfHMxADcFUOUSAxiiGjIc3t98PqUpLTNlJgghhNKRPHHIIaIhjyRhQEAmyW+PxYZxBAlDoMYIhryRFOvJAEWI4MYokzBIIaIhrxel7LDJctsDLtdPFL5DGKIEoZBDBENeb2e+C+6E5iJIUocBjFENOT1uOJ/bpLAIIYocRjEENGQJ3pirHHc1iswiCFKHAYxRDTk9STgBGuBe2KIEodBDBENeYk4wVpgJoYocRjEENGQ15uETExbN4MYonhjEENEQ14iTrAWRBDT4/bC5fHF/fGJhjIGMUQ05PW4EzdinWcza//PkhJRfDGIIaIhL5E9MUaDhDybCQCDGKJ4YxBDRENeIqeTADb3EiUKgxgiGvKcCeyJAThmTZQoDGKIaMhjJoYoMzGIIaIhz7+xl0EMUSZhEENEQ16P23+KdSIwiCFKDAYxRDTk9SZwxBpgEEOUKAxiiGjI0zb2WhLzIzGfQQxRQjCIIaIhT8vEmJiJIcokDGKIaMjTNvZaGMQQZRIGMUQ05GkbexOcieGeGKL4YhBDRENej0v0xDATQ5RJGMQQ0ZDn9CRnYy+DGKL4YhBDREOelolJ8Ih1t8sLt9eXkM9BNBQxiCGiIU2WZfR6EneKNeAfsQaYjSGKJwYxRDSkub0yvD4ZQOKCGKNBQp7VBIBBDFE8MYghoiGtV+2HARLXEwNw4R1RIjCIIaIhrVfthzFIgMWYuB+JbO4lij8GMUQ0pGk7YsxGSJKUsM9TkM1dMUTxxiCGiIY0sa03UZNJAjMxRPHHIIaIhrREn2AtaEFMN4MYonhhEENEQ5p2blICm3oBZmKIEoFBDBENacnKxHA6iSj+TKm+ASIaemRZxs9e2weryYgfLZ4Ea4IOXhyMXvbEEGUsBjFElHRHmrqwdutxAMDeEw48sWIWCnMsKbkX/XRSIjGIIYo/lpOIKOlqTndp/7/9aAuuf3wzjjZ1DfARidOT7MZeBjFEccMghoiSrkYNWM6pKsDwgizUNHXhut9/jOratqTfS2+SG3u5J4YofhjEEFHS1TQrQcyF40uw7s75OHuEHa3dbvzqHweSfi/cE0OUuRjEEFHSidLR6JIclObZ8NOrpgAAGtudSb+XZPfEdLm8cHt9Cf1cREMFgxgiSojWLhc2f9kEWZb7vU+Uk8aU5AAActQTnjudnuTdoEqbTrIkZ8QaYEmJKF4YxBBRQvxk3V4sf3IbPjrUFPD2HpcXdY5eAP4gJjcNghibKbE/Do0GCXk25etsYxBDFBcMYogoIQ42dAAAdhxtCXj7sRYlC2PPMqNQPRQxV31y73Z54fP1z9wkUo96irUtwZkYwH8IZBuPHiCKCwYxRBR3siyjXs227DvpCHifGK8eXZKjnRotMjEA0OVKbjam16P2xCRh4V5BlrILx9HjSvjnIhoKGMQQUdy193rQrWY49p9qD3ifmEwaU5ytvc1qMsBoUAKaLqc3SXepEJmYRPfEAMzEEMUbgxgiiruG9l7t/xs7nGjs8P/+qNbUm6u9TZIk5KhBRLL7Yk53KhNR+TZzmCtjV5CtZGJaGcQQxQWDGCKKO9G4K+izMTXaeHV2wDWipNSVxCDG7fXhQJ1yb1Mr8xP++QrErphulpOI4oFBDBHFXUPfIEbXF1PT1A3AP5kkpGLM+ouGDrg8PuTZTBhVnB3+A2KklZM4nUQUFwxiiCjuRCZGbXPRMjEdvW40qeWb0X2CGDGhlMwgZu8JJbg6e4RdazJOJLHwjj0xRPHBIIaI4q5e7YmZPboIALDvlBIsHFWzMCW5ln49KKkoJ+1RM0TThxck5fMVaj0xLCcRxQODGCKKu3pHDwDg8smlAIDalh44ut3+yaQ+WRgAyLEkP4jRZ2KSQZSTeH4SUXwwiCGiuBPlpInleagqygIA7K9z+M9MKg4SxGg9MckZsXZ6vPi8XilzTR+e3CCG5SSi+GAQQ0RxJ0asK+w2TK1QAoT9J9t1k0n9g5hcqzJinaxMzMH6Dri9MgqyzRhRmJWUz2lXl921sZxEFBcMYogornrdXm0PSnm+DdOGK6PL+085tCBmbLByUpKnk/acEP0wyWnqBaAds9De64GHJ1kTxYxBDBHFlcjC2MwG2LPMmFqpZGL2nWrH0eYBMjFJnk4SxyEkqx8G8E8nAUogQ0SxYRBDRHEl+mHK822QJAlT1UzM4cZOrRckWE9MsqeT/JmYgqR8PgAwGQ3IU79OlpSIYscghojiSmRiyu02AEBpng3D8qza+yvstqDnFInppGRkYnrdXnyhnrKdzEwMANi58I4obhjEEFFciUxMhd3fLDtNt9I/WBYG8PfEJCMTc6CuHR6fjJJcCyrUYCtZxK4YZmKIYscghojiql4NYsry/cGB6IsBgDHDggcx/nJS4kes955MflOvwDFrovhhEENEcVXv8I9XC2JCCQDGhMzEJO8Ua/1kUrLx6AGi+GEQQ0RxVdc+cCYm2GQSAOQlcTpJbOqdPqIg4Z+rLx4CSRQ/DGKIKK4agmRiRhRmoSRXae6dVJYX9OP0PTGyLCfs/rpdHhxqTE1TL8CeGKJ4ijiI+fDDD3H11VejsrISkiTh1VdfDXj/LbfcAkmSAn7NnTs34Bqn04m7774bJSUlyMnJwbJly3DixImAa1pbW7FixQrY7XbY7XasWLECbW1tEX+BRJQ8Hq8PjR39gxhJkvDnW2bjiRWzMLI4O+jHiiDG45Ph9CRuEdyBunb4ZKA0zxqQLUoWlpOI4ifiIKarqwszZszAmjVrQl6zePFi1NXVab/+/ve/B7x/1apVWLduHV566SVs2rQJnZ2dWLp0Kbxef0Pf8uXLUV1djfXr12P9+vWorq7GihUrIr1dIkqi051O+GTAaJBQnGsNeN/ZIwpw5dTykB8rRqyBxE4ofVqb/CV3egUiE8NyElHMTOEvCbRkyRIsWbJkwGusVivKy4P/sHI4HHjqqafw/PPPY+HChQCAtWvXoqqqChs3bsSVV16JAwcOYP369di6dSvmzJkDAHjyyScxb948HDx4EJMmTYr0tokoCbTJpDwrjIbIpn6MBglZZiN63F50Ob0ozk3EHQIfHToNAJg5sjAxnyCMAjUT42A5iShmCemJef/991FaWoqJEydi5cqVaGxs1N63a9cuuN1uLFq0SHtbZWUlpk2bhs2bNwMAtmzZArvdrgUwADB37lzY7Xbtmr6cTifa29sDfhFRcokgpjzK3SuJPj+po9eNjw83AwAWnVWWkM8RTmGOEsS0spxEFLO4BzFLlizBCy+8gHfffRe/+c1vsGPHDlx22WVwOp0AgPr6elgsFhQWBr4KKisrQ319vXZNaWlpv8cuLS3VrunroYce0vpn7HY7qqqq4vyVEVE49e2xBTFiQqnLlZgg5r2Dp+Hy+jB2WA7GlyYo1RMGT7Imip+Iy0nh3HTTTdr/T5s2DbNnz8aoUaPw5ptv4vrrrw/5cbIsByydCraAqu81evfffz/uuece7fft7e0MZIiSTMvE5GeFuTI4bVdMgg5HfGuf8iJo8dTypC+5Ewp0J1l7fXLEZTci8kv4iHVFRQVGjRqFQ4cOAQDKy8vhcrnQ2toacF1jYyPKysq0axoaGvo91unTp7Vr+rJarcjPzw/4RUTJ5c/EWMNcGVwiz0/qdXvx3kGltD1Qg3Gi6U+ydrC5lygmCQ9impubUVtbi4qKCgDArFmzYDabsWHDBu2auro67Nu3D/PnzwcAzJs3Dw6HA9u3b9eu2bZtGxwOh3YNEaUf7QRre3SZmESeZP3RoSZ0u7yosNtSNpkEAGaeZE0UNxGXkzo7O3H48GHt9zU1NaiurkZRURGKioqwevVq3HDDDaioqMDRo0fxk5/8BCUlJbjuuusAAHa7HbfeeivuvfdeFBcXo6ioCPfddx+mT5+uTStNmTIFixcvxsqVK/HEE08AAG677TYsXbqUk0lEaSzYkQORSGRj71v7lVLSlSksJQn2bDM6nB6OWRPFKOIgZufOnbj00ku134s+lJtvvhmPP/449u7di+eeew5tbW2oqKjApZdeipdffhl5ef4tnY888ghMJhNuvPFG9PT04PLLL8czzzwDo9GoXfPCCy/gBz/4gTbFtGzZsgF30xBRasmy7C8nRblELidBh0C6vT5sPKCUqBdPS10pSSjINuNEaw8cnFAiiknEQcyCBQsGXAn+1ltvhX0Mm82Gxx57DI899ljIa4qKirB27dpIb4+IUqS12w2Xumm3ND+6nphETSdtr2lBW7cbRTkWnDe6KK6PHY0CdUKpleUkopjw7CQiigtRSirOscBqMoa5OjjR2NsR5+mk9epU0hVTytJiGkg7BJKZGKKYMIghoriob+8BEP2OGMA/Yh3Pxl6fT8bbn6mj1WlQSgJ4kjVRvDCIIaK4qHcoCy2jbeoFEjOd9OmJNjS0O5FrNWH++OK4PW4sRDmJRw8QxYZBDBHFRb1DycTEcjJ0IqaTDtZ3AABmjy6MuswVbyITw6MHiGLDIIaI4mJrTQsAYOyw6Nf5a5mYODb2ikChOCe6ZuNE4EnWRPHBIIaIYnaqrQfb1SBmSQx9J7m2+I9Yi4VyhdnmMFcmD0+yJooPBjFEFLO/fXoKAHD+mCJUFkS3rRdIzLEDYoy5MMcSt8eMFRt7ieKDQQwRxex1NYhZNqMypscR5aR4HgApykkF6ZSJET0xXczEEMWCQQwRxeRwYyf2n2qHySDhqukVMT2WGLHucXvh9YVeqhkJfzkpnTIxyr2Ik6yJKDoMYogoJiILc/HEYSiKsWQjppOA+DX3pmMmRn+SdTtLSkRRYxBDRFGTZRmvV58EEHspCQCsJgNM6kbdeO2KScdMjNlo0Epn7Ishih6DGCKK2t6TDhxt7obNbMAVZ5XF/HiSJOkmlGIPYmRZ1lb7p1MQA/izMTw/iSh6DGKIKGqvVSulpIVTygJKQbHwTyjFPmbd4fTAo/acpFM5CQAKc8SYNTMxRNFiEENEUfH6ZG20+ppzhsftceM5odTWpQQIWWYjbOb02NYriKMH2nqYiSGKFoMYIorKu583orHDCXuWGZdMHBa3xxUTSvHYFdOahovuBDtPsiaKGYMYIorYl6c7cd//fgoAuP7c4bCY4vejJCeOh0CKIKYgzfphAP/WXp6fRBQ9BjFEFJHWLhe++8wOOHrcmDmyAD9ePDmujx/P85O0pt6c9MvEiEZjHj1AFD0GMUQ0aE6PF7c/vwvHmrsxojALf1wxO+69JrlxPMk6rTMxPHqAKGbxGScgojOSLMto6nThVFsPTrX14LXqU9h+tAV5VhP+fMt5GJYX/5Oh41tOEuPV6ZeJESPW7Ikhih6DGCIKSpZlfO0PW7DzWGvA240GCf/9zXMxsSwvIZ83rtNJabjoThDZoTaWk4iixiCGiIJq7XZrAUx5vg2VBTZUFmThq7NG4OI4TiP1lWON354Y/5ED6RfEFLKcRBQzBjFEFFRLlxMAkG8zYetPLk/a581VR6zjUU5qS+MRa55kTRQ7NvYSUVDNncqTa3Fu/PteBpITx+mk1jQuJxXnKN/X9l4PnJ7Ys05EQxGDGCIKqkXNEMR6MnWk4jqd1JV+J1gL9iwzzEblsEsRMBJRZBjEEFFQzSkOYuJbTkq/TIzBIKFEzXKd7nCm+G6IMhODGCIKSmRiipMcxPhHrGMrsbg8PnS5lMdIxyAGgDaiziCGKDoMYogoqFSVk0QQ09Eb29SOyMIYJCDPlp4zDFomppNBDFE0GMQQUVApLye5vJBlOerH0Y9XGwxSXO4t3oapQUwTMzFEUWEQQ0RBiRHr4txkZ2KUEWuvT4bT44v6cfxHDqRfU6+glZOYiSGKCoMYIgqqRZ3sKcpJ8oi1xV/6iWVCKZ2begX2xBDFhkEMEQWlZWKSXE4yGCTkWGJfeJfO5yYJnE4iig2DGCLqR5bllDX2AvqjB2IJYtL3BGtBZGKaWE4iigqDGCLqp8PpgdurNNWmIoiJxyGQbRmQiWE5iSg2DGKIqJ8WdYNsjsUIm9mY9M8fj6MHxJlEmZCJ6XJ547Lcj2ioYRBDRP1o49VJnkwSxIRSLCdZ+3ti0jeIybEYkaUGiSwpEUWOQQwR9aP1w6QoAMi1KiWgWLIT6XyCtSBJEkrylO8xgxiiyDGIIaJ+xGRSKvphACDXGo/ppPQvJwH+hXfsiyGKHIMYIurHv603uTtihHhMJ2mNvTnpm4kB2NxLFAsGMUTUj2jsTfa2XiHWk6xlWUZbT/r3xAAMYohiwSCGiPpJ5Y4YIPZMTHuvB16fMiKezscOAPpDIF0pvhOizMMghoj6SdXhj4J4Ym9ojy47IZp6sy1GWE3JHxGPBDMxRNFjEENE/YhMTLKPHBBGFmUDAI63dEf18ZkwXi1ojb2cTiKKGIMYIuon1eWkqqIsAMCJ1m7Ishzxx2fCCdaCdvQAMzFEEWMQQ0T9NGuHP6ZmOqmyIAsGCeh1+6LKUGTCCdaCVk7qdEYVsBENZQxiiChAt8uDXrcPQOo29pqNBlTYlWxMbRQlpdYupZyUCZkY0f/j8vjQHsNZUURDEYMYIgrQrE7JWEwG5FhS1xQrSkq1LT0Rf2wmZWJsZiPybMo0Fpt7iSLDIIaIAuibeiVJStl9VBUqzb1RZWIy4ARrPU4oEUWHQQwRBUh1U68Qy4RSphw5IHBCiSg6DGKIKECqd8QIVWoQU9saeRCTKUcOCJxQIooOg5ghqqapCw+88RkaO3pTfSuUZlJ9+KMQS09MpmViSpiJIYoKg5gh6smPjuBPm2qwduvxVN8KxZEsy/ifnbX48IvTUT9GumVi6hw9cHt9EX1sWwYtuwPYE0MULQYxQ1Rju5KB+aK+I8V3QvH08eFm/Oj/9uAHL30S9WNohz+mOIgZlmuFzWyATwZOtUWWjWnVppMyq5zEIIYoMgxihijRvHmokUHMmeRPm44AUDIR0Z4ALQKAohQtuhMkScIIbUJp8EGM0+NFt8sLIHPKSVpPDMtJRBFhEDNEiSDmWHN3xKn6ZEvWFtP1++rxb6/uhcuT3t+PUA41dOD9g/4yUrRPiOlSTgKim1ASpSSjQUK+un8l3WnTSczEEEWEQcwQJZ6oPD4Zx5q7Unw3ob29vx7n/XJjTD0eg+Hzyfi3V/di7dbjeP9gY0I/V6L86aOagN9H+4So7YlJ0bZevapCtbk3ggmlz061A1CCsFTuuYmEyMQ0d7ng9fHoAaLBYhAzBLk8PnTo1psfauhM4d0M7K39DWjqdOGt/fUJ/TwH6tvRpPaCHD6dvt+PUE53OLGu+iQAaNtfo83EiJ6YdMjEaGPWg8zE+HwyfrvhCwDA0rMrEnZf8aYEXIDXJ2vlPCIKj0FMBtl0qAl3vbgbzTHWzfv+kDzcmL5P2g1qA3Jta+RjtpH46FCT9v9fNqZvZiqU57ceg8vjwzlVBZg7thgAcLoz8idDp8eLDrWXJtWNvUDkQcw/9tVj70kHcixG3HXp+ETeWlyZjQYUqf077IshGjwGMRlkzXuH8MaeOvx9X2xZCVEuEA6lcRBT51CCl2hWz0dCX676MsMyMb1uL9ZuPQYAWHnR2JgmXcTBiUo/Seone7SjBwYRxLq9Pvy/tw8CAFZePBbFualtTI4UJ5SIIscgJoN8eVrJEJyI8Qm9bxATaSZGlmWs++QEapoSn7GodyiZmJOtPQnrFeh2ebDzaKv2+y9PdyatmTgeXtl9Ei1dLowozMKVU8u0xWnRvKJvVhfdFWZbYDCkvp9ELLxr6XKhM8y01f/uVP5OFuVY8L2Lxibj9uKqhM29RBFjEJMhOnrd2g+3EzGWVkRTb3m+DYDypB1JgPDm3jr8y8uf4t9e3RvTfYTT0etGlzoq6/L6tNJSvG2raYHL60N5vg0GCejo9WTU5tRnNisNvd+5YAxMRkNMr+j1hz+mgzybWdv1MlA2rsflxe/eUXph7rp0PHKtmTGVpMdMDFHkGMRkiCOn/VmPE1GcJaPXoj5Bz6iyw2I0wOnx4WQEgdHb+xsAJL4hWGRhhESVlEQp6dLJw7SR3kzpi3F7ffhC/XO4eobSyDosN/reinQ5/FFvMH0xz245ioZ2J4YXZOGbc0cm69biirtiiCLHICZDHGnyBwyxZmLEE9WwPCvGDssBABw+Hbj0bufRFmz4rKHfx3q8Pm0EubHDCafHG9O9DKSuTxATzWnGgyGaei+aMAzjhuUCyJy+mFb1z9IgAcXqcrpYXtE3i8mkNBivFsL1xWw90oz/eucQAOCeKybCajIm7d7iibtiiCLHICZD6DMxzV0udLui28YqPh5QNrKOK1WetPV9MV1OD7795+1Y+dxO7DvpCPjYXcda0a4bzz7VlrgDJOv7lI8SMaF0qq0Hhxs7YZCA+eOKg34/0lmTbhzaqPaw6HtiIu3tSbdyEjBwJubdzxtw85+3o9vlxQXji3HtzOHJvr24EcHntpoWHOYmbaJBYRCTIfRBDICIyj99iRHr4hwLJqhP2vrS0LufN2pr21/eURvwse9+HrgILtbS1kCSUU7apGZhzh5RgIJsC8apmalMycSI0kOJbhJH/H+v26f1FA2WCHDT6eBE/2nWgX/+f/v0FG57bhecHh8WTinFUzefpwVymWjBpGGosNtQ5+jFNWs+xt/31qX6lojSXsRBzIcffoirr74alZWVkCQJr776asD7ZVnG6tWrUVlZiaysLCxYsAD79+8PuMbpdOLuu+9GSUkJcnJysGzZMpw4cSLgmtbWVqxYsQJ2ux12ux0rVqxAW1tbxF/gmaLvk2osJaVm3av38SLzoHv8f+zz//B8tfoket3+J8J31CDGYjLEfB/hiHKSuMdEBDEfHFL6YS6eOAwAtHJS36AxXYlpIv123RyrCdkWpaQSaWmiJcjjpZq/nOT/8395x3H84KVP4PHJuOacSjz+rVmwmTOzjCQUZFvwt7svxNyxRehyeXHHC7vx4N8PwJPmx4IQpVLEQUxXVxdmzJiBNWvWBH3/ww8/jN/+9rdYs2YNduzYgfLyclxxxRXo6PCnR1etWoV169bhpZdewqZNm9DZ2YmlS5fC6/U/WS5fvhzV1dVYv3491q9fj+rqaqxYsSKKLzHz+XwyjqpHA0wsU55kY8mA6Js3tSCmQRkr7nZ5tGxLrtWEjl4P1qt7aY41d+FwYyeMBglXTSuP+T7CqVd3xJw3ughA+J4YWZax8bMG7DzaMqjH9/pkfHxYycRcPKEEgD+IOdnW069k19HrTsq5Sj6fjJ1HWwZVMmzWTpwO3IkSbZNoejf29kCWZfzPjlr8+K97IcvAN+eMxCM3ngOz8cxIKpfkWrH21jm4/WJlRPyPHx7Bv7++P8xHEQ1dEf/LX7JkCR544AFcf/31/d4nyzIeffRR/PSnP8X111+PadOm4dlnn0V3dzdefPFFAIDD4cBTTz2F3/zmN1i4cCFmzpyJtWvXYu/evdi4cSMA4MCBA1i/fj3+9Kc/Yd68eZg3bx6efPJJvPHGGzh48GCMX3LmqWvvRa/bB7NRwjx1G2ssGRD9E9WYkhxlrNjpQWOHE+99fhq9bh9GFmXjexeNAeAvKYng5rzRhTirMj/m+winvl15Aj5/TCEApZFYnxXS83h9WP36fnzvuZ245ekdgzrUct9JB9q63cizmjCjqgAAUJhj0Z7A9dmYxvZeXPzwe/jOM9tj+ZIG5R/76vHVP2zBr/7xedhrRU9M38xJqJ0jXp+MfScdIV/dN6fRkQPC8IIsSBLQ4/bijx8ewY9f2QMAuGX+aDxw7bS02GcTTyajAfdfNQX/9Y2ZkCTgxW3H8eYelpaIgonry5eamhrU19dj0aJF2tusVisuueQSbN68GQCwa9cuuN3ugGsqKysxbdo07ZotW7bAbrdjzpw52jVz586F3W7XrunL6XSivb094NeZ4oha6hlZlI1RxUrPRrTBg093NktxjgVWk1F7zMONnVod/qrpFfja7CpIErDlSDOONXdpQczlk8swQk3xB7uPA3Xt+I+/fRZ2ORmgTNdc/dgm/Ocbn/V7n8jETC7PR5669yNY5qfL6cFtz+/Cs1uUrbWdTs+gxr/FaPW8ccUBr+THB5lQemNPHVq73djyZXPCszGiqXj38dYwV0I7gqKkz3bakhBj1i/vqMXSxzbh8fe/7PdYsizjZJvyPR9ekBX5jSeIxWRAhbrT6KF/fA5ZBlbMHYWfX31WxhzwGI1lMyrx/UvGAQD+9ZU9Cd9aTZSJ4hrE1NcrZYeysrKAt5eVlWnvq6+vh8ViQWFh4YDXlJaW9nv80tJS7Zq+HnroIa1/xm63o6qqKuavJ12IjMDYYbkYoZ7qG20Zx9HjhthrV6i+2hYlpT0nHFqg8pXpFRhekIULxytllqc/PoqtR5oBAJdNKR3wPv6/tw7izx/X4AV1Ff5AXtpRi70nHXhh2zH4dAv3et1etHYrK/Ar7DaM0JUU9Brae3HjE1vw7ueNsJoMqLArT3b7TwVOVQWzSS0lXaT2wwjjSkVzrz8TI0pqPlmZaEok0ZdyuLEz4HsSTHOIaaJQY9YiMPr0RFu/xzrd4YTT44NBAirTKIgBoP35A8A3zq/CL5ZNPaMDGOFfrpiImSML0NHrwT+/9An7Y4j6SEghue8PF1mWw/7A6XtNsOsHepz7778fDodD+1VbWxv0ukwkMjFjh+UMmAEZDPGkl28zadkHEcQ8t+UoetxejCjMwrThSrnopvOUYPDZLUfh9soYXZyNsSX++2ho778r5kCdkgXbe3LgQMLnk/HSjuMAlEkafeOm2M5rMxtgzzJjpDqh0rcv5tZnd2D/qXYU51jwl9vm4qrpysK3/acGzsT1uLz45HgbAOCCccUB79N2xagZkdMdTuw45u+zOZbgV8QtavDW6/ZpmZFQQmdigvfEiL9Lx5r7fw3ie1thz0q7HpNz1HLf12aNwC+vnX7GlZBCMRsN+K+vz0SezYTdx9vw6MZDqb4lorQS159U5eVKs2ffbEljY6OWnSkvL4fL5UJra+uA1zQ09F+0dvr06X5ZHsFqtSI/Pz/gVzrafLgp6BK5gRxRzygaV5KL4WoGJNpdMcEaN0X5REwDfWV6hRYsXnFWGQqzzRDrRi6bXAZJklCYbUaWOg1Sp9sV4+h2a48TLpBQylT+J9OD9f7mb/EYFfYsSJLkn1DRBRDHm7ux72Q7TAYJ6+64AOeOLNSCr3CZmJ3HlKMGKuw2jCnJCXhf34V3b39WD/26lUQt3RNEJgYInBoLJlRPjD8TE3hOljjv6nhLd78sjwgiR+qyHuninism4o27L8TDXz17yAQwQlVRNn51/dkAgP9+/zCqa9tSe0NEaSSuQcyYMWNQXl6ODRs2aG9zuVz44IMPMH/+fADArFmzYDabA66pq6vDvn37tGvmzZsHh8OB7dv9TZTbtm2Dw+HQrslEzZ1O3PL0Dtz+/M6wr7D1/OWkHNizzMi3Kf0h0eyKEU+Q+iBmgjrxJIhsBgBYTcaABWILpyhlPkmSdCUl/30cbPAHIjVNXWjvdYe8lxe3Hw/4/Re6jxU7YsrylSfjkcXKE6s+gPj4S6UcdO7IQu39UyvtAIDPTrUPWIr5+LBSGps/rqRfdk8bs27qgtcna6UkMbZ8vDmx49eiuRZQpsZCkWU56J4Y/e/1Z0C1drm0Ep3T40Njn1LT8Wblz1HsZUknNrMR04bbh0QJKZivnF2Bq6aXQ5b9pU0iiiKI6ezsRHV1NaqrqwEozbzV1dU4fvw4JEnCqlWr8OCDD2LdunXYt28fbrnlFmRnZ2P58uUAALvdjltvvRX33nsv3nnnHXzyySf41re+henTp2PhwoUAgClTpmDx4sVYuXIltm7diq1bt2LlypVYunQpJk2aFL+vPsle//QUXF4ffDKwo2ZwY8A9Lq8W8IxVn1xjKSnpt/UK4klbeewsnD3CHvAxXz9vJAySEvjMVsedxbXKfeizKYHZl89CZGOaOp14e7/yw/iacyqVj9U9YYttvRV25XMEWz0vFtVdoPbtAMDYkhzYzAZ0ubzaWHowm9UAaH6fUhIADC/MgsVkgMvjw/5TDmz5Ugl4bpytlNaClWLiSTReAwNvDu5yeeFUm4xDZWKadIHKkT6njvfNKKVzJoaABZOUFxC7j4Vv+CYaKiIOYnbu3ImZM2di5syZAIB77rkHM2fOxL//+78DAH70ox9h1apVuOOOOzB79mycPHkSb7/9NvLy8rTHeOSRR3DttdfixhtvxAUXXIDs7Gz87W9/g9HoX1b1wgsvYPr06Vi0aBEWLVqEs88+G88//3ysX29K/XW3f6HfjkHuMhHp/4Jss5Y9iaW5t6WzfyNojtWkTaNcpSslCZPK8/CXlXPxl5VztSV3yn30D6b0mRgA/Y4tEP666wTcXhkzqgpw7TlKpueL+v6ZmHK1UVe/el6WZfh8spaJuXCCPxAxGQ2YXK6UlPaFCKAc3W7tvvQBkGA0SBirlpie+PAIPD4Zk8vzcInaAJzIcpIsy1rJDxi4nCT6YbLMRmRbAk9tHqbLxIijB2r6BDHHmoMHNVUMYtLSrFHKMMSnJ9oGtUKAaCiI+Lz6BQsWDHgeiyRJWL16NVavXh3yGpvNhsceewyPPfZYyGuKioqwdu3aSG8vbR2s78C+k/4n1Z1HB/dqShz8qO/biCUT09Id/IC/r5xdgZe2H9caefuaM7Z/xiJ4JkYJRMYNy8GXp7uC9sX4fDL+opaSlp9fpZWzjjR1wu31wWw0oE4drxbTRuJzdTo9aO1241RbD9q63ci1mnD2iIKAx582PB/VtW3Yf8qBZTMq+33+rTXN8MlKeU4ESX2NG5aLz+s7tJHzxdPKtSf342oglYjSRofTA7fX/+/rUENHyM8l+mFK8vrvdBHlJJfHhw6nB/k2s9bUK/TLxDCISWtjS3JQkG1GW7cbn51q13YbJcKbe+pwrKUL379k3JAt4VFmSK8RhDPYK2oWZrb6aupgQwcc3aH7RQStH6YksOQDRBnEhBjJ/clVU/DpzxcFlJbC6RtMybKMz9Ug5oZZIwAEn1DaeqQZR5u7kWs1YenZlRhekIUcixFur4yjarbA3xOjBBk2s1Hrj6lt6dbGo+eOLeo3SSP6YvafDJ6J2Xw4dClJEGcoiXh9ybQKVBUpS9e6XV6tLBdvIlNmMRlgkID2Xk9AX4ueyMT03dYLAFkWI3LV3TqipCQyMeXq91RfFnN6vFoJT5TuKL1IkoRzRyo/P3YlsKTk88n48V/34OH1B7V/z0TpikFMjGpbuvHNP23V+iaC8Xh9WPfJSQDA9y4aq5Uqdh0PX1LSj1cLMZWTBjjgL9JXXH2DqTpHLzp6PTAZJFyjloi+PN3Zb4pKNPReO7MSOVYTJEnCxHKl3CjKUf6eGH+mRDy5Hm/p1o4LCFYOmiaCmFOOoFnDzeqf1QXj+n+sIE6zBpRXwBPLcmE1GbWla4nqixGZsmG5Vi0jEqovRgRSJSHOORJvF7tiREC8YFL/stjJ1h7IslKaCvV4lHqipLRrEIsQo1Xf3qstqgzV00aULhjExOh/d53Ax4ebsea90PsbNh1uQmOHE4XZZlw2uRSzRys/iHYMoqQkXj2PGxafcpK2Vj4OT1Ri3LuhoxdOj1crJY0dloPhBVkozbNClv17YwBlQuYttaH3G+eP1N4+qUwJYr6o74Db65+c0Zd7Ruqe1LerjdEXBgliJpbnwmSQlLJTn5OwG9t7caixE5KkbOoNRZ+RunJauRbg6XtzEqFFNzItThgPGcQMkIkB9OcnueDzyahpDh3EiIZpJdvE8kG6EpmYwTT3/mNvXcC/vcHS90717XEDlIzryzuO41CQ9xElG4OYGIlsyO5joZvtXtmtZGGWzaiExWTQJnzCHVQoy3LAtl4hll0xocpJ0SjOscBmNkCWlV0xIvU8UQ1Ipg1XMiL6XqDXqk/C7ZUxtTJfK/voP+ZgQwdOdzghy4DJIKFE9wQttra+Vn0STo8PZflWbVGfntVkxAT18fb3KWeJLMzUynwUBMlGCWOHKWdKAcAS9bBLABiljnInLBOj2+MzLkwQE2pHjOA/P6kXpxw9cHl8sBgNmDe2RPtcHeoIvAhoOJmU3mZU2WE0SKhz9A64OXrLl834/gu7cfvzuwbsYQxG3zsVLAh6/4vT+PFf9+L+V/ZG9LiUfLIs4+976xJ6UG+qMYiJkciG9Li9QSdx2nvdWubh+nOVPhFxKvOntY6QBxoCymRJh9MDg+R/8gQQ9a4YWZb9jb1xCGKUXTHKfZ1s69H2vEwuDwxi9H0x/6f2Bn1N7ZkRJqkf80VDp1ZKKsu3BSw2E0+wR9UA4oLx/Xe8CFMrg08o+UerQ5eSACDbYsIvrpmGH145CdOH+4Mtcc7UsZbE7IrR/nyyLdoSwtBBjJqJyQ2fiRHB8KjibNh1k24iGDvBpt6MkG0x4awK5e/2QH0xr396CoASnEaasdUftxGsJ2aXmkEeaIWBXpfTE9FeLIqfncdacccLu/HVx7fA0RO+BzMTMYiJkT6I2B5k98vf99TB6fFhfGmutn9ldHE2inMscHl9IUeQAX8Pw4jCbFhNxoD3RVNS6nJ5tcMLQ5UgIqXvzxE/8CapI87TRCChfo0H6tqx72Q7zEYJy84ZHvA4YkLpWHOX1tzbd3KoqjBwCVuwUpIgPvdnus29sizrltyFLiUJK+aOwp2Xjg8IlGItJ3U5PXjnQAP+843P8H+7TvR7vz4TI7JJh0KWk8L1xPjPTxIlAjHlNlI3aaX/L5t609+5IwsAhD4g1OP1Yf0+/6nXO48Nbp2DoC8nne5wamVLQZy71dTp6nfkSDD/tHYXLnn4vYADVSk5xIuU+vZePBDkkN0zAYOYGLi9Pm0UGAi++0WUkm44d4T2ZChJ0qD6YkRTnb6pVxDBQ20EaULRb2EzG5BlMYa5enDEfdQ0dWtnDfXNxBxq7ESv24u/qk/al08u65cJGpZrRWG2GT7ZfzBjvyCmT5YgWFOvMDVIKet4SzdOtvXAZJBw/piiUB86oFFF0ZWTPvjiNG56YgvO+Y+3ceuzO/HUphr8+K970OMKfBLQ9yyJPqjTHc6gr6Kau4Jv6xX8mRinViIYoz7mqD4bkLnoLnOcO2rgvpgtR5q1zcwAsL0msiZgsdZB0B8HIssyPtUde9DgCD45Jxxr7sJHh5rg8ckJmahye339/g2Rn/4Ik//ddQLvfh7ZkTeZgEFMDOraeqHfbL+9piVg1X2dowfb1cBGbKUVzhugL6a504n7X9mL/3xTiZyn6XpHhGgyMeJJL15ZGP19bDp8Gi6vD9kWo7Y4r8JuQ3GOBV6fjP2nHHi1WgnovtqnlAQogZ3oi/nwCzWIyQ8MYsrybbCo49QTSnO18etgplTkQ5KUVyBNnU74fDKe+PAIAGDmyIJ+y+EGSzzJN3Y4B/3Ds7G9F7c9txPbalrg9sqoKsqCxWiA1yfjlCPwz09s6y3OsSDPZta+B8FKSs2D7Ilp6nQGnL8F9A/GjjeznJQpxITS/lPtQf8OvrlHycKIf4fheu/0et1e7WeK+DwHdEHM0eZutPf6+/D6/v3t6409/oxQ32WL8bDyuZ2Y/6t3+h10SoqWLiWYFUem/Otf9w5qtUcmYRATA9EsNao4G9kWI9p7PQHd/OKHyexRhagsCCyFaM29x1q1wMfnk/Hs5qO49P+9j79sPw5ZVoKf2y8Z2+9zRzNmHezwx1iJ+xAZj4lleVofiyRJWkZkzbuH0dTpQkmuBZeo0zF9ib4Y8QOpok8mxmiQtKbmgbIwAJBrNWGM2r9SfbwNq16uxovblNHub80dFdkXqVOQbUae2o802CzY79//Ek6PD2ePsOP9+xbgox9dhtElSrDQtzmzuc8IvCizHW4M7E3w+vz9TaGCUv2ItShNikzMSPV7c7ylC45ut/bElI7nJlGg4QVZKMu3wuOTsUct7Qhurw/r1R68+6+aDEDJhLYOcq+RssgRyLOZtNPd9UeJ9P18dZEEMafjG8T0ur348IvTaO12Y9uRyEpmQ4X4c//uBWMwdlgOGjuc+MXf9qf4ruKLQUwMxCuWUcU52qsWfUlJ/AO+OsjW2KmV+bCZDXD0uHH4dCc6nR7c9vwu/Pz1/Wjv9WBKRT7+5/Z5+N3XZyLPZu738YNZeNfp9Gg9MEBigpjhfYIzUUoSRG/KewdPAwCumzm833I6QWRihGDbdM8fXQRJUjYMhyMCqH/5n2q8/ukpmAwSfnvjDG2HTTQkSfKXYgZRUqpz9GjB0w+vnITRak+KCGr7BjEi/SuyK+NCNPe2drsgy4AkAYXZ/f9+ALqTrDud2itmsaNIP2UlgrGSXEvUGSpKHkmSQu6L2fxlM9q63SjJtWDx1HJtem/nIEs52l6qkhxMURuI9c29fU/QPtUWuMJA78vTnQHTTfHOxBxu7NQy4cGWapL/RVFFgQ3/72szYJCAVz45eUaVlRjExEBkQaoKs3C+mlnZpjb31rZ0o7q2DQYJWDK9vN/Hmo0GzKxSfhC9svskbvj9Zmw80ACLyYBfLJuKN+6+cMC+jXDlpBOt3Zjzy42488Xd2tviOV7d9z6EvoGIfrIH8G/yDWZSnwCobyYGAH5xzVR8+MNLtXLcQMSEUkevB9kWI5665TxtQiwWoqR0bBDNvf/93mG4vD6cP7oooBFZBDEn+zwJiL4lcUDn+BBj1qKUVJhtgSlEUCjKSW6vDFkG8m0mLYAVX8Opth6t1MRSUuYItS/mzT3KVNLiaeUwGQ04b3T/F1cD+VK30kH8ezxY3wGvGi3sOaEEC+JF1ECZmDc+VV7Eib/DNc1d2uPEg/7U+4EGJIYyfXn63JGFWKFmocWfzZmAQUwMRAAxojBbCzi217RAlmW8qZ65M2dMMUrzgvduiB8wf/jgSxxs6EBpnhUv3zYXN88fDaMh+OiwIMoqLV0udDn774p57/NGdLm82PBZg/ZqPxGZmJJcC6y6QyH7ZWJ0Qcz04XbtcMZgJpYGfmywnheb2TjoJ1vxZ1KcY8FfVs7VDnCM1cgitRQTZsT0RGs3Xt5RCwC4Z9HEgCmn4UEyMb1uL7rUHociUU5SnwD6TiiJkttA23VtZqNW+gKUJyZxD6V5VtjMBvhk5RgIgJNJmUQ09+461qrtgXF5fHhrv/IK+yvTleyvCPYjPXB2bEkORhUrJ8I7PT4ca+6CWzdNuXiq8sKs3hE8EyPLMv6mBlS3XTQWZqMEl8c34G6bSH2hO/V+78ng27mHur4b2sV5W40dZ04PEYOYGIg0/IjCLMyoKoDFaMDpDieONXfjDfUf8NIZocses3XZhLNH2PH6XRdipvoKKxz9rphgpyrrp57+sU+pkWv9FnEMYpRdMf6SUt9syojCLNizlHJHsIZePXu2WTsfSZIQMvgbrHNHFuJ/bp+H9asujutheX0ne0J57J3DcHtlXDC+GHP7HKBZWaB8bfof6uJVk8kgIT9L+bMVr2JPtvUENHE2hdnWKwzTTS6N1R0iKkmSlo3ZdEhppOZkUuaYWpkPi8mA1m43fvnmAbR0ufDxl01w9LgxLM+qBfAiiNl7wjGoRnT9FJvRIGmbtD+v78DB+g44PT7k2UyYP175+xyqnHSwoQOHGzthMRqweHq5tl8pniUlfSbG0eOOaoP5mU7LvqsvdsTP1MaO0GXATMMgJgb+TEwWbGYjZlQpWYeXd9Zi38l2GA0SlkwLHcTMGVuEhVPK8K25I/E/t88LeaJyKGLjbbDpA/04oziJORHlJMBfUirJtfZbvCZJEv5l4QQsOqtswFKSIMpRJblWWEyx//U8f0yR1hsSL4MpJx1r7tIW+91zxcR+76+098/EaCWiHIuWMSlWR89lGQF7NsJNJgkluq+976i+llHSFt2xqTdTWE1G3DRbOXH+T5tqcNGv38Uv3zwAALhqWrmWyR1RmIXyfBs8PrlfP0swR7RMjBI8i8zp53XtWinp7BF2rRwaqpwkyhUXTxyGfJtZ20+UiCBGTCwmuy/G6fEGTKOmG7fXp61mEJkYrU+OmRhyeXzaZlnxJC5e/Tz1UQ0AZYJmoNKN1WTEn26ejQeunQ6bOfK9LRdOUHosxF4V4VRbD0629cAgKRmNXcdaUefo0TIx8SwnAf76+KTy4Cdg33LBGPzx27O1U5UHIl759R2vTiciiDnR0hPyh9gfPvgSXp+MSyYOw6xR/ft3tMZeR6/2GK26bb16E9Qym74vJtyOGEGfiRlTEvjno98CDbAnJtP8xzVT8dTNszG1Mh9dLq/29+MrZ/sHCQJ3Ug1cUmrtcqFNHb8VQYfIrH5e36Hth5kxogAVahDe2u3ul+GRZVnLRF+tZqJFAB2vIKbL6dFeRF4+pRRA8oIYt9eH37x9EFP//S387LV9Sfmc0RB/lpIE7YiVUjWIae12Bwx9ZDIGMVGqcyin/trMBq0v4fwxSorVpZ6htHQQEzSxEFtnt3zZHNAwJyYRplbaMVutnf9jb702bhfu1XukRKlm7pjwW3DDOUfdRhrsTKR0UWG3wWSQ4PL6A1k9n0/G22pvwm0X9x+PB5TJK0lSgmERXIbqWZqoBofilTCgy8SECUj1WagxJX0zMdkD/p7SmyRJuHxKGd64+0I8sWIWzh1ZgCunlmn/5gXx4ipcECOW3FXabdoyzMkVuiBGHa+eUVWAfJtJ2z3S99/A/lPtONrcDZvZgIVTygD4S5nx2toresSG5Vlx0QSl1y0Zzb1HTnfiq49vxmPvHobHJ+Mv248PakoxFcTPk4Iss5aZK8g2w2xU/j/W3Tp1jh78+2v78N7njbHdaIwYxERJ39QrUv/njizQDg00GyVceVb/qaR4mj7cjjyrCe29noB/wLvUH1azRhXiqulKIPX3vXW6J8n4lle+NmsENt5zMe64dHzMj7VkWgWe/PZs/GzpWXG4s8QwGQ1a9ilYX8xnde1o7nIhx2IMOUVlNhpQlhfYFxPqhHFxYOOHh05rb/Mf/jjwn6W+8bdfEKPLxJgMkvbqmjKLJEm4cmo5XrnjAjyxYnbAeWMAMFvNBO4+1gpPiENqgcDJJEGUk463dGvlmxkjCiBJkjY9WNenWVcMNVw2uRQ5avZVZAHjlYn5QjtsNlebgNxzIrHNvS9tP46v/NcmfHrCgXybCRPLcuGTgT9/XJOwzxmLliA9kJIkadnZWJt7Pzh4Gs9tOYbH3j0U0+PEikFMlE7omnqFPJtZ61O5eMIw2EPs74gXk9GAuWo25uMv/SUl0dR73ugirSdn57FWdKpTTH3LFbGSJAnjS/PCTlQNhtEg4Yqz+h9LkG60ZXFBXoV98IUSbMwbVzxgX0/f5l4tyOzz53Ph+BIYJKWcpAU8XeGnk5T3Kz+w9K+uhVG6zMvwwqy4/PlR+plUnoc8mwldLm/QAx0FbTJJ1ztVlGPRmu19MlCWb9V69/QlUT1xQORlk8u0t4kA+mRbz4CH3g6WCKgmluVhYnkuzEYpYc29Xp+M1a/vx7++shc9bi/mjyvGW/9ysfZC63921sa8Bbe6ti3s4sBI6cer9eLVFyN+zl0ysTSmx4kVg5go1bb4m3r1vjZ7BEwGCd+5YExS7kNs1dysHmzY0evG5+qGzdmjC1Fut2mLsYDAyReK3ki1CTbYadYfqv+4Lw4z0u3fFaMGMSFOGLdnm7WSnXjscCdYCyKonh0kIzSiMFvLHHK8+sxlNPiX4wU7pFbQJpP6ZOwm6dYinD2iQPv/YJkYn0/GZ+qCu2nD/R9XkmtBntUEWQ491SfLMnYda8F//O0z7ApzaOVBXRBjNRm13p1498V0OT247bmdeGbzUQDKwsq1t85BhT0LF44vweTyPHS7vPjLjuNRf47DjR24/vcfY+VzO+N014q+27+FYXGYUPJ4fVovZqgN7MnCICZK/kxM4A//b88bjS8eWKI13Saa+Dw7jrag1+3FJ8fb4JOVSROxZ0WUlIDAyReK3ih1sudon0xMp9OjTYZdPGHgf9z+XTHKD5OWASaOxGOJklK4E6yF6SPs+PCHl+Lhr57d730Wk0ErIbGp98wmyprr99eHLLkcCVJOAoApurUJ5+hWFYi/O/pMzInWHnQ6PbAYDdq2aUDJ1ooMz5E+xw84PcrhsMvWfIwbHt+CP39cg1ue3oFjA+xh0mdiAP9SzXgGMQ3tvbjxiS145/NGWE0G/P6b5+LOS8cHHKty64XKi9VnPj4adaPsp7UO+GTl6JZ4ngEVqgcyHpmY6to2dPR6UJht7rfQNNkYxERJP17dV9+adCKNG5aL0jwrnB4fdh9r1Zp6Z+smYq7SbQyO93j1UCVWsn/4xWmtTAcoTdYen4yRRdnaEQOh9D16oO9iKj3xamfToSZ09LrRrU6EhMvEAErvS6jpN9HMy/HqM9uyGZWwmAzYXtOCtz/rv3Le65O1w0DH9vl7K5p7AWW8WhCZmHpdGURkYSaU5fY7XiTYmLWjx40lj36Ee//3U+w96YDFZMDwgix09HrwT2t3By09ObrdaGh3ap8H8C/VHKi51+nx4umPa0Iu6NOTZRkrntqG/afalWWZt80NeDEoLDunEsPyrKhv78Wbe0+Ffdxg9N+PUCeTRyPUzxMxoRRLT4woJV04YVjKy9AMYqIkgphUp+ElSdIOQ9x0uEnbGaMvIVXYs3CuOvWT7r0mmWL+uGKMHZaDjl6PtpUX0JeSwmfi/D0FgeWkYIHmjBEFsGeZ0d7rwbvqNIDVZECOJfLRfL2vzR6BccNycMWUsvAXU8aqKsrGbRcpk3IPvPlZv+DgZGsPXF4fLCZDv8NqJ5XpyknDC7T/r9B2xfiDAhHEnFXRfzO3aO49optQevWTkzjS1IXCbDN+eOUkbL3/cvz1+/NRnGPBgbp2/Nur+/pljr5QD0OttNuQr54rp8/EhMo0rd16HL/422f4zzc+C/p+vf2n2vFFQyeyLUasu+MC7ZiHvqwmI26ZPxoA8OSHNVE1FoupMKD/WVixCDXtGI9MjL8fJrWlJIBBTFScHi8aOsSOmNS/ghVBzIeHTmsLrfpOxVw3Uzn0sG+9m6JjMPhTyU9/XKNNfYhyT7hSEjBAY2+QEpHRIGlnL72y+yQApWk31tLg9eeOwDv3LsCEPmde0Znn+wvGoSzfitqWHjy1KXCi5kv1iXRMcU6/V9aTy/PwrbkjsWrhhIBhhUp7/63Tn51Sg5jKIEFMkF0xf1UXQt592QTceel4FOVYUG634bFvzIRBAv5v14mAFwmArpSkK3NNKs+D2SihrTt0c+8OtR9o85dNYZfUvXNAeaFw4fiSgCm+YJafPxI2swGf1bXjjx8eGVSmR09fXtt1NPFBTKyZmKZOp7bu4eIktU0MhEFMFE619UKWgSyzMS0yGxeoK8D3nWxHt8uLfJtJO3NH+OacUfjjilm4d9GkVNziGemGc0egKMeCE609eGt/A441d+FYczdMBgnzxoXfmSN6Ypo6Xeh2efzL7kL8nRLZnY/UQClcPwyRXo7VhPuXTAGgHEyqf7KtOd1/MkkwGCQ8cO10rFoYuHlaZGLaez3a+W0HBsjEjO1TTjrU0IE9JxwwGSQsO6cy4Nr540tw35XKz6p/f31/QJnIP17tD2KsJqP2+1AlJfECr7Xb3e8ssr7EKc9ikd5ACnMs2vbkh/7xOeY+9A4WPfIBfvWPz9Ht6n+unZ7PJwcEdXtOOuD0xD69BQQfsQb8mZimKIMYcUzJWRX5KE2DpaQMYqKgH69OhybZCntWQB171qjCfn05BoOERVPL0yLoOlPYzEZ8Sz0V9smPjmilpHNHFSLPFn683p5l1haGHajrgMhEB+uJAfzTTuJF5GD6YYj0rjmnEueOLEC3y4uH138OWZbR1OnEJ+oTfCSZ2lyrCXnqHpg6Ry8c3W5t0m5y0HKS8tjNXS44ut34q5pRXDBpWNDN0/908TgsnFIGl8eH+/73U7jVbKc4+HFin+zhQM299Y7egKV822qaQ35djR29+FTNNFw6aXDjw/dfNQX/snAiZlQVQJKUe/zDB1/i/3adGPDjTjl64PT4YDZKKMw2w+XxYd/J9kF9znBCjViLwON0hzOq8pdWSkrxVJLAICYKAzX1poooKQHBx2kpMVbMHQWLyYDq2jY8qR43Mdg6sSRJWv+BePWYbzP1a4gUKuxZARk2NmlTpCRJwuplUwEAr3xyEuf8xwbMfmAj/vap0pQ6blhkm7Ir1JJonaNH64fRH/qql2M1aTtnDp/uxLpPlCf4G84NfqaawSDh4a+ejaIcCz6v78AfPzwCQD+ZFHiv0wYIYqprA8s0246EHuF+/3PlSfrsEfZBZxpsZiP+eeEEvHbnBfjkZ1fgG+crmZmdYcpDopQ0sihbO54kHs29siyHHLEWGVyX7mylwfL5ZH/f3yBK5snAICYKIhOTTmOpoqQEoN/acUqcYXlWXHeO0m8k9l9E8o9bBDHiB2+47Ip+9wwzMRSNs0cU4OvnKU+yjh43JEl5El16dgWumBpZg7cYs65r6x2wqVcQ2ZgXth5DQ7sT9iwzLhugZFOUY8HPliolsN+9cwg7jragucsFSep/NMl03YRS3wyDyDSJj9lW0xwyC/GOWkq6bHJ0S9wKsi34ynSlPLY7TKOuf8FgrnbG1a44BDHdLq828t13xNpqMqJA7W2KtC9m/yn/NvJZafI8wyAmCumYiZk3tgS5VhMKdIvRKDm+d5F/sWFxjgVTgzQ1hjJcfSUrMjGFYbY864MY9sRQtH5xzVQ8+93z8Y9/vggH/mMxPvzRpViz/Fxt2mewtOZ0R4/W1DtlwCBGCSLWVSulpGUzKmE1DTxhd+05w3HxxGFweXy444XdAJSp0GxL4NLOyRV5yLYY0drt7leSqT7eBgC4eZ6SOW3qdGkndus5PV58pPZ8XD45+om9GVV2SJLyXDHQUjkxqTV2WI4WFOw81hrz8QmiH8ZqMiAryHoFcfRApBNKH3yhNDzPH18y4DbyZEqPu8gw+nOT0oU924xX75yPV74/P6oTsSl6E8rysECtD184oSSiPUGV6itZ0WgY7lyrOWOKYFV/eMT7IE8aOqwmIy6ZOAxTKvJj+nlRnu/PxGhNvQME8ePUxmHxHH39ucPDfg5JkvDLa6chy2zUnnT79sMA/q8JAN7+rF57u9cna5nO88cUY6b6Ii9YSWnbkRZ0u7wozbNG9GKkrzybGRPV0+d3H2sLeZ0IpMaW5GD6cDvMRglNnU5tI3y0RBBTHGK5aWm+mFAKDLBeqz6J7zy9HT9/bR+e23IUHx9uwvHmbnT0uiHLclqNVgvcPx+F2pb+5yalg/GlHJNNlV8sm4r/eucw7rosskMwRTlJnEIers/FZjbimnMqse6Tk5hZlR7pXBq6RE/M8ZZuHFL3twymnAQo2YdzBpk1rirKxr2LJuKBNw8AACaVB+/dWTS1DP/YV4+39zdok5hfNHSg2+VFjsWI8aW5mDO2GNtqWrCtphnL54wM+Hixg+myyaUxLy09d1QBDjZ04JPaViyeFvwwYP2WZJvZiGnD7fjkeBt2HmsJO9o9kFCTSUKoTMyv/vF5wN4fPbNRgtur/JxKpyCGmZgI9bq9Wh0xnTIxlFqjinPwmxtnRLyHp+9isVA/dPR+ed10fPrzRWE3AhMlmsgk7jrWCrdXRp7NNOCLO/2/jxvOHRHRdOd3LhijlcpD9WNcNqkMRoOEgw0d2rEFn6r9MGePKIDRIGHuGKWBdtuRloCyjSzLMffD6M1UF+R9EiIT0+v2aosuxXTprJHx6YsJtSNGEA3Lje3+IKa1y6UFMCsvGoOFU8owpiRHK0eJAGZGVUFa9YMyExMhsdgp22IM279AFM7wPkHMYCaOzEZDyAkmomQSmRiXOv48pSJ/wMCkqigbBdlmdLu82gLOwTIaJKy99XzsOeHA/BB7mOzZZswdW4SPDzdjw2cN+N5FY7X9MOeoW8tnjiyE2Sihvr0Xx1u6MUo9kf5wYydqW3pgMRkCpj2jJbb87jnZBrfX1+/fbE1TF2RZmUgUwcbs0YX406aamIOYcDuntEyM7qymA+rBwVVFWfjpV84KuL7H5UVrtwtt3W6MLkmfAAZgJiZi+uMG0mFHDGW2MrsV+r9G3ONDmUScnyQMVEoClAD85dvm4ZXvz++XhRyMPJsZF4wvGfBnrzhC4+39SlZFC2LULE6WxYgZ6mnc+r6Yd9RS0ryxxcixxv76fmxJDuxZZvS6fVq/kJ5+Mkl8PeeqGaaDDR1o741s/Fkv1Hi1oPXE6DIxB+qUcuCU8v5/hlkWIyoLsnBWZX6/hupUYxAToZJcK741d2TIGidRJKwmo/aqCGAQQ5kl22IK2AkzUFOvMKk8T9vpkghXTFV+Nu881oLalm5tr8xMXf/N+aKkpB5FcKihA89uPgpgcFt6B8NgkLTAKdjuF/1kklCaZ8PIomzIsn+iKhqtXaHPYQOCZ2I+rws/XZaOGMRE6KzKfDxw7XT8yxUTw19MNAj6V6QMYijT6LMx4TIxyTC8IAvThufDJwOPbPwCPlk550m/uG7OWKUcta2mGR8fbsL1j29GnaMXY0pycM2MyMpcAxElpd1BAhL9ZJKe6PfZeiT0VuFwmsM09vozMf4mXlFOYhBDRBEZziCGMpgIwk0Gqd8CulS5YoqSjVn3ibKPRvTDCLNGFcJokHCitQff/vN2dPR6cN7oQrzy/fkBh1zG6txRyuf9pDZYJsZfTtKbpwZYj3/wJX674QttcjES4TMxSkDX3utBr9sLj9enHecwpSKzplwZxBClmFgYBnD3C2UekYkZX5qbNjuqFqmbh8XwUd9R7lyrSStpeX0yls2oxPO3zhnUdGAkzlHPUqpt6QkYZ5ZlWSsn9Z1ovO7c4bhpdhVkGfivdw7hm3/aiob2yE7GDjdinZ9l0pbVne5woqapCy6PDzkWI6oybOqWQQxRiolXsqG2axKls1HqPpPpCexzidTk8jxUFfkznOcE2al07TmVMBok3H3ZePzu6+ckJAALWHqnO4KgpcuF9l4PJKl/EGM2GvDrr56NR286B9kWI7YeacFVv/tI24g8GC1hppMkSQroixFHRkyuyI95P06yMYghSjERxITarkmUzm46byTuXzI5rfoEJUnSSkpGgxQ0wPrOBWOw/xdX4t5FkxL6726mWsrSBzGiH6bSnhUyeLp25nC8cfeFmFyeh+YuF/7jjf2D+nwerw9t3cpk00Dlaf2EkphMmlyeWaUkgEEMUcrNGlWIklzrgAfhEaUre5YZt18yLqqR6US6ekYFJEk5EDfLEjxQSEb569wgS++CTSYFM3ZYLv58y3kwGyVsPdKCLV+Gb/Zt051MXRDkNHFBn4n5PEObegEuuyNKuZJcK7b/5PKMS+MSpbOZIwvxt7suRHmfXTbJJpp79UvvQk0mBVNZkIWbzqvC2q3H8bt3vsC8cfMGvF409RZkm2EaYCmmyMScbvefe5WJQQwzMURpgAEMUfxNG25HSe7Ah6om2tiSXG3p3Xee3oFDDR0hJ5NCuWPBeFiMhkFlY8R4dVGIRXeCmFA62NCBBnXpHctJREREpDEYJPz0K1NgMRmw6XATlvzuI3x8uAlA/6beUEQ2BgAe3fiF9vbalm6seGobrv/9x+h0egD4MzHh1jUMy1OCu82HlaBoVHF2XDYVJxuDGCIiogS6cXYVNv7LJbjirDJ4fDK6XV4A4Xti9L6/YBwsRgO21SjZmPX76vGV//oIHx1qwu7jbdpOnHCL7oRSNYjpUIOfYMcNZAIGMURERAk2sjgbT357Np797vk4qyIf88YWa6eAD4Y+G3PXi7vxT2t3ob3Xo2VcXth6DLIsh110J4hMjJCJ/TAAG3uJiIiS5pKJw3DJxGFRfez3F4zDyztqtWzL7RePxW0Xj8UFv34Xn9d3YPfxtsFnYvIDg5jJGbapV2AmhoiIKANUFmThX5dMxlkV+fjzLbNx/1VTUJxrxdKzKwEAL2w7htbuwTX2FucEBjHpcO5VNBjEEBERZYjvXjgGf//ni3DZ5DLtbd+cMxIA8OaeOtSo49vhGnstJoN2TZ7VhBGF6bXnZ7AYxBAREWWwc6oKcFZFPpweH/accAAY3GGyYuHd5Iq8jN0WziCGiIgog0mShOVqNkYYTBAj+mImZ+hkEsAghoiIKONdO3M4cnTHKwwmiBETSXPHFifsvhKNQQwREVGGy7WacM3M4drvBxPE/PDKSfjHP1+Eq6aXJ/LWEopBDBER0RlANPgWZpuRHeLQSz2z0YApFfkZ2w8DcE8MERHRGWFqpR1/vmU28m3mjA5MIsEghoiI6AyhH70eClhOIiIioozEIIaIiIgyEoMYIiIiykgMYoiIiCgjMYghIiKijMQghoiIiDISgxgiIiLKSAxiiIiIKCMxiCEiIqKMFPcgZvXq1ZAkKeBXebn/cClZlrF69WpUVlYiKysLCxYswP79+wMew+l04u6770ZJSQlycnKwbNkynDhxIt63SkRERBksIZmYqVOnoq6uTvu1d+9e7X0PP/wwfvvb32LNmjXYsWMHysvLccUVV6Cjo0O7ZtWqVVi3bh1eeuklbNq0CZ2dnVi6dCm8Xm8ibpeIiIgyUELOTjKZTAHZF0GWZTz66KP46U9/iuuvvx4A8Oyzz6KsrAwvvvgibr/9djgcDjz11FN4/vnnsXDhQgDA2rVrUVVVhY0bN+LKK69MxC0TERFRhklIJubQoUOorKzEmDFj8PWvfx1HjhwBANTU1KC+vh6LFi3SrrVarbjkkkuwefNmAMCuXbvgdrsDrqmsrMS0adO0a4JxOp1ob28P+EVERERnrrhnYubMmYPnnnsOEydORENDAx544AHMnz8f+/fvR319PQCgrCzwlM2ysjIcO3YMAFBfXw+LxYLCwsJ+14iPD+ahhx7CL37xi35vZzBDRESUOcTztizLYa+NexCzZMkS7f+nT5+OefPmYdy4cXj22Wcxd+5cAIAkSQEfI8tyv7f1Fe6a+++/H/fcc4/2+5MnT+Kss85CVVVVNF8GERERpVBHRwfsdvuA1ySkJ0YvJycH06dPx6FDh3DttdcCULItFRUV2jWNjY1adqa8vBwulwutra0B2ZjGxkbMnz8/5OexWq2wWq3a73Nzc1FbW4u8vLywAdJgtbe3o6qqCrW1tcjPz4/LY57J+P0aPH6vIsPvV2T4/Ro8fq8ik4jvlyzL6OjoQGVlZdhrEx7EOJ1OHDhwABdddBHGjBmD8vJybNiwATNnzgQAuFwufPDBB/j1r38NAJg1axbMZjM2bNiAG2+8EQBQV1eHffv24eGHHx705zUYDBgxYkT8vyAA+fn5/MsdAX6/Bo/fq8jw+xUZfr8Gj9+ryMT7+xUuAyPEPYi57777cPXVV2PkyJFobGzEAw88gPb2dtx8882QJAmrVq3Cgw8+iAkTJmDChAl48MEHkZ2djeXLl2s3fuutt+Lee+9FcXExioqKcN9992H69OnatBIRERFR3IOYEydO4Bvf+AaampowbNgwzJ07F1u3bsWoUaMAAD/60Y/Q09ODO+64A62trZgzZw7efvtt5OXlaY/xyCOPwGQy4cYbb0RPTw8uv/xyPPPMMzAajfG+XSIiIspQcQ9iXnrppQHfL0kSVq9ejdWrV4e8xmaz4bHHHsNjjz0W57uLjdVqxc9//vOA3hsKjd+vweP3KjL8fkWG36/B4/cqMqn+fknyYGaYiIiIiNIMD4AkIiKijMQghoiIiDISgxgiIiLKSAxiiIiIKCMxiBmEjo4OrFq1CqNGjUJWVhbmz5+PHTt2pPq20sKHH36Iq6++GpWVlZAkCa+++mrA+2VZxurVq1FZWYmsrCwsWLAA+/fvT83NpoFw369XXnkFV155JUpKSiBJEqqrq1Nyn+lioO+X2+3Gj3/8Y0yfPh05OTmorKzEt7/9bZw6dSp1N5xC4f5urV69GpMnT0ZOTg4KCwuxcOFCbNu2LTU3mwbCfb/0br/9dkiShEcffTRp95duwn2/brnlFkiSFPBLHDWUSAxiBuF73/seNmzYgOeffx579+7FokWLsHDhQpw8eTLVt5ZyXV1dmDFjBtasWRP0/Q8//DB++9vfYs2aNdixYwfKy8txxRVXoKOjI8l3mh7Cfb+6urpwwQUX4Fe/+lWS7yw9DfT96u7uxu7du/Gzn/0Mu3fvxiuvvIIvvvgCy5YtS8Gdpl64v1sTJ07EmjVrsHfvXmzatAmjR4/GokWLcPr06STfaXoI9/0SXn31VWzbtm1QK/DPZIP5fi1evBh1dXXar7///e+JvzGZBtTd3S0bjUb5jTfeCHj7jBkz5J/+9Kcpuqv0BEBet26d9nufzyeXl5fLv/rVr7S39fb2yna7Xf7DH/6QgjtML32/X3o1NTUyAPmTTz5J6j2ls4G+X8L27dtlAPKxY8eSc1NpajDfK4fDIQOQN27cmJybSmOhvl8nTpyQhw8fLu/bt08eNWqU/MgjjyT93tJRsO/XzTffLF9zzTVJvxdmYsLweDzwer2w2WwBb8/KysKmTZtSdFeZoaamBvX19Vi0aJH2NqvViksuuQSbN29O4Z3RmcrhcECSJBQUFKT6VtKay+XCH//4R9jtdsyYMSPVt5OWfD4fVqxYgR/+8IeYOnVqqm8nI7z//vsoLS3FxIkTsXLlSjQ2Nib8czKICSMvLw/z5s3Df/7nf+LUqVPwer1Yu3Yttm3bhrq6ulTfXlqrr68HAO2EcqGsrEx7H1G89Pb24l//9V+xfPlyHtwXwhtvvIHc3FzYbDY88sgj2LBhA0pKSlJ9W2np17/+NUwmE37wgx+k+lYywpIlS/DCCy/g3XffxW9+8xvs2LEDl112GZxOZ0I/b8JPsT4TPP/88/jud7+L4cOHw2g04txzz8Xy5cuxe/fuVN9aRpAkKeD3siz3extRLNxuN77+9a/D5/Ph97//fapvJ21deumlqK6uRlNTE5588knceOON2LZtG0pLS1N9a2ll165d+N3vfofdu3fzZ9Ug3XTTTdr/T5s2DbNnz8aoUaPw5ptv4vrrr0/Y52UmZhDGjRuHDz74AJ2dnaitrcX27dvhdrsxZsyYVN9aWisvLweAflmXxsbGftkZomi53W7ceOONqKmpwYYNG5iFGUBOTg7Gjx+PuXPn4qmnnoLJZMJTTz2V6ttKOx999BEaGxsxcuRImEwmmEwmHDt2DPfeey9Gjx6d6tvLCBUVFRg1ahQOHTqU0M/DICYCOTk5qKioQGtrK9566y1cc801qb6ltDZmzBiUl5djw4YN2ttcLhc++OADzJ8/P4V3RmcKEcAcOnQIGzduRHFxcapvKaPIspzwdH8mWrFiBfbs2YPq6mrtV2VlJX74wx/irbfeSvXtZYTm5mbU1taioqIioZ+H5aRBeOuttyDLMiZNmoTDhw/jhz/8ISZNmoTvfOc7qb61lOvs7MThw4e139fU1KC6uhpFRUUYOXIkVq1ahQcffBATJkzAhAkT8OCDDyI7OxvLly9P4V2nTrjvV0tLC44fP67tOjl48CAAJaslMltDyUDfr8rKSnz1q1/F7t278cYbb8Dr9WpZv6KiIlgsllTddkoM9L0qLi7GL3/5SyxbtgwVFRVobm7G73//e5w4cQJf+9rXUnjXqRPu32LfgNhsNqO8vByTJk1K9q2mhYG+X0VFRVi9ejVuuOEGVFRU4OjRo/jJT36CkpISXHfddYm9saTPQ2Wgl19+WR47dqxssVjk8vJy+c4775Tb2tpSfVtp4b333pMB9Pt18803y7KsjFn//Oc/l8vLy2Wr1SpffPHF8t69e1N70ykU7vv19NNPB33/z3/+85Ted6oM9P0SY+jBfr333nupvvWkG+h71dPTI1933XVyZWWlbLFY5IqKCnnZsmXy9u3bU33bKRPu32JfQ33EeqDvV3d3t7xo0SJ52LBhstlslkeOHCnffPPN8vHjxxN+X5Isy3LCIiQiIiKiBGFPDBEREWUkBjFERESUkRjEEBERUUZiEENEREQZiUEMERERZSQGMURERJSRGMQQERFRRmIQQ0RERBmJQQwRERFlJAYxRERElJEYxBAREVFGYhBDREREGen/B5rf5AJV3tmQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(timeseries_d[0], timeseries_d[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\joche\\miniconda3\\envs\\pp_env\\lib\\site-packages\\pymc\\data.py:287: FutureWarning: ConstantData is deprecated. All Data variables are now mutable. Use Data instead.\n", + " warnings.warn(\n", + "Sampling: [L, baseline_intercept, baseline_slope, height, meanmean, noise, separation, std]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "

Sampler Progress

\n", + "

Total Chains: 4

\n", + "

Active Chains: 0

\n", + "

\n", + " Finished Chains:\n", + " 4\n", + "

\n", + "

Sampling for now

\n", + "

\n", + " Estimated Time to Completion:\n", + " now\n", + "

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ProgressDrawsDivergencesStep SizeGradients/Draw
\n", + " \n", + " \n", + " 1400000.5515
\n", + " \n", + " \n", + " 1400000.5415
\n", + " \n", + " \n", + " 1400000.5215
\n", + " \n", + " \n", + " 1400000.4915
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [L]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e7adad524a584934b7a6ff499da3717c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
baseline_intercept1116.57838.6451041.8901188.5580.7380.5232743.03418.01.0
baseline_slope-21.7563.070-27.447-15.8060.0590.0422712.03492.01.0
noise_log__4.7730.0674.6464.8940.0010.0018809.05963.01.0
std_log__[0]-1.8130.108-2.012-1.6110.0010.0017129.05764.01.0
std_log__[1]-1.8790.044-1.963-1.7980.0010.0007303.06430.01.0
height_log__[0]6.6500.0856.4936.8120.0010.0017345.05516.01.0
height_log__[1]7.4740.0377.4057.5440.0000.0007762.06293.01.0
meanmean12.0820.00812.06612.0980.0000.0006577.05571.01.0
separation_log__-0.3540.023-0.397-0.3120.0000.0006911.05108.01.0
noise118.5137.938104.088133.4410.0840.0598809.05963.01.0
std[0]0.1640.0180.1330.1990.0000.0007129.05764.01.0
std[1]0.1530.0070.1400.1650.0000.0007303.06430.01.0
height[0]775.18865.076656.037902.6960.7580.5367345.05516.01.0
height[1]1762.62065.1701634.6241878.0310.7400.5237762.06293.01.0
separation0.7020.0160.6720.7320.0000.0006911.05108.01.0
area[0]317.09928.666261.556368.2530.2800.19910562.06227.01.0
area[1]674.79926.942623.811724.3680.2420.17112379.06343.01.0
sn[0]6.5710.7075.2357.8530.0090.0066926.05009.01.0
sn[1]14.9391.13512.77517.0150.0120.0098383.06378.01.0
offset[0]-0.3510.008-0.366-0.3360.0000.0006911.05108.01.0
offset[1]0.3510.0080.3360.3660.0000.0006911.05108.01.0
mean[0]11.7310.01511.70411.7600.0000.0006241.05139.01.0
mean[1]12.4330.00612.42112.4450.0000.00011078.06184.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", + "baseline_intercept 1116.578 38.645 1041.890 1188.558 0.738 0.523 \n", + "baseline_slope -21.756 3.070 -27.447 -15.806 0.059 0.042 \n", + "noise_log__ 4.773 0.067 4.646 4.894 0.001 0.001 \n", + "std_log__[0] -1.813 0.108 -2.012 -1.611 0.001 0.001 \n", + "std_log__[1] -1.879 0.044 -1.963 -1.798 0.001 0.000 \n", + "height_log__[0] 6.650 0.085 6.493 6.812 0.001 0.001 \n", + "height_log__[1] 7.474 0.037 7.405 7.544 0.000 0.000 \n", + "meanmean 12.082 0.008 12.066 12.098 0.000 0.000 \n", + "separation_log__ -0.354 0.023 -0.397 -0.312 0.000 0.000 \n", + "noise 118.513 7.938 104.088 133.441 0.084 0.059 \n", + "std[0] 0.164 0.018 0.133 0.199 0.000 0.000 \n", + "std[1] 0.153 0.007 0.140 0.165 0.000 0.000 \n", + "height[0] 775.188 65.076 656.037 902.696 0.758 0.536 \n", + "height[1] 1762.620 65.170 1634.624 1878.031 0.740 0.523 \n", + "separation 0.702 0.016 0.672 0.732 0.000 0.000 \n", + "area[0] 317.099 28.666 261.556 368.253 0.280 0.199 \n", + "area[1] 674.799 26.942 623.811 724.368 0.242 0.171 \n", + "sn[0] 6.571 0.707 5.235 7.853 0.009 0.006 \n", + "sn[1] 14.939 1.135 12.775 17.015 0.012 0.009 \n", + "offset[0] -0.351 0.008 -0.366 -0.336 0.000 0.000 \n", + "offset[1] 0.351 0.008 0.336 0.366 0.000 0.000 \n", + "mean[0] 11.731 0.015 11.704 11.760 0.000 0.000 \n", + "mean[1] 12.433 0.006 12.421 12.445 0.000 0.000 \n", + "\n", + " ess_bulk ess_tail r_hat \n", + "baseline_intercept 2743.0 3418.0 1.0 \n", + "baseline_slope 2712.0 3492.0 1.0 \n", + "noise_log__ 8809.0 5963.0 1.0 \n", + "std_log__[0] 7129.0 5764.0 1.0 \n", + "std_log__[1] 7303.0 6430.0 1.0 \n", + "height_log__[0] 7345.0 5516.0 1.0 \n", + "height_log__[1] 7762.0 6293.0 1.0 \n", + "meanmean 6577.0 5571.0 1.0 \n", + "separation_log__ 6911.0 5108.0 1.0 \n", + "noise 8809.0 5963.0 1.0 \n", + "std[0] 7129.0 5764.0 1.0 \n", + "std[1] 7303.0 6430.0 1.0 \n", + "height[0] 7345.0 5516.0 1.0 \n", + "height[1] 7762.0 6293.0 1.0 \n", + "separation 6911.0 5108.0 1.0 \n", + "area[0] 10562.0 6227.0 1.0 \n", + "area[1] 12379.0 6343.0 1.0 \n", + "sn[0] 6926.0 5009.0 1.0 \n", + "sn[1] 8383.0 6378.0 1.0 \n", + "offset[0] 6911.0 5108.0 1.0 \n", + "offset[1] 6911.0 5108.0 1.0 \n", + "mean[0] 6241.0 5139.0 1.0 \n", + "mean[1] 11078.0 6184.0 1.0 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pmodel_d = models.define_model_double_normal(\n", + " time=timeseries_d[0],\n", + " intensity=timeseries_d[1]\n", + ")\n", + "idata_d = pl.sampling(pmodel_d, tune=12000, draws=2000)\n", + "idata_d = pl.posterior_predictive_sampling(pmodel_d, idata_d)\n", + "summary_d = az.summary(idata_d, var_names=[\"~y\", \"~baseline\", \"offset\"])\n", + "summary_d" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\joche\\AppData\\Local\\Temp\\ipykernel_5868\\1105783876.py:9: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " plt.tight_layout()\n", + "c:\\Users\\joche\\miniconda3\\envs\\pp_env\\lib\\site-packages\\IPython\\core\\events.py:82: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " func(*args, **kwargs)\n", + "c:\\Users\\joche\\miniconda3\\envs\\pp_env\\lib\\site-packages\\IPython\\core\\pylabtools.py:170: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " fig.canvas.print_figure(bytes_io, **kw)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcJ0lEQVR4nOzdd3xkd33v/9fp50xXLyttt73r3jBgG7AB28AvJmAIJiSUJOQGwg0OJfeGJBTHl04IIbRAIGCSQAgmAQKhOdiADbiXdd1etOoaTT/9/P4YrWzZu6vRrnZX0n6ej4cekmbOd84ZrWbnrW/7KEmSJAghhBBCiGVPPdEXIIQQQgghFocEOyGEEEKIFUKCnRBCCCHECiHBTgghhBBihZBgJ4QQQgixQkiwE0IIIYRYISTYCSGEEEKsEBLshBBCCCFWCP1EX0Ar4jhm//79ZLNZFEU50ZcjhBBCCHHcJElCpVKhv78fVT18n9yyCHb79+9ncHDwRF+GEEIIIcQJs3fvXgYGBg57zLIIdtlsFmg+oVwud4KvRgghhBDi+CmXywwODs7mocNZFsHuwPBrLpeTYCeEEEKIk1Ir09Fk8YQQQgghxAohwU4IIYQQYoWQYCeEEEIIsUJIsBNCCCGEWCEk2AkhhBBCrBAS7IQQQgghVggJdkIIIYQQK4QEOyGEEEKIFUKCnRBCCCHECiHBTgghhBBihZBgJ4QQQgixQiw42P3sZz/j6quvpr+/H0VR+M///M9529x6661ccMEF2LbN+vXr+dznPnck1yqEEEIIIQ5jwcGuVqtxzjnn8KlPfaql43fu3MlLXvISnvOc53DvvffyF3/xF7z1rW/lpptuWvDFCiGEEEKIQ9MX2uDFL34xL37xi1s+/nOf+xyrV6/mE5/4BACbN2/mrrvu4mMf+xiveMUrFnp6IYQQAoA4TlBVZfbzAUmSoCjKnGOTJCFJmD0+ThLUmWOax0OlEaApCm4UoyvNN8hEBT+IcYMATdXQVUhZJqVGgO8HTFWqOLZFueFTcUMKKR3P9ZmqutiOiZbEZNIpqvUA01AYn67RntYYKbnsHtnPpv4e3CgmUXVqbpmRkoemRKQUi1CLcEyD3WNV2lIGGgkZx2Sq3qBUSXBDWN2uESYxbqLTnbYxTA1V0/A8n3w6y2hxgs5sBs200eKAtmyWJPAZc2OypkJ3Pk/dDVATBSej0ZvPMl72COOIvnyKlG2jKlB2A4IwImsbhIlKZ9YmjCBJYvwwwFBATWIwHUxdRQESEpIogtoYmpKgKglqEhMEAbqSoBChJDHEEUk883V+FXGmD4AD/4TKxFaY2k4chahJRBSFKIqCOvefeObfEpTTXwqaMfeOh/4T4rC1X6y2dTBwwdzbpnbA0D1PPzbTA+ue09rjHicLDnYL9ctf/pIrr7xyzm1XXXUVX/ziFwmCAMMwntbG8zw8z5v9vlwuH+vLFEIIsczsmKgyVvGwdJXOtMV41QMSbEOnJ2fT8COqfkDG1BmruBTrAV4Qs3eqjmUo9OZsHh8t89hwhf2lBjsn6tS8GIAEiI/Hk7hn+BB31Gc+H3gvDGY+PyWc7IyedH8w9z4qM5+nZm+xGKJLKdFGhYJSJUudtOKSocFP43PZlfTNeYR36N/gueoDZGiQoUHgNag2QvY2IkqNiLIbM9VImGokDDUMbqw9i9itEjcqxG6F9o3nMHLVrXMe0zzIsz2Q0T4SvIrPRC+bc9+f6V/nLfp3ZocYtYO0f/LjvOaWbxIZKdKWQW/eImMZ/J9734we1g/T8gneWa+hUjiTeOaPgThJsB/+KW0/efvTjq0NPo+pl1/AYHuqpcc+Ho55sBsZGaGnp2fObT09PYRhyMTEBH19fU9r88EPfpDrr7/+WF+aEEKIZSZJEspuyGjZ5aGhMjU/wNE17t5dxA9jdEVF1xU6UgaNMGKo6FJq+DT8iFLDxwtjdo5XqXkBdS/BT5ohbrkzCfCZ21GyQRnirfp/0M003UqRLqVETqnjhQlFtxnGijOhbKqREFUvZbrRSexWiBpVYrfC33vb+aRbYaqRMO0mxIf9YXnAT+bc4nb2L+h5aAeJ09ECZ43tnKwR6AmOrjNR9chYBlGctBx4al7E8LQ757Y2L6TtIMfGCXjhcfkToGXHPNgBB+0SP9jtB7zrXe/i7W9/IhmXy2UGBweP3QUKIYQ44eI4IUoSopmh0ihOCKMEL4xohCETJZ/9ZZeJisu20Qr7inWiBBxLY7Li0fAjEiAIY2peQKUR4ccQzXvm5SFNg7XKKOuUYdYwTG+4j3Z3iLQ7xkONNt5XuabZW+ZWiBsVtrr7uTG4aza4HQhytad27M36ydNu2XqQoxwd2h1l9qPNUWi3FdKOwVeNV6LaGVQ7i+pkKeTSwHtn28aJQoRKjEo08xGjzH7tHqQ/bzwp8Fg8QIRGNHMsKCg0h2sVpfm1pipoqsIZ3Xn0VIaCbdCWNsnYBtPumRiJNzv8riigKsrMxxPDvqCgtK+lkDLmHGO39xL0XXDgiNkuRqt3EwNtzvz/eMfRMQ92vb29jIyMzLltbGwMXdfp6Og4aBvLsrAs61hfmhBCiBOg4gZMVn3COCaKwQ0ixiouQZQQRwl+HOP6ERU3ZKRc55H9VcZrLmGY0AhCvDDGC2OiOCGKj9OQ6XGQRAFRrUhULRLVipxV+zVt9d1EtSKNapVy3Wd7I+HORrPHbW5H0TjwoTmPVwb2HuJcCpCzVXKOTsYxSNkmU9YA4/ZqNDvTDGdOlg1OlVWOT2TniOx2QruNWLdng1iEyliiMoxKhEaewpzzeCSc6n5l9tgnBl2foAKm1vywbI1VukrKNEhZOramsNd8NX9nvZa0qbGuK0N7ysDUNRxToy1l0pm1yNk6hqahKPA3M2HtQChTFFCf86MnbjvY5LwnseHpvXPn/WbzYxk45sHu2c9+Nt/97nfn3PajH/2ICy+88KDz64QQQqxMlUbA3mKd6VqAG8a4QYgXROwrNZiqBDSCEDeI8MKYME6YrnuMV3wqjYAwTgjiiDACfxkluSRJSPw6UXVqNrAl1QlS9SHM6ihJbRKvVmKsEhG4c+eA/U8Lj29q0DHTa7bd2tTsKbOzqHYa3cnw/NR2Arsd1+6gbndTsXooOf3EVg5FaQ5x1nliRt9Tu1tGZz7mPqmF/AQUQgw0BWwddFXF1FWytomhK1i6RtrSsDQVy9BQFBVNgba0Sc4xsHUNVVUYbHdY25HG0FTyKYO8Y5A2tUOO/J3MFhzsqtUq27Ztm/1+586d3HfffbS3t7N69Wre9a53MTQ0xI033gjAm970Jj71qU/x9re/nT/8wz/kl7/8JV/84hf52te+tnjPQgghxAkTxQlBFBNEMW4QUXUjar5P1Y0ouyGlRsBQscFYuUEjiKj7EVEcE0QJbhBRrPuEIaAmRFFCPYjwZgKeHy3NOXBJHBHVS83ANtvLNkV84OvqFEltsnlf+PTVmJOHemBVR0u3oWUKnJZp8OzsKH1Zhb6MSldaIWsb1O0uynYvU/YAe7UBdid97Ep66KXAU3vE7jrEaY5FHNIAXQVDVdCNZlhL2yqmppEydCxDw9RUMrZG2taxdQ1b17AMDctQ0VUF21ApOCa5lIGla1i6QkfGouCYGLoqYa4FCw52d911F5dffvns9wfmwr3+9a/ny1/+MsPDw+zZs2f2/nXr1vH973+ft73tbXz605+mv7+fT37yk7LViRBCLDNRnDA03WC4WKfkhlTdgOGSSz2ICMJmUGuEIRMVj2ojpOIFTNeD5rDpzApDDmyEkUCcxIQxRHFMGC29IdUkjggm9+IPP443so1wepSo1gxyca3EQiJnzoK+jEpvRpkNar0Zhb6MQm9G5Q7nYj7n/D6qnZntSTtT3cKF6n3sSnq5JeljV9zLCG0kT15McBx+aBpgKKDrkDZ1so5BX95hoM2hPW2SNg1iNcHWVGxTJ28b9OZt2jNms4dOU9E1BVNT0TQVTVFm58OpyqHn24sjoyQHVjIsYeVymXw+T6lUIpfLnejLEUKIk4YXRrhBjBdE7C3WuW/PNLWZbrSaF1L1mr1RcZJQrPnsK9ap+SF+GFPzQ8Io5kD/UEJzQUSSQBRDtIRWpCZJTFgcxht+HH94K/7INvyx7SSBd8g2qgKdaZX+jMJjqXNR0+1omXa0dAE908bXCp9jXS6kN6OQMuaGlyhRGEo62Zn0sTPp5bb4TH4cX3isn+YhqYBjgGMZmJqKqijoioJlajM9aRodKYONPVk2dGUYaE9h6Rrak+arpSyN7qxF1pZpVottITnouKyKFUIIsbQdGEZ1g3hmnlvz6zBO8IKIRhByz64i4zUPTVVxNIWxqstU1adU8xkr1akFCY2wuQp1bmBbKvGtKUkSovJ4M8SNbMUf2Yo3sp3Eqz3tWNvUOL3P4eL+hPO6otketr6sQldKmQ02z/X+mD3J3K29OswfUlBGeSAZZHvYz86kl51JL7uSXvYm3U/bnuR4MhWwDRVdV7E0lWxKJ2vqWKaBqTeDXG6md66QMimkmj1x/W0pCikDTW0Onepa82eQNnXSlkSKpUD+FYQQ4iQTRTFTdZ9izWe6ETBWdpmo+QxN1Sm7IXU/pOKFjJUaTNQ8Ko0QL1x6Q6UH01ys0CCql4jrJaJGec5nf2I3wchWovrTN75XdBOzez1m3ylc1u/z4cFfcFqnOrtFxuG2xt2oDD0t2P2O/xfUsDk2M9oOzwAcEwqO2RweTZmsKth0ZG1ydnPhQcY2aE8bZG2DtKWTMjUcQ8PQVXRVRVMVjJngduB7sfRJsBNCiBUkSRKC6InFDH7UnPvmBxGlRkCxHjBadqk0AoqNgGLVp+IFlOoBI6U6FTeg4oW4wdLY/y2JI+JGuRnUGmWievmJ758c3A7c3yhDNH/pKF2Fs7pVntGvke5bz9e73oLRuRpFa74tptWH2Gz+8mntJpIc25JVbI1XNT8nq9gWr2LsKdt8ANQ4Pvub6TTnv1m61twixNDQVZXurElHxsQydFblbJ65oYPenE3WNshYGrYpEWAlkn9VIYRYRsKZoOaGEQ0/oOEnTFddio2A6UbAdNWj7IVM1lwmKx5TVZfRap2pUkI1PvGDorHvEjdKzYA2p0etRFwvz3xfnvm+ROxWj+g8jqHQlYKulEJnSqErrdKVUljfpvKMfpVzejVsvdkDtTVW+Za/fk77bXE/P43OYUfSz7akn+1xP1uTVRQ58fO8DwQ5U1PJ2TpZ2yCfMuhIm2RtE8fQyDs667ozdGUs2tMm67symPrhinGJlUKCnRBCnCBBFFOs+eyfblB2A8IowY9iGn7IrokqD+wrsm86wPWa+75V/QB/ifSkHUySxPgj23D3PEBULT6lR63Z05aEh16McDh5R6MzpdCbSuhKK08EtpTCN6yXscM+HTWVR3NyqKkc/5T6e16g3XvIx4sShX1JBzvjXh5Pnl7ZaJw2fi/4v0d0ra1ygEwaspZJT9aiPWPTnrZoz5h0Zk060hb5lEWbY5B3TNKWhmloMjQqDkuCnRBCHENR3CyJ5c9US/CCGD+KqHohxZrP/XunqXrR7OKFyZrH1tEqE1UPN4iJTnQX2zxit0pj1300tt9JY8fdxPXpeduomkY6ZZNPmdhOiv3ORrRUDtXJoaXynJGe5obcf870tDXLVumHCTH7g0GGowvm3LYn6WY4aWco6Zz92Jd0sTfpYnfSw3DSQXAM3gJTOmRtjULaJmfrDLalac+YpGYWFzimRsrQsA0VU9foy9us6UjhGDqGvrCaqEIcjAQ7IYQ4SnHc7Glrlrpqhri6F1L3I2p+iBvENIKQhtfc42204jFRcZmqeoxWXGp+RMMLqfkw/+ywEytJEoKJPTR23EVj+514+x6G5IllFYrpsGbtajZ06PSnIgZTPuvTLqekqgxkYrpSChnzwN5lEY/Fea7y/2zOORRlhOdZ/3XY65hO0gwlnQwn7RST7NPuvz58HdeHr1+U53wopgK5lEZnxiJrW3RlDDqzNl1Zi4yts74zQ1vaxNSbe7kpTyp1pShQSJlkZCWpWGTyGyWEEC1IkoS6H1Fq+OyaqFNqNFeUjky7VLyAsYrHyHSD6bpPxQ2pNAIaS7RqwqEkcUTsN0j8OrHXIPEbxH4Dwy+R88cJhx9ldMcjlEtzV5Tq7QM4Gy7E2fAM7IHT+Uf7E4cYBn16j1Sf8vQaDMNJB4/Gg+xPOhhOOhhO2ptf08Fo0sZI0k4de55ns/BhShXIm5BP6eTTFt0Zk3XdOboyJo5pkrE0unM2aztT5GxzZquP5qpZBeatQSrE8SDBTgghDsH1QyZrPhNVn2Ldp+6HbBkqUaz5BGHCzskqE+Vmz1s1PP4hLkliEt8l9uszn58IY83bGnNum+++JPQPea6hJ31taXD5Oo2XbDR4YN3v8uPcy+YcO5y0H/Jx6on1RFCbCWsqMfGTQp+PwYv8Dx/pj+WQDAUcQ6UtpdOeMVndnmFVWwrL0GjPWGQOskp0XVcabaaHrS9v05GxFv26hFhMEuyEECeNOE6Ik4QoSYhjmp+ThCCM8cOYYt1npOSyf7rOnqkao2WXyarHZLnOVNWn4kH9KDZzS5KEJPQOErQaJF79ECFspgftIPclgbt4P5wnMTXImgpZ68BnhawJ69tUXnKKzuVrddJms3fqb4OIHz9lNccd8SZSkcdw0s5w0jEb4vYnHZRIczz2dTuwctTRtZlNdnV6c2na0zqZmd62gmNg6CqW3hxOVRVmy1ypikLW1sk7Brqq0JW1sA1ZVSqWPgl2QohlJ4hi6l6zGsJE1cMP4+aK0jgmjhIqbnO/tpofUnVDJiou+4p1ijWPYiOk0vCp+EfewxaWx/D2P76gEHbg6yfPR1s0iopqOihmil7Lpd9qkLcSMqbSDGYmM+FsblhTDYs/Vv4S1XJm2js4psbj6T98+nNOVEZoZzhp5+akg/1hM6zdFZ/6tGO/E1/Cd+JLFu3p2UBbBtqc5tYdPQWH7pxNTzZF1tFJ2wYZc2ZhgqmjayqGpmLoSvOz2hwy1VRmKyZoqiI1SsWKJMFOCLHsbBurMlJyeXSkQhA+EZTiJKHqBWwfrzUXMPgRE5UGUzWPWrA4565u+R+mfvipww5btkIxnwhTT/5smzp5M6HdiugyA3osj17Lpc/yGLBq9Fj+bEj7hPq7fFu7AkU3Z0PK9fo/8Xr9xy1eRcxfuutoPGm+mg/8Xfhyykl6To/bOIU5w6VHw5pZdJCyNHqyNpt7smxe1cam/ixr29Ok7WYvmQQvIRZOgp0QYtnww3hmO5AKYxWXKI5mel6g6gWUaj67JusMl1ym6y41L8FbpA6yJAop/vSLVO7+LgBG5xr0XNdTglmq+dlyUAwb1UwdNLyppkmXUmX8KdUKTlX28iNrvr3Tnvhve33goUZz53yNJm2zX3uJwWhSYJQ2RpP2mYUHbYwlBcZofvYwn3aGvw1/a2E/nENQAVuDXNog5xhkLQPH0OjMNue3nbc6zzmDbRQcUxYeCLFIJNgJIZaUA6tPwyih7Pq4YcRExWe07DI0VadY93l4X4mxmjdTtL5ZfcELj91WIVGtyPi3P4y3dwsA+WdfS/7S16Co88+5Mgk4TdnL2eqjnKHsYrO6h1OVvdRwuMj7zJxjdyc9xImCqhx+kDhMVMYpEB6kdulN0XO5OT6f0aSNaTIcq/lsWR2ylkpH2qKnzaErbdGRc2hLmWTt5l5tacskl9LozjpkZuqRmrJXmxDHlAQ7IcSSsmeqTrkRMlxqUHFDdk9VeXykSqkRUGn4jJZcKl6IHx2fovRheYLRr/054fQIiunQ+f+9ndSpzz7E0QkblP2cr27lXGU7Z6vbOU3Zi6k8vVZEGo8CFaZ5Yg82D5P9dJBN6uxOetibdLE36WFf0snIk3rcJskfclh0lHZGD7MqtRUGYBmQtgwcSyNtNMtW5RyDvoLFBWs6WNeZOWhbU1dJmRoZS5cgJ8QJIMFOCLFkxHHCVM1naKrOtokaE2WPx8crlGrNnrtyzafsxcetpFZYnWL03/6ScHoEvdBL9yvfi9Hx9PJTB/y5/nXepH+35cdfrwxzz1M2173K+/BxKx5/gK7MBDJDJeMYZCyD9pRByjYwFAXH1LB0lZSls7rNYVVb8/qUmXaOIUFOiKVCgp0Q4oTxw5g4aa5i3V+sc+/eaX61bYJdxQZh1AxyU/XohFRjiOolxr7+V4RTQ2i5bnp++wMYuU42Kbu5RN3CVJLlW/Fz57S5N95w0MfyEp1HkjU8GK/jkWQNj8SreTwZOGiAO5ahzgCyNqQMg4xtkHV0OnIWg/kM3XmTnG00e+lmyl6l7eYq07SpYxkautYs7aXPrCyVeXFCLD0S7IQQJ8RYxWXPZJ3tY1UeGJrm8ZEqe6ZqVFyfMAH/BNfWmvjuxwgm92Bk2/nd17yMqzv+nUvVB+lSmlUX7ok38i1/brC7M95ElChsTQa4J97IA8kGHozX81gyQHic/rs1FLB0cEydnNMMaxlbo7/g0FdwKDgGHWmL/jaH/rxDxtYxNHWmsLysRBViuZNgJ4RYdEmSEMYJQRQThM06qsHMR8OPmK4HPDhUZKjYaH5MN5isukzXw0VbxXoUV88p/uPs2X0fAPf8rseZ3V9/2lFnKTtxcOdsFTJFjnO8L1AldbwuFkMB21DJ2DoZSyfvNDfgLaSaQ6o5x6A7a7GhK0NHxqQzY9GWNjE0GTIVYiWSYCeEWLBoJrT5UUwQxgTRk76PmpsFJ09a2BlEMRUvYGS6wd6pOrsmazw2Uma81GD66LaDW1Sv0n7Km7XvsH3/ED9JEtYWFM7snrvyNEoUHkg2cHt8OhbBnGAHHNNQpwEpE9pTBoV0s9h8d6ZZ5qotbdCesUjPbNRraippSydr62Rsg5SpSeUEIU4CEuyEEC2L4oShYoNSY/7dfhWludHGrokqjw5X2DpeYaTkMlSsUaydmHlz87Hx6Y1GeOddzbR58WAzCO2Nu/h5fBY/j8/i9vgMShx8ReiiXosGq9psCimLrG3QmTHJOSYDheYmxilDpS1tkrWN2d43U1dJWxppUxYyCHGykmAnhGhJ3Q/ZO9XAn6n0oKkK5oGSTbMfCkEUUawH3L9nmvv2lJiouoyUG82aq1WfxvFa0noQKjEXKI/zYu0OIlTeH/7unPu/NdLHt75b46HxGAXQN1/B5d417Ex6OR71TTWgLaNTsE0GO1Js7MrgBgmKArahsbo9RW/eJuvopAwd22iuVM2YOilLk+FVIYQEOyHE/CaqHiMllyQBQ1dY3Z4iZeoEUUypETBebi6EeHh/iW0TNfZMVpmuB1S9kLoXnfB5c6cpe3i5dhsv035Br1IEoJI4fCx8FR4mSZJQve+/2fM//0gSxhjpPG2/8WfcuvbcIy8o2yIF6MzorCk4dGZtUpZOR9aikDJJmzolNyBj6pyxKkdbyiQzUxc1bWnoEuSEEE8hwU4IcVgjJZfxigdA3jFY1eYQRDEP7Cty164iw9Muo2WXvdMNxssukzWPIEwIj3Egmk8nJV6u/ZxrtJ+zWd07e3vFS3h0Iubh8RLW6MfZO+ETTOwhnB4BwF5/AZ0veRtaunBMrss2IGvppCydrKXTlbbYtCpHkijYhspgW4q8baKooKoKcZLg6Brnr27D1GWOnBDi8CTYCSEOa7rRnG/Wk7foztqMlBo8vL/MlqES+0sNJqoeYxWPkek6NS/EDzhuGwg/lUHI89V7uFa7hTPde3lsNOLnEzH/MB7zyETEw+Mx+8pPTpy/eOJLTaftua8n+4zfRFEWvyfM0qAjbZC2TCxdJSahM22zuT9PytQxVIXevE3a1kkZGo6poavN67ANVUKdEKIlEuyEEIcVRs0gZGsqv94xyUNDZR4fLbNnqsZU3afWCCjVfWonINAlSUJUnSSY3EcwsYeOqft5dOouXj0eM14/dJehlm5D7xjE6BjE7BxE7xjE7F6H5uQW9fpUmnvK9eZsTunOkLENwhjCOCZr6fQWbPryDu1pi/a0iTUT3mxDxZ4Jd47R/BBCiFZIsBNCHFIQxSQJVL2Ar/xyhLt2F9k/3aDcCCk1fPzw+NRrfaokjpi++fNUtvyUxK/P3l4Etj3puIG8Tq6zh3L76dQ7NmF0rMboHESzj82qVgVwDOjIWDi6Slo3KGQMzliVb86HUyCOwdRUVrU5rO5IkXeMZoibCXK2rklFByHEEZNgJ4Q4KD+M2TZWoVT3uX37GD99bIJS3cePIkqNiOAELYjoj/fjfvcG9jw6M29OUdHb+jE6BjA6Brmqe4Jndrn8qvAS7tLPoYaKBmQP+6hHT1cgZal0pm2yto5pqKRNnZxtYmgaiqqQtw3aMyYbu9Ks7cxgG6pUehBCLCoJdkKIOepeyN7pOr/ePslQ0WX7aIlt4zWGyy7eCZo8pxJzmXofr0p+xKe//Sv+6/EQU4PXvfQSfrT+nSi6MXvsHTMfx4upQkfGoJAy6Mul6MnZKBo4mkFb2mBTX46urEln2iRtN3vnZKNgIcSxIsFOCMF0zeex0Qq7J+rsnqqxY7xK2Q3YNVllrOyfsN65TkpcHfyQU8d+xPahIu9+LOCu/TG2Dv9xbYqzNwxxs6cd1+HgA/PmOjImG7qznD/YxrrONJ1ZC8fUieKEhARb1zilJyshTghxXEmwE+IkliQJO8aq/HrXFDvGqoxXXPYWXWp+QKnmMVENj2uFiCSOCCb3sGr4Fgr7f8XQ/mGuH4/nbCWXMuAfrh3gztUv5f96zyXm2O/lpgK2Do6l05YyWVVwuHBtB+esLtDmmHOO1VVQVVjfmZFQJ4Q47iTYCbFCxXFCEDfruIYzdVzDmZqu1UbA3mKdu/cU2T5WpVgPUZWEIIyYqgVMVr3jUiEiqk3jDT+Gt/8x/P2P4g1vJfEbDD/luPVtChet0smvWsf+9S/jr3LPgejYz03Lmgq9OYt8yiRlGwwUUnRnmvvOdaYtco6Brjarb+iagq42q2+kLV2qQAghTggJdkKsEDUvZLziEcyEuPhJ45MJCcWaz9B0g8dHK4yXPUYrLlUvxA0igjCm6vqUvGO/q3AShUzd/AXcnXfPbgr8ZIZp8pxVEc9apfGsAY21qzr5sXUFX48uZ4y2Y3ptKtDmqGzqy3LxKV1s7MoSxM15h5ahsargcGpPhoxlyMpVIcSSJMFOiBVipOxSf8rqBkVp1nQdr/iU6gHFWkDVbYY5U1PJWCqe51Ou+1SC43Od9cd+QfXe781+b3Ssxuw/Dav/NKxVm7A7+vmq83a2xav45+iF3ByfTxQd2yFNS4HuvMmazizrOtOc0pMlaxnU/WbQNQ2NNe0pNvZkyVjy36YQYumS/6GEWAGSJKHhN0PdQJuDYzYLwodxzO7JOhlLZ7ru05kxqHom1YbHWMNl+2id+nFcebBe2c/Q/V9hAviTi0zee5nN1cpfs5/O2WNi4Arvo9Rwjum1aApkLI3urMmazgwDbSm6cxZr2lI4lo6uqtiGimNoFFImnRkLx5Q5c0KIpU2CnRDLXBQnlBoBSdLsoSukDBRFoe6HPDRUZrTkct9QkfGyy927ioyUvOO6IEIn5IXKXTy//D0mdz3CH+9xURX4P5eYdDjw6vB/+Hj4qjltjkWo04C0pdCTtVnbleasgTb68w75lElXxmyuajU0LEPD0lWZIyeEWJYk2AmxzCRJQiOIqLohFS+k4UckM1PjUjM9StN1n1/tmGRk2uWBoSJDxebcuuLxWBEBJElMfvx+Tt3/XwR7H+Q7exr8Q/WJ+Xu/capOW9bhX8JL+V70rGN6LSqQtVQ2dmdZ152hP+dwwdo21nam6c5YODK0KoRYQeR/NCGWAT+MqXohVTek6oVE8dxFDpahYmkKUZJw+/YJ7ttb4r7dRfZNVRkpuxTdYzvemkQB/sh23H1bCPZuQRm6jz1uyINPOsZQ4RmrNM4YbMO54Dd5pncVVVLH9LryVrN01wWr21nblWFDd5oz+vJ0Zi2p+CCEWJEk2AmxRIVRzHjVo+KGeE/ZIThJmluZkChMVF2Gpxvsnqrz+GiFXZM1xqY9jvVaiMitUr3nezR234+//zGS0Jtzf9qAiwc1nrNa55mrTYp9z+Lflav4UXIazaqqiy+lQ3fWYm1nisGODGf05Tl/bTurCg5p6ZkTQpwE5H86IZaoqZrPRMWf/d4xNbK2jqEp7C822F90GS651LyQvcUaW4bKjJQalI9x3a8kjqg+8COmf/ZV4kZ59nbVyWENnI49cAbPX53w9dX/zn66+dfoBfx5dBlT5OAY7aZi6zBQSHHGQJ6z+wus7kjRljY5Z7Agc+WEECcVCXZCLFEHRlvzjkFHxqDmR5QbAVUv4uH9JYaKDdwgYu9UhS37K0xUfPxjvMLV3buF4k/+AX9sJwCnd6k898JNfLv/f2N0DKAozRB1HyFvDNdza3w2yTGsDGGosKpgcvZAG+eubuPcwTba0ya6ppK1DQl1QoiTjgQ7IZagOE4o1jy2j1dRFLB0lTBOKNV9Hh+p8uhIib1TdapeRMWLjlVH2KyoUaH847+n/MjtABRsuP4yizdfaII6zN1elrEnBbgQnVvicxf9OtosOG91nss295GxTDRNZX1nhq6sRU9O5s0JIYQEOyGWmDhO2D1V5/59JcbKHllbJ21pTNcD7ts3zVCxzr5inVI9JDz2hSIYVEbRf/EBbnlkOwrwvy4wuOFyi650M8htj7vpVyYZS45NVQgVyNkaG7rSXLSugw3dWTS1ee60qbO2M0XWNo7JuYUQYrmRYCfEEhLFCbsmawxPu4yVXVAgY2vU/Yg9xRqjJZfR6TrFWsix3lf4PGUr/0v/L65S7+KC/RUAvvwym9edYxInCj+OzufL0ZXcFp/JsVoMYesKBcdgXVeaSzZ00ptPYRkKtqGRcww29+Yk1AkhxJNIsBNiiYjihMdGyuybqnPvniIjpTrjtYCx6TrDZY+Kfxy652acqezgP6z3AhDGCY+MN2Pk2QMZ/iG8gq9GV7Av6T4m57YUaMuYrOt0OHd1Oxdv6KInb5OxNHK2gWPqaFKnVQghDkqCnRBLxFCxztaxKnsnajywr8TQdIOJqkfdj49579xTbUnWcV+8nnPVHfxsd4QXgWHovDr1Gdxw8feeU4CCrdKVtUlZOqf0ZLn8tG6ec0oXWUd65IQQolWyZEyIJcANIiZrPpMVj11TNcZrPlU3wAuPbajLUufN2nfYpOx5yj0Knw9/g1/4p3DN95pBzjrjhbjK4oc6R4furMlpvTlWtac4vT/PVWf0cmpvTkKdEEIskPTYCXGC1b2QX+2Y4v69U9y/r8TW0TLFWkg9PHaRrkCFP9D/m9dqP6ag1NgY7eMdwR/POea79TP4l189SnnybtR0gcLz3rAo59aBgqPRm7NZ3ZkhZek4hsZpfRkGCikaQUxPzqE7Zy3K+YQQ4mQiwU6IE2i41OC2rRPcu3ea0ek6O8drjJR8jtUWwzmq/KH+fd6g/ZCs0mDaTbhzMqY2eSvBmEVpeppgaj9hcT+xW5lt1/78P0SzM0d9/jZbY21nmrNX5enK27h+RKIoZEwdBZViPaQra2EbKjlZFCGEEAsmwU6IEyBJEnaMV3lwX5mHh0vsGi+zr+gyXHQXPdTFbhW9uIuLS//Nmum7uLPo869TMVsnYyYbT16Q8R9Pa6tl2kmf+XxSm597VNegATlH5/RVOTb3ZgljGK94ZC0DS9NgZq++tKXRlTXpKzhHdT4hhDhZSbAT4jiJ44Spms9UzeOBfdNsGSqxdbTC9rEK0/UQ9yhGXpMowB/fTTg1RFBs9riFxWGC4v7Zsl87D9FWTxfQ2laht/VjtPU1P7f3oxf6UM0jD1iWAvm0xkA+Q1fOYKA9TSFlEsWQMjU0VSFt6axqc1jdnqIzY0k9VyGEOEryv6gQx8kvd0wyWnYZnm7w6GiFx4fLjFVcyo1owb10SRTgDT+Ou+dBvD1b8IYeIQm9Qx7fm1HY2K5ySrvKQLvNzvwzuD3/IoK2dUcV3g5GA/IpnY2daU7rz2HqGpoCnWmbzmyzOkQhZbC2I0VfwcE2tEU9vxBCnMwk2AlxHIxXPMbKHlU3IIgSxssuFS+k7rUW6pIwwBs5EOQexBt69GlBTnVyGB0D6IVmj5vV1sPnur7JCzonyFoKjcTkS9GL+Ifwasqkm20W+XkaCuRSBqf3ZTmtNwco+FFMJm3QkTVZ3ZFifWeG9oy5yGcWQggBEuyEOObKbsDeqTrTdY+xqket4bN1pMRUIz5kjde5PXKHCHKpAvbqs5ofg2ehdww8rVbq19UuXmq8n29Gz+EjwbWMcWzKfnU4Kpv685zVn+eMVQUSwA1iMrZO1tLpzlmsbk/jmNI7J4QQx5IEOyGOoSCKeXykwvbxKvtnNhy+5bFRio1DT6hLopDhf3orweTeObcfLshtVnZzqnIb344vndPmV/HpPN//GLuSvkV/bhqQslQ60hbPO7WLgbYUq9pTpAyNlKljGyqOqdGbt6XslxBCHCcS7IQ4hvYV6zw+WmHHeI1SPeDxkQrlw4Q6gPq2XxNM7kUxLJwNFx22R04l5k3ad/lT/ZskqGzx17E9WTXnmGMR6hTANhQcU2NDV4bTenOc2pPFmpkvZ+gKPVmbtrQMuQohxPEkwU6IRZYkCV4YM1yq8537htkzWWdous54xWVoqjHvnLrqfT8AIHvBS2l73usPedyAMsYnjM9wofr4zC0RHza+wCv999KMXovrwHw8U4P+NptTu7Ocv7qdZ2/soC/vYBoapqaiqwq6JkVthBDiRJBgJ8QiCqKYbWNVyo2A27ZOsHuqyqMjVcoNn2LNn3dLE3fvFtxd9wKQOeeqQx53pXonHzP+gZxSn71tf9LOJ8JXcCxCnaNDxtZJmzqrO9I855Quzh0s0JGxWN919BsXCyGEWBwS7IRYRI0gIowSpuo+UZIQRAmGCkEc487TVVffficT//khAFKnXoxR6H3aMRoR79L/lTfq/z3n9m9Fl/K+4PWzq10Xiwo4hkLaMmjPmHSkTM5f3cZZAwUcU6crK2W/hBBiKZFgJ8QiSmZ65PwgwjE0inWfkbJLsRYetl31oZ8y+b2/hSTG2fAMOn7j7U87JoXLp42/43Lt/ifaJTZ/EbyR78QXL+rzUICcrdGWMujJOwy02ZzWlePs1W2s60yRdYzmsKsMuQohxJIiwU6IRRQnCVGcsHOyxuMjVR7aX6Y8T1dd/fHbmfyvvwEgfcbldLz4OhRt7kuzkxJfMj/C2eoT9SMeiVfzluCt7Ej6F/U5dKR1nn9qFwMdadZ0pNnUl2N1W4qUVIUQQoglT/6nFmIRBXHMeMVjtOTy6PA0tfnGX4Haw7cCkD7zBXS85DoU5em9YH9v/P2cUPeD6Bm8LXgzDexFu3YdWN/t8PLzBnnWhk7WtKdoS5tPW4krhBBi6ZJgJ8Qiqnsh9+2d4pHhMsV60FJVibA8AUBq4zMPGuoA3h2+gZvU95FX6nwpfBE3hL9Lskh1I3RgsM3g1L4Cm/sK/NaFq+mUuXNCCLEsSbATYpFU3IBbHh/n3j3TjFU8ao3WKsBGlXEAtFzXIY/Zlgzwh/47OEvdyRejlyzK9apAwdE4pTvDszZ0oagK569uI+fIZsJCCLFcSbATYpFM1332F+uMlRrUXR+/hTax7xJViwDo+e7DHntHspk7os2LcKXNUGfpCt05h86sjaaqFFIGvXkbU5cFEUIIsVzJ/+BCLJKaF/HocIWJmk/JO1QV2LmaZcMS1FQBLZUHmgslPqR/nhTuMblOFWhP6Wzuy3HOYIHz17RxxqosV5zew/rOxd0uRQghxPElPXZCLIKGH/LDh0Z4ZH+JshvRWqyDYLy5IMLsWg1AmgZfNj/MmeouTlGH+D3//yza3nQKkLU0zhrIc3pfjrMHCpy5Kk9fwcGeKQUmhBBieZNgJ8Qi2D1V59HhMmUvZJ7iErPC8gTTP/9nAMy+U1GI+VvjM5yp7gLgAnUrL9Lu4BvR5Ud9fSqQsTUuWF3gdZes4/zBNvIpqeMqhBArjQQ7IRZBqeGzc6JK2Np6CWKvzthNf01UncLoWE3+ma/kT7T/5Ert7tlj/jF88aKEOh0YbLd51voO3nL5KQx0yHCrEEKsVBLshDhKUZzw44dGGSrWW9reJIkjJr77UYKxHaipAt2/9V6en9rG241vzh7zP9G5vD/8naO+NluD1R1pXn7+Kn77ojUUpJdOCCFWNAl2QhyFKE64f2+RO3dNUfdbm1lX/J9/pLH9ThTdpPsV72Z1XuNvjc/M3r8j7uVPg7cc1T51CmBp0JYy6S+keM7GLgl1QghxEpBgJ8QRqvshe6bq3LFziomK11JvXfmu71C5+7sAdPzGO0j1b+TvzBtoU6oANBKTNwVvO+oFE3lbxTZ0egspfuuCfjb15Y7q8YQQQiwPEuyEOAITVY+RksuuiRoPD08zVfPmbVPffifFm78AQOGy3yN92iW8Vf8mz1Afnz3mL4Pf5/Fk8IivK2MoDLSl6cyapC2dC9a08aKzVqGpUhZMCCFOBhLshFiguh8yPO0SxQnjFZfdUw0a4fztSj//ZyAhc85V5C66hvOUrfxv7T9m778pupRvxc894utKm9Cbd+hvtzmjL4+uqQy0pSTUCSHESUSCnRALNFpu9s7ZhkKxHrBvsjZvmyQK8Sd2A5B/9qtQFIVXaz9FU5rz8nbH3bwn+L0jviZHg+6cwzmDBS4/rZs9Uw10VeHsgcIRP6YQQojlR4KdEAtQ9UKqboiiQLHuc+fOCSbr88+uC4vDEIUopjNbE/b/hn/Ir+NN/F/j67w9eDM1nCO6po6Uxll9eZ6zuYc17WlMXaE9HdGeNukvHNljCiGEWJ4k2AmxAFPVZgXYtKXzi8fHeXB/uaV2tYdvAcDoXI2iHFjtqvCt+Ll817uY4AhfiikdevMpNg8UyNsGtqEwVQuxdI3B9hSqDMMKIcRJRWrFCrEA9aA5mS6KYn6xfYy6N3+dCW//Y5R+9e8A5C582dPuP9JQpwF9BYfTejIMtDmYusp4JSAmoa9gs75LNiIWQoiTjfTYCdGiMIrxg5jJms9wucY9u4rzlg+LA5eJ7/0tJDGpzc+lY/NFuItwLY4GF61rZ6A9wyk9GTK2QQy0pQ02dmXoLzjSWyeEECchCXZCtKgeREzXA8puwDfv2Ee9hZWw1ft/SDi1Dy3TTtcV/4vvmH/FXfGpfDS8liJHtrecBpw5kGdVW5p8SidnG+Qdg+6sxdrONClTXtZCCHGykncAIVo0UmowWfOZqrnsK9ZbatPYdgcAuYuu4Xcyd3GqOsSp6hAv0u7kud4nqJJa8HX0ZA02dGVwTJXBthTru9J0ZCxWSS+dEEKc9CTYCdGCIIrZMV7DCyMeHqlQbKG7LvYbuPseAqCw/iz+VP/Y7H0/iS44olBXsBRO7csz0J6m4Oh0523yKZOBNgdFkVAnhBAnO1k8IUQL9k7Vafgx4xWXbaMVghbKwnp7H4IoRM/38L+6ttCllIBm2bC/CX9rwdegKc296gbbHCxNJWUaZC2d1e0pCXVCCCEACXZCtGS80tyUOIoT9k3NvyExQDA9DIDTs5Y/NL4/e/tXoqsYpX3B15CzdHKOiaIqpC2dlKVzel9eKksIIYSYJUOxQswjihOKdR8/CHloqNjShsQAUXkcgLPydTqUCgC1xOIfwv9vwdeQt1W6ciaOqTPY5rCmM825g3nSlryEhRBCPEHeFYSYR8UNCKKY3cUad+0uttQmDlzcPQ8AcFVhz+ztX42uWPBqWAPozdoYukZH2mCwLc3ZA3nSlrGgxxFCCLHyyVCsEPPwo5i6H7F3sjnPbj5J6DP+rffjj2zDNA1es6nZw9dITL5wBL11GVsFBdrTFoMdaU7rzZG1JdQJIYR4OumxE2IeU1Wf0bLHcMnFnWcUNokCxv/zg7i77kUxLL76211sbG+WHft6dDmT5Bd0blOFrlyKdd1pNnakuXh9J715+0ifihBCiBVOeuyEOIyyG7BrskapHrS0aGL65/9CY/udKLrJS155La9a2wx1UaLwpehFCz5/d9bktJ4sGzvTPGtjJ1lHxzbkZSuEEOLg5B1CiMOouCH7inVGynUq7vx717m77gWg/Yo3sWrtWnbH3QD8IH4Ge5OeBZ07pcOa9gw9eYv+thR5x6QjY8rWJkIIIQ5JhmKFOIzRUoMtQyWm6wG1eXJdEkf4E82FEtbgmfww7ufH/oW8QL2HvUn3gs/dnrFZ1ebQnbVZVXBY15UmI6tghRBCHIa8SwhxCEmS8IMtI81eu8nKvMeHxWGIAhTdQs83e+diVH4cX7jgc9s6dGdturIWZ6zKs6ErI6FOCCHEvGQoVohDeGDvNEPFBnU/YLwSzHu8u/dBAMyeDSiqdlTnzto6XVmTZ6xrJ+8Y5B1ZBSuEEGJ+0gUgxEEMFRv8eucUbhgxUvJpZU/ixo67AXDWX3BU5zaAM1cVeN2z1tBTSDHQ5mAbRxcUhRBCnBwk2AnxFFU34Fc7Jii7Afun61Rcf942SRTg7r4fgL859T58PeLfosvZmfQt+Pyn9GS46oxeNvXn6chYC24vhBDi5CVDsUI8xUjJZbziE8UJmqJQbWE1bFiZJPEbqJrOG1bt4k36f3Gz+U76mFzQuXXgvNVtXLi2XUKdEEKIBZNgJ8RT7C3W8cMYBXDDZN5NiQESvw5A1tZQZ7Yj+XW8mWE6FnTuNR02z9rYwZr21EIvWwghhJBgJ8STVb2QkZIHQBzF7J+ef1NigNhrBrtu+4neva9Hly3o3IYCm/ry9OVtVFVemkIIIRZO3j2EeJJizccNQ9KWxmNjZdz5F8MCkATNMJjSEwBKSYofxBct6Nx5R6czY5MydVTZg1gIIcQRkMUTQjxJ1Q0JIyjXfR4brRIvsP2BohD/EV2Kh9lyOx3Y3JflxWf2cEpPVqpLCCGEOCLSYyfEjCCKqfoBxZrHg0MlirX5V8Me0K1Mz/n+pui5Czr3qjaL553Ww5quDIYmL0shhBBHRt5BhJjhBhEVN6TshkzVfFpYDDvrWTwAgKbA1ngVDybrWm5rq9BXcGhPm5gS6oQQQhwFeRcRYkYYxZTrAW4QU/dDkpZbJpzhPwRA3lb4VvQcoPWh1LaMycbuDDnHxNTlJSmEEOLIybuIEDOKjYAgSqh6PhOVRsvtzlR2YgfTAOQthW9HF7fc1tagPWXSkbFJWzqWLhUmhBBCHDkJdkLMKNUDvDCi4UdMe633171Eu4NHxmeWWaTa2E9ny20tUyNt6+Qcg7SlSY+dEEKIoyLvIkLMqLghjSBisuotqN3f+S/lHx9uroDVNl7ScjsFMDWV/oLDuo40aUsWqQshhDg6EuyEAJIkoeaHjFUa7J9ufRgWoLRvG/VqFdXOcMfq17fcTgG6MxandGfozFg4hgzDCiGEODoS7IQAvDAmCGMeGapQaaWG2JM0dt0HgLPxmSia0XI7Q4N13Rk6MzaKomBLsBNCCHGUJNgJQXMPu4obMFxyCVqfXgdAVBoDwOhcvaB2OVtnc0+WDd0ZAHRNNiUWQghxdGRSjxBAw4sYK7uMV+ott8lTRSFhpDwOgJ5tfdGEBvQVUjzn1C5MQyMIE1SpNiGEEOIoSY+dEMBY1WVkukG99WIT/I52M3dZb6ajug0ALdd6sEuZ0Ju1KDVCgrDZRahLgVghhBBHSXrshACmqh6jZY8FFJvgSu1OdCXG9ZppULWzLbfNOyZnDeQxNBXH1Mg7hsyxE0IIcdQk2ImTXsOPqPkxw6XWV8P2Msm56g6SJKE8s+edaqVaautosL47w7mr2zl7IE9KtjkRQgixSGQoVpz0Sg2fuhcyWml9/7oXavcA0AghnNmbWDVbC3ar2hyeubaDtrQpoU4IIcSikmAnTnqTNZ+H9k9TXsA2J89X7wWg5M4soVVUFNOZt52uQD5lsrEnS0ZCnRBCiEUmwU6c1MIo5qF9JW7bNkncYhsHl0vULQCUDgzDmg5KC6taC2mDfMog55jknNb3vBNCCCFaIcFOnNTGKi537JqkuIDlsM9WH8ZSmssstleapcQUK91SW1tX6c7aaIpC1pYeOyGEEItLgp04qU1WPKZqPn7Q+jDsZer9s19/4bHmSlhr1aZ521kaZC2dDZ1pHFPD0OTlJ4QQYnHJO4s4qe2ZauAGMbWg1YHYhMvV+wCIk4SbH5oCIL35efO2dEyN9Z0Z2jM2KUteekIIIRafjAWJk1YcJ+ycqFH3AlrNdeuVYQbVZqWJX+2LqFbrKFYaZ93587ZtTxl0FxwUIG3KS08IIcTik24DcdIK4piKH1KqBy23eab6yOzX/76zOQzrrD0XRT/8QghDgf5CipSpYmgqbWnzyC5aCCGEOAzpNhAnrcmqx0jJpeK3Xm/ia9ELuD0+g+eqD/Dtvd8DRrFWnT5vu/a0waa+HDnbZLAjhaVLlQkhhBCLT3rsxEmp1AjYNV4nDGNq3kIKicHupJcb/cvZvW8UmH/hhAoMtjus78zQm7cxZdGEEEKIY0R67MRJqeqFuGGEAgQLy3UA1B6+lditomXaMXs2HPbYlKlyxqo28imDJIGUKb11Qgghjg3pOhAnJTeIaPgRVT9kobkuSWLKv/4WANkLX4qiHf7vo/6Cw+beLH7Y3My4J2cfySULIYQQ85JgJ046SZLgBhEVL2CoWGu53RnKLjQi3F33EUzuQTEdsue++LBtLA0GCg5Zu9lLl3MMHOmxE0IIcYzIUKw46ZQaAWGU8NhIhfFqaytiu5jme9ZfUE5SvGm/zdeA1KmXoM5TcaItbdKRtVBVFSVO6MrKalghhBDHjgQ7cdIZr3jsnazx8NA0dbe1gdhnqw8BkFPqFCfKAJjd6+Ztl7cNspaOpij05i1Ssn+dEEKIY0jeZcRJpeIGVN2Q/35omKof4yettbtkJtgB3NdcDIvRteawbTSaCyWyjsGqNoc4UVAV5QivXAghhJifzLETJ5VGEFF2A6YbAY2W969LuETbAsDWyYiRYh0Udd7VsKYO+ZRBe9rCmempswx5yQkhhDh25F1GnFSSBCpuiOuHuFFrdcQGlHEGlAkA/u2hZhi0156H5mQP287WFdrTFpauUPcjAHL24StUCCGEEEdDgp04qSQJ7Cs28MKYaqO1hRMXzwzDxknClx9sjt2mNz/3sG1UwDINMpZBHDfPa+oqtiErYoUQQhw7EuzESaURhFRdn4Yf4fmt9dgdmF/3+bsDtk/4KKZD6tRnHbaNpkJK19A1BUNvvszSloQ6IYQQx5YEO3FSKTcCan6EF8Z4LS2cSHiW+jD7KzH/9ycuAIXnvm7ebU7Spkp33kJRYKDQ3JBYFk4IIYQ41mRVrDip1LyIqZpP3W1tGHatMkKPMs2rfuBS9iDVt4HseS+Zt13G0uhMW6RMjba0RRAlSK4TQghxrEmPnTipuGEz2NVaHIa9SH2UO4Yi/v3hEFWB/FXXoajzD6k6hoFt6XRnbYKZRRq6Ki83IYQQx5a804iTShglFKseQWu5jguUrbznp80h2IvPWo3Zs37eNmkdCmmDzozFQMEBFBQF2lKyIlYIIcSxJcFOnFTKdY+Juk+LuY537HwmP9weoaoKuYtf01Kb7pxFfyFF2tLJOs0w15Y20TV5uQkhhDi25J1GnFQeHaniha3FujjwGP3BZwFInX0VD+UvbaldR9Yma+s4ujob5jozUiNWCCHEsSfBTpw0XD9k37SLH7ZWR2z6ZzcSTu1Dy7RTeO7rW2pjACgKGUunLW2iKQoZW8fSZasTIYQQx54EO3HSeHSkTNn1ZqtAHI675wEqd30bgI4X/cm8VSYOsC2VJE4wdJX2mV669pT01gkhhDg+JNiJk0IcJ+ycqFOph7TSX1e553sAZM6+EmfDM1o+j4KCpWsoQFvKQlUha8uuQkIIIY4PCXbipBDGCdN1j4rf2v510fgOAP7hrAf4uPEZHNyW2mmqQtpUSZkGmqKwquCgqrKBnRBCiONDuhLESSFOEor1kEojnPfYJPTxiyMAXN5TRVW30MBq6TyGBjnHJGvrdGRMCjIMK4QQ4jiSHjtxUqh5ISMll6o3f7Dzhh8nSRI6HIXejMId8SagtV43RVVpS5nkHJ2+vH2UVy2EEEIsjAQ7seKFUcyeqRq7J2t486+boP7ozwG4+jQdRTkQ7OanAVnLJOvoXLyhE0VqiAkhhDjOJNiJFW+04rFvqsGeqeq8xyZxRP3RXwDw6jOamwu3GuxsQ6Era3L5ad10ZFobuhVCCCEWkwQ7saJFcUKx5vPocJmyO/8wrD+2k6heomDD89dpTCdpHk8GWjpXztI5tTvDmo7M0V62EEIIcUQk2IkVzQ9jkgTGax5BNP9GJ0noA9CVUjE0hbviU0lafJms6kiztiuNZcgQrBBCiBNDgp1Y0bwwIiFhouzSwr7ET3N3fFpLxxUshYE2h46Uha7Ky0oIIcSJIe9AYkVzg5i6FzFe9Vo6Xk3mDtfeHZ/SUruBNodC2sI2NVRZNCGEEOIEkWAnVrSKGzBRdRkr+y0dvyrYC0DGhCDReCBZP28bBejJp7F1FU1RZENiIYQQJ4wEO7FieWFEI4h4ZLhExWst2A0GuwDIWQqPJKtxW9iYOGUp2IaGoapomoQ6IYQQJ44EO7FiVd2Quh/x6EiVoLVKYvy62g3AlNnHv0fPa6mNrWlEcYymKGjSWyeEEOIEkmAnVqwgSijVfUZLLi3mOqa2PQDA3t7L+Wp0ZUttbFPDNjUytk7BMY7waoUQQoijJ8FOrFhBFLFzokbVn3//OoCoNo27+34AUpuf2/J52hyDVQWHswfzpC0pvyyEEOLEkWAnVqyqF7Jnqk7dba2/rvbIrZDEmH2nYLT1tdTGBHryDqvbUziGLludCCGEOKHkXUisWA0/ptIIcMN43mOTOKJy13cAyJz5wpbPkU9pdGYsunM2ALosnhBCCHECSbATK1bND6h4IX4Lwa7+2O2EpVEKjsYHz9vPqcrels7R15bijP482szedRLshBBCnEgS7MSKNVnzKdWDlipOVO76NgDXXaTxv5yf0q5UWjrHqpyDZagwE+wMGYoVQghxAsm7kFiRSnWf/cUGFS9gvv662Kvj7X8MgD883yRKFB6I59+Y2NIg4+gYmoqpNV9Kso+dEEKIE0mCnViRto1X2V9yWxqGbYa6hHUFhVU5lceTQerY87ZrT+kMtqdxDI2UpQHNKhRCCCHEiSLBTqw4pUbA/ukGxapHtYUVsd7QIwBcPNjcquTeeENL5ymkLdozJp2ZJ6pTSJ1YIYQQJ5IEO7Hi1LyQihtScSPq3vwT7PyxHQBctKr5crg3OaWl82QtnY6MRcbWZytOSK4TQghxIkmwEyuOF8aMV1yqboA7/0gs4fhOAM7qbg6n3hO3FuwGOjKs7Uhzak92tqdOkcFYIYQQJ5AEO7HiTFQ9pqoBY1V33mNj3yWYHgPgzG6VcpJiRzL/5sS2Cmf3Z1nXmUZTFZKkebv02AkhhDiRJNiJFcUNIsbKLjU/our68x7vj24DEvoyCl1plQfidSQtvCzSlkp7xsY2NNwgIooTFAV0VZKdEEKIE0eCnVhRJqseNS/CCyIaQTLv8U8snGgOw96ftLZwor8tjak3Xz4TVQ+AnG2ga/KSEkIIceLIu5BYUYamXaIooR6EBC1sTPy0YNfiitjB9hSGphLFCdP15srb9ox5ZBcthBBCLBL9RF+AEIulGbJ8gjim7oXzbkwMEE6PAjDecT4PxdWWg11/m42lqzSCiCQBQ1fIWPJyEkIIcWLJO5FYMeIkoRFExHGCG7bQXfckX4r/P77mn9vSsbYKXRkHx9SIouZwryFDsEIIIZaAI3o3+sxnPsO6deuwbZsLLriAn//854c89pZbbkFRlKd9PProo0d80UIcTN0LiWNAgUpj/oUTR6qQ0jE0BdvQCONmv6AsmhBCCLEULDjY/du//Rt/+qd/yl/+5V9y77338pznPIcXv/jF7Nmz57DtHnvsMYaHh2c/Tjmltb3ChGhV1W/20inAZHX+ihPQrBMLoOjWPEc+oSvnoAAZS6c+c07psRNCCLEULPjd6OMf/zh/8Ad/wBvf+EY2b97MJz7xCQYHB/nsZz972Hbd3d309vbOfmiadsQXLcTBNGZC1mTNo+LOPxQbe3WiyjgARudgy+dZ057G0FRSpkap0QyQhZRxBFcshBBCLK4FBTvf97n77ru58sor59x+5ZVXcvvttx+27XnnnUdfXx8veMEL+OlPf3rYYz3Po1wuz/kQYj4NP8IPIx4bqRC2cHxu4kEA8tkUL0xtBebfHsVQoK9gkbGM2YUTjqmSMmW6qhBCiBNvQcFuYmKCKIro6emZc3tPTw8jIyMHbdPX18fnP/95brrpJr71rW9x2mmn8YIXvICf/exnhzzPBz/4QfL5/OzH4GDrvSni5FUPQiaqHhMtVJwA6C0/BMC57R5/rX8ZWigH5hgKGcskY6tUZ3oF21KyzYkQQoil4Yi6GZSn1E1KkuRptx1w2mmncdppp81+/+xnP5u9e/fysY99jOc+97kHbfOud72Lt7/97bPfl8tlCXfisJIkoeFFTNcDyvVW+utgtdL8Y8TQ4P5kfUttUqaOY+rYpk4UJ6iqBDshhBBLx4J67Do7O9E07Wm9c2NjY0/rxTucZz3rWWzduvWQ91uWRS6Xm/MhxOEEUULNixguNai0UEoMYFAZm/36gbi1YGeaKhlLw5hZBduRtlBlRawQQoglYkHBzjRNLrjgAn784x/Puf3HP/4xF198ccuPc++999LXN3+hdSFaFScJkzWX6bpPxZ2/x04hpjo+DICjKzzYYo9d1tTJOjoHhm07pNqEEEKIJWTBQ7Fvf/vbee1rX8uFF17Is5/9bD7/+c+zZ88e3vSmNwHNYdShoSFuvPFGAD7xiU+wdu1azjjjDHzf55//+Z+56aabuOmmmxb3mYiTmhfEeGFM1Y/wWhiJ7W9s4/N31gB4/bkm743XzdtGAwbaUmiKgqoomLoq25wIIYRYUhYc7K699lomJyf567/+a4aHhznzzDP5/ve/z5o1awAYHh6es6ed7/u8853vZGhoCMdxOOOMM/je977HS17yksV7FuKk54UR0zWfME5aWhHr/vrrVH04v0/l7FMHqQapedtYOmzsyRInoKkKhiZDsEIIIZYWJUmS+fd4OMHK5TL5fJ5SqSTz7cRB7Zqo8blbtnHXrkm2TTQOe2ySxIz/3StoeAH/9dsO3obLeXvwx/Oeoyut8+bLTqErazHQlqIzazHYPn8gFEIIIY7GQnKQjCOJFWGi6uFHCRV//v66qDxOwwswNbhyg97ywomcY5JzDAxdRddULENePkIIIZYWeWcSy14cJxTrAVUvoFqfv5RYOL4TgE2dKoamtBTsNKA9Y5K1DSy9WTXFkuopQgghlhgJdmLZqwcRNS9gouJSa2GCXXb8fgDO7FYJE5WHkrXztjFV6Eo3e+wObNlo6DLHTgghxNIiwU4se1U3YH/RZboxf28dQGmo2WO3uT/D48kgHvNvWWIZCn0FG1NTUWe2OlEPsSm3EEIIcaJIgUuxrEVxwmMjFabqHg0vmvf4JImZHNoFwKd73sPX/NYqmhRSFh0ZG0A2JBZCCLFkSbATy9p4xWO86lOqB3jh/OOw4eQQsVtF0S3M7vXUWngJKEDa1jE0lYQEWPILyYUQQpykZChWLGs1P6TqBgRhjB/G8x7vDj0MgNl3CorW2t81jgaOoZOzdapugKVrmLqKpcvLRwghxNIi70xi2UqShIYfUfNDxiourUyx8/Y9AoC1anPL58naOgNtDhnboOZH2IZGb85GkTl2QgghlhgJdmLZ8sIYN4iYqnqMVlzmn2EH6v7mithNA22YtLbYIusY9Bccgigmaxk4pkY+ZRzFlQshhBDHhgQ7sWzFSdIcivXCllbExoFHdWocgG+v+Vf+Qv+Xls5TSJm0Z0x0VSVt6eQdCXVCCCGWJgl2YtlKEqj7ESMlF7eFihPB5F4SoDOl0JNWeLCFjYktFbqzNh1pC8tQMXUVXVbFCiGEWKIk2IllK4hiSnWf4WkXt4VR1Xj/Q0BzY2JFUdjSwsbEGUujJ2+RMnUco1lpQrY7EUIIsVRJsBPLVhQneEFMNQjnnV8X+y7lX30DgJds1HETg+1J/7znSNk6/QUHx1SJZxbd2lIjVgghxBIl+9iJZa3iBdRb2Ji4fMdNuJUSa/IKf/JMk0eSNYQt/PrnHZPVbWlURSEBHFObrRUrhBBCLDXS9SCWrThJ2DPZoOEdfn5d5FYp//pbAHz0ChtbV9gSr23pHF1pi1VtDqVGgKIosnBCCCHEkibBTixblUbIZNUlmmdf4qg8RhJ6FByNV57e7KV7MFk37+NrQH+bzUjZxQ8TLF2hINucCCGEWMIk2Illa7oeMNbi/nUAthbPbiq8JZ4/2NkGtKdNKm6EosCm3hyGJi8ZIYQQS5e8S4lla1+xTqkeLbhyq5foPJ4MzHucrqmYuoaiwPquNFkZhhVCCLHESbATy1IUJ+ydrlP1W6se8WSPJYMtLZywdA1DVejN2/Tm7SO5TCGEEOK4kmAnlqXpus94xcULWh2IfcJDLS6cyFgGhbRJT86mK2Mt+DxCCCHE8SbbnYhlac9Ujd2Tdfyw9YHY8aTAi73/h9/ir33K0lnbkWZ1e2p2bp4QQgixlEmwE8uOF0aMljzqXkzcQq5LopntUFSdR5I1LZ8nb+ucM5BHk0oTQgghlgkZihXLTs2LKDcC3CBoaUVs7NUBUK1Uy+ewNBjsSGEZ8rePEEKI5UOCnVh2al7IdMOn5rW2cCJ2q8DCgp2hqQwUHGQEVgghxHIiwU4sO1UvpOJGVL15diYGkjDA//W/AqAXels+R9rUaUubMrdOCCHEsiLBTiw703Wfhh9S8w9fSgygeOuXKY/sod1RuP2FD3OVemdL5+jMGqQt2bdOCCHE8iLBTiwrfhhT9SImqx5ecPgeu8b2O6nc9W0AvvybNmcXGkwm2ZbO05tzsA15eQghhFhe5J1LLCthHOOHMaPlBv48I7G1h28F4I8uMLj6NIM4UXg4WdvSeTKOTtqUhRNCCCGWFwl2YlmJ4oSq67O/1Jj32CRurpk9vav5a7496afO/BUkdAUylsmajvTRXawQQghxnEmwE8tKHMPOiSojJW/Bbbe02FtnGwpZS6c7J9UmhBBCLC8S7MSy4ochjw+X8RZeSYwt8bqWjjM1jf6CjSorYoUQQiwzEuzEslJyQ6YaAa0XEnvCgy0Gu7yjM1BIYery8hBCCLG8yDuXWFZKjYBSo7WNidOKO+f7h1ssJ5ZLWfQW5p+LJ4QQQiw1EuzEsrK3WKPamH//OoBsXAZAUxS2x31Umb/yhK5Am6PTnpY97IQQQiw/EuzEslH1Qkr1kIrbWrCLKxMA9GUVtiQtzq/TFdZ1pcnI5sRCCCGWIQl2YlmI44ShYoPxsjvv/nUHVCvNHrvVeZUt8dqW2mQsjb68gyHz64QQQixDsgOrWBYqbkjDj9hdrNFKrkviiIlKs2fv287LuCM+u6XzdOVsLF2XFbFCCCGWJQl2YlkI4pgwjql7LQ7D+g2YWTt7o/lKlGT+oVUF6MvZpC0NQ5MeOyGEEMuPvHuJZSFOEpIEhibrLR2feM3jFN1E0VqbL2frkHcM8o7MrxNCCLE8SbATy0IYJRTrHsPl+UuJAcT+TLAznZbPoasqhqZRSEmwE0IIsTxJsBPLwp7JGvftmabRYiUxLWnudaeoWsvnsA0Nx9TJ2DJDQQghxPIkwU4saW4Q8fD+Eo+PVtk/3aC1rYkTvmp8EIAcNXqZbKlV1tawDRXHkGAnhBBieZJgJ5asOE7YOVFjvOpR9UKKNa+lUmIDygSaXwXAUXzqWPO2UYG0ZaAqCqYuK2KFEEIsTxLsxJJV8ULCKIEEUqbKvqnWFk6cqezkC/c0+/bOH0xRJjNvG0cHy9AwdY20KXPshBBCLE8S7MSSVZ6pCauQ8NBQmWK9tYHYgeqDfG1L89jnP+v0ltrYhkba0LF0hazMsRNCCLFMSbATS1KSJJTdgISEx8eqjFU8al7UUtvH772LMIbL1mr4vee11MYwVGxLpS1toqoyFCuEEGJ5kmAnlqQgSohjCKKY/cUGFTcgaGWCHQl7948B8JozDbYka1s6n4pC2tRZ25E64msWQgghTjQJdmJJCqJm4bDJqk/djyk1/JZKifUzyWNjPgBn96g8GK9r6XyGprK6I8Xazvnn4wkhhBBLlQQ7sSQdCHb7inUqXkDNb62U2Eb3IYarza69fGc302TnbaMBHRmTwbY0GUvm1wkhhFi+JNiJJSmMm+HMC2KKdY9GizVinZG7AdjYrrLT2NBSG12F9rRFR9rE0uUlIYQQYvmSdzGxJMVJM9hN1wMqjQivtQl21PZtBeCSQY0tLQ7DWrpK2tZJ2zq6Ji8JIYQQy5e8i4klKY5hsuoy3QhoBBFBKxPsSNg91Fw4ccmgxpaktWCnaiq2rtEmNWKFEEIscxLsxJJUcQNKbkAUN7c4aWmjkyTmzpHml07fBrbEa1s6l6qAY+h0pM0julYhhBBiqZCZ4mLJqXkhbhBTagSAQhi2Nr8urBbxXA8Ulb/M/T8U5u+BU4GUqdOZM8na0mMnhBBieZMeO7HkTNV8/CiCRCGJYbrRWsWJYHw3AEb7KhS9tZCmKpB3dLozlsyvE0IIsezJO5lYcrwwIowTkgSCOMJtbYIdYWUCAL3Q2/K5TK1ZI7YrK8OwQgghlj8JdmJJiiMIo5iqFxK0VkmMxKsBoFrpls9j6hq2oVFwJNgJIYRY/iTYiSUpjCMafsh0I2hp4UQX0/xm+CMA1llloLXtUWxDJWPqmLJ/nRBCiBVA3s3EkhPGCRPVgFIjYKLSaKnNWeoOtOooAFdltwNKS+00VcU2dWxTO9LLFUIIIZYMCXZiSUmShLoXsmuyyr7pBp7f2vy6M5VdbBlrHut0rmqpjQ7kHIPOtMlAIXWklyyEEEIsGRLsxJLihTG7JuoMTzeouT7VFkuJnaHs4KHx5qBt0HlaS21MHfK2wdrONIasiBVCCLECyLuZWFIafsTeYp26HxFG0GKuQ594nKoPjg6jhbNaauOYOhnboDNjoaqtDd0KIYQQS5kEO7GkVL2A0bJLzQtJlIRWcl03Re7aNgnA5et0tiintHQux9Tozlmc3p87iisWQgghlg4JdmJJeXBfmbIbEkdJy8Ow56jb+e9tzWMv2ZhjnLaW2tm6xpn9OXpy9hFfrxBCCLGUSLATS0bVC9g9VYM4QdNUpuutVZw4U9nOr/Y159d1r21tfp0B5B2TrqyFIytihRBCrBAS7MSSUWmEzd46JUFVEypuaz12q+uP4kXNDU7Gc6e31CZlKWRsnTWdmaO4YiGEEGJpkWAnloypukfDC4nCBDeMqbmtbE2ckK/sAKA/q/Cg2tr8uoxj0pu3KKRaqykrhBBCLAcS7MSSMVb28aIYBYWGF9LKQOwaZZSJUh2A1XmVLfG6ls6VtQzyKZOUqR/FFQshhBBLiwQ7sWSMll2iKMHQoNziMKxGzLdG+wEY6MxQZv46sRrQmTHpztikDJlfJ4QQYuWQYCeWhCRJmKi6hHGMpqstlxLbkfTz3dEeAG5pv6alNpoKGdtgoN2R/euEEEKsKDIOJZaEqhtS9SKiBOpuSMVNWmqXJAneyDYAlK4NLbXRVOhIGXRkrCO+XiGEEGIpkh47sSRM1X3CKMbzQ/YV6y1tTAwQTu0jKo+BpmP1b2qpjW1o5NImWVv+rhFCCLGySLATS8JY2WW6HlDzw5Y3JgZo7LgbAHvwLFSztY2Gs5aBpqikZeGEEEKIFUaCnTjhvDBi92QdN4ypugFe3Mo2J3CJ+iC9+34CQG5da/VhAdK2hq5CSjYmFkIIscJIsBMnXLkRUqz7eH4EKDRaXBH7UvWXrI72AvDy7MMttWmuiLXI2oZUnBBCCLHiSLATJ1yp7jNWdgmTBD+M8FsciT1f3Tr79e64p6U2pg5tKZusY2DrEuyEEEKsLBLsxAkVxQkjZY+xqoeughfFePH87fJUOUUd4sDa2V20FuwcUydtaXRnLdnqRAghxIojwU6cUK4fsnuyhhc0K06ELYQ6gPNmeuuqfvP7Sb21YGfrKh0Zk95cawsthBBCiOVEgp04YZIkYfdUg4obEsUJqqpQcf2W2l4wE+zKXrPPTrHmrzihAClLpztn0542j/i6hRBCiKVKgp04YaZqPuVGgBuGKECl4dPwW1sRe77SDHbTMxsZqy0EO02BrKXTnbGwpJSYEEKIFUiCnThhJms+bhChKwp+FDNR9QhbyHUaEeeq26j5CUPlZrDT893ztjM1yDkm7RkT25BffSGEECuPvLuJE6LiBnhBTCOMaAQxdT9kuh7gtzDHbpOyl7Ti8fB4TAJoqTxaKj9vu1zKZKBgk7Z0LFkRK4QQYgWSYCdOiGItIIoTNFVhuuFTqnvUgxaHYdXHAdgy1jze6FrTUjvH1OjKWRLqhBBCrFgS7MQJ4YURUZxgqAqluk/Njwmj1pbEXjAT7HZON4/XC/3zttGAvG3QlbUwNfm1F0IIsTLJO5w4IcI4ISHBDUKqXoQfxgQtbkzcSCxKSYq9B+bX5brmbWNqMNieIm2ZKLJ9nRBCiBVKgp04IaI4IUlgpOwSRDGNIKLFXMe7wj/kXO/zfLu4AQCthWCXtnT6CzaGpkiwE0IIsWJJsBPHXZI0Q13FDRiZ9omimKDFYdgD4gRKo0MAGO2r5j2+kDZxDB1TU1El2QkhhFihJNiJ4y5OICFh52QNL4wI4oS4tXUTs8KpIWK3gqJbmD0b5j2+M93cu842NDQpJSaEEGKFkmAnjrs4SRgtudTc5gKKKE7wk/nbPZm772EAzL5TUDT9sMeaCmRsDUNTMHVVhmKFEEKsWBLsxHEXJwkl10dRwNRVxsqNltpZ+LxK+ykblCHqD98CgL3mnHnb2QZkbIMwAkNTsaXqhBBCiBXq8F0dQhwDSQJBmOCFETsnahTd1sZhz1B28RHjCzw+GXHanhooKpmzXjBvO9vQaE9ZZG2dfMogZxtH+xSEEEKIJUl67MRxF8Uxfpiwe6LG/lKDsJVyEzyxf90X7g4AcNZfgJ6bv5RYyjIwdYXOjEl/3jnyCxdCCCGWOAl24rireRF1P2Sq3qwV2+q6iQvUrURxwr882Ax2mXOuaqmdY+rYhsa6rjSOKcOwQgghVi4JduK4K7sBbhjjRzGuF9Faf13CBerj/GJPxHA1wbRtnHUXtNTSNjR68jaDbamjuWwhhBBiyZNgJ46rIIopN0JqbkDNCym7QUvtBpUxupQSX98y01t3yrNQ9PnnyqlAT86kJ2fjmDKlVAghxMom73TiuCm7AfumGgRRTNWPqDQC3LC1fU4uULYCcMf+5sCttvGSltqZKnRmHboy9pFdtBBCCLGMSLATx1wcJwyXXaaqPgCGpqArUKwHLQ7DwvlqM9iV3GYQVFOFltp15kz6cjZZW37VhRBCrHzybieOqShO2DFexQ2aEa4za5IkCdvHK9RaXA0LT6yILXvN71WrtdWtXRmHrKOTtuRXXQghxMonc+zEMTVd93GDGE1VWNuZoi/vMFXz2TZepdViE2kabFL28NhExHi92UpLt83bzgCytkHGMkjJalghhBAnAQl24piK4mYQyzk6WdsgjGJ+/vg4XtB6b9056nY0JeFvftkcynU2XoSWys/bzrZU0rZGf8GWYCeEEOKkIMFOHFMzuQ5VUUiShIeGyzw6UsYLWw92A8o4eyoKX7m/uSI298xXtNTO1FU6UiZrO9MoUiBWCCHESUCCnTimGkFzFauuKbhBzO6JGnum6gSt7koMfCO6nAsf+C38CNr7BrFWnd5SO1NTWdOZpjNtHcmlCyGEEMuOBDtxzLhBRNUNAcg7BjUvZF+xxv7pRsurYQ+oDTUXT0QbnttS75sGFFImp3Rn0DX5NRdCCHFykHc8ccyMV5pLWPOOQZLA9vEKd+0qMl1vbVPiJ/OGHgHAGmitt66Q0ukvOFiGzK0TQghx8pBgJ46ZUqMZ4DqzJkPTDYaKDfYWFzYMCxCWRonK46CoWH2nttTGNjXa0yamJsFOCCHEyUOCnTgm4jghSQ58DXUvYrLm4oXxgoZhn6M+gLbjZwBYqzahmq3tX6eh0JWxWNMp9WGFEEKcPGTXVnFMxMkTu9QV680h2ZGST6URtvwYNh7/aHyM39pVZg/Qs35z620NnU19OTozsnBCCCHEyUN67MQxEc0EO0WBUiPEDSN2T9Vo+K0HuwvVxzEJ+OmuZpt43cUttdOB9ozBmg7prRNCCHFykWAnjgl/Zp86XVOI44S9UzVGSy7uAubXXaJuYbKRMFNiFrVzfUvtdB36CjadWXuhly2EEEIsaxLsxDFxYANiQ1MYr3oMTbmMlBsLeoxL1C3sLTV7/tIpB0U3Wmpn6Rp9eYe2VGvHCyGEECuFBDtxTBzosYuihHIj5PHREtO11odh81Q5U9nFvSPNLj4t191y26yts7YjhaZKtQkhhBAnFwl24pg4UCN2ouYTxQnDpQZhMk+jJ3m2+jBRHPPBXzTHYdVTn9dy2/68w9rODJYuW50IIYQ4uUiwE8dEOBPsJiseQ8U65UbIAnIdl6hbuPH+gG1TMbmUSfaCq1tqlzJgXWea0/tyR3DVQgghxPIm252IYyKKY7wgouKF7BivUVnAalhoBruX3N7srTv/4ovZ2eL+dRnL4IxVOdKW/GoLIYQ4+UiPnTgmvDCm5AYoCky7PuWa33LbfiboDIZ5bLI5T696+itbaqcAKUvjonXtLdWTFUIIIVYaCXZi0QVRTBzDdM0nCCKGijXqC+iwu0TbwsPjzUUTPVmNcWdtS+0sDTZ0Zcg6simxEEKIk5MEO7HovDAmSRJqfsSD+8tMVv0Fza9bp4zw0Fizt66rs6Pldpausb4zg6FJb50QQoiTk0xEEosujGKqXkjdD9kxVsX1F7ArMfCR8NX4JR/4BtPZ9bS6ttWxNDZ2Z3AMWQ0rTm5RFBEEwYm+DCFEiwzDQNMW571Lgp1YdEEUM1H1GJpuMFH18BaW6wCozTQqmT20t9imYJuc1pcjbcqvtTg5JUnCyMgI09PTJ/pShBALVCgU6O3tPeo54vIOKBZdsRYwWnaZqHhM1nziI3iM2K0BoFrpltsMtNsUHBNVNiYWJ6kDoa67u5tUKiWLiIRYBpIkoV6vMzY2BkBfX99RPZ4EO7HoKm5Iqe7jhSEN/0hiHQQTuwHQ8z0tHW8AazrTtKXNIzqfEMtdFEWzoa6jo/W5qUKIE89xmlt6jY2N0d3dfVTDsrJ4Qiy6RhhS8SL2TdZZyChsjipXqXfihCW8ka0AWAObW2qbdjQuWd9J3pH6sOLkdGBOXSqVOsFXIoQ4Egdeu0c7P1Z67MSiiuME148YKTfYN91YUNvL1Pv5pPlpbh1JuCwKUVMF9EJrXdKdaYsNPdkjuWQhVhQZfhVieVqs16702IlFVQ8iRkse+4t13IUVm+AF2r0AbJ9s/rVi9qxv+Rd9oM2mPSXDsEIIIU5uEuzEoto3VefRkTLlerigRRMGIZer9wGwt9Tc9U7PdbXc/syBAlkZhhXipKIoCl/+8pdP9GUsuve9732sXbv2RF+GWKYk2IlF4wYR9+8tMlbxmKy7C2r7TPURckodgJ2l5m1atrOltim9WXFCCLEy1Go13vve93L66adj2zb5fJ7LL7+c73znOyf60oRY8iTYiUVTbgQMTbvsn67htl4aFoAr1btmv3601gxpWrqtpbZdOZvevLOwEwohlqRKpcKll17KV77yFf7qr/6KRx99lNtuu42LL76Ya665hhtuuOFEXyKe553oSxDikCTYiUUzUfEYKjYYLrksZHqdQsyV2hPBbshthrRW97Db3JNlXWfr+90JIZauv/qrv+KRRx7h5ptv5jWveQ1r167lzDPP5P3vfz/ve9/7eO9738u99947e/z09DSvfvWryWQydHV18Vd/9VfE8RMTQb797W9z3nnnkUqlKBQKXHTRRXPa79ixg1e+8pW0tbVRKBS44ooruP/++2fvv+WWW1AUhe9///tcdtllOI7DRz7yEdatW8d73vOeOdeeJAnr16/n3e9+9+xt3/jGNzjvvPOwbZu1a9fytre9jVqtNnu/53m8+c1vJp/P09bWxh//8R9LcBRHRYKdWDQP7Jtm12SFygJXTZynbKNXKQIQJQoTXnP/HtWaf9sGBTitLyf71wlxEEmSUKvVTthHkiykSnTzev/5n/+Z17zmNWzYsOFp97/jHe/Atm2++tWvzt52/fXXc+GFF3LPPffw4Q9/mL/5m7/h7//+7wEYHR3lt37rt7j22mvZsmULv/rVr3jb296Grjc3hBgbG+OSSy6hs7OTW2+9lV//+tds2rSJyy67jNHR0Tnnvu6663jrW9/Kww8/zOte9zpe97rXceONN855jj/72c/YuXMnr3/96wH46le/yh/90R/xtre9jYceeogbb7yRm2++mTe+8Y2zbf78z/+cf//3f+fLX/4yv/rVr0ilUnz6059e0M9NiCeT7U7Eoqh6IXumGoxXfBZYGpYXaXfOfv2DykbcyeZfy3que962jgFrO9NYutSHFeKp6vU6mcyJm39arVZJp1vvTR8fH2dqaoozzzzzoPc7jsPGjRt57LHHZm+78soreec73wnAqaeeysMPP8zHPvYxrrvuOoaGhgiCgNe85jWsXr0agE2bNs22/exnP8uqVav43Oc+N3vbJz/5Sb7//e/z1a9+dfZxAd71rndxzTXXzH7/+te/nhtuuIFbb72Vyy67DICvfOUrXHrppWzcuBGA97znPdxwww287nWvA2DDhg186lOf4nnPex5///d/j+M4fPazn+Vv//ZvefnLXw7Axz72MW655RYmJiZa/rkJ8WTSYycWxXjZZaLmUnEDFvg3Oi/Rfj373d/e70AUYvaegtE5OG/rzozJmg5ZOCHESnCg9+tw2xw9tRfw4osvnvP9pZdeyr59+yiXy5xzzjlceeWVnHHGGbzsZS/j7/7u79i7d+/ssXfccQf3338/mUxm9iObzbJr1y62bt0653Gf+cxnzvl+/fr1XHrppdx4441AM0R/85vf5A1veAPQDKm7du3iz/7sz+Y8/otf/GIAtm7dyvbt2/E876DPQYgjJT124qgFYcxjoxVGpz3q3sK6685VtjOgNP8yjWL4xb3bAMic+6KW2q9uz5Bz5NdYiINJpVJUq9UTev6F6Orqor29nQcffPCg97uuy44dO7jiiitmbztcCNQ0jR/84Afceeed/OQnP+Gb3/wmf/7nf843vvENrr76auI45rLLLuOzn/3s09rmcrk53x+s5/H1r389b3vb2/jUpz7FTTfdRBRFvOpVrwKYnef38Y9/fM71HrBq1Soef/zxeZ+DEAsl74jiqCRJwtaxClU3ZHexRriw7jqySp2t8SpOUYf4xNY+vOJjKKZDevNz522rA+s6UxiadDwLcTCKoixoKPREU1WV3/md3+Hzn/887373u1m3bt2c+z/+8Y/TaDR47WtfO3vbbbfdxlvf+tY5369atWo2mCmKwkUXXcRFF13EX/zFX/CiF72If/zHf+Tqq6/mwgsv5Etf+hL9/f1HVIrtVa96FW9961v51re+xVe+8hWuueYastlmBZyenh4GBwd57LHHePOb33zQ9hs3bsQ0TW677TbOPvvs2dtvv/32BV+LEAdIsBNHLEkS9hUbjJZdHtg3Tc0LiRYY7H4en80V/kc5RdnHvbd/DIDsOS9CNeffviTnKFy+qZesLRsTC7FS3HDDDdxyyy284AUv4AMf+ADPfvazqVarfP3rX+eDH/wg119/Peedd97s8T/60Y/4+Mc/ztVXX81tt93Gpz/9ad7//vcDzYB08803c9VVV9Hb28vWrVt54IEHZhc3/O///b/54he/yG/+5m/ynve8h8HBQfbt28cPfvADrrrqKp7znOcc9lqz2Swvf/nL+djHPsaDDz7Ij370ozn3v//97+f3f//36ejo4OUvfzmGYfDoo4/yX//1X3zhC18gnU7zpje9ife+97309fWxefNmvvjFL/Loo4/S3t6+yD9ZcbKQYCeO2HDJZftYlW1jNUZLDaJ4ganuSbbsbzC5ZxuoGtkLX9pSm1N68nRlbbK2/BoLsVLk83luv/12PvKRj/C+972PnTt3YlkW559/PjfddBO/+Zu/Oef497znPdx22228+93vxnEcrrvuOq677rrZx/rlL3/Jpz/9aYrFIr29vfz2b/8273vf+4Bmr9ovf/lL/vIv/5JXvOIVlEolent7ufTSS+nv72/pet/whjdwxRVXMDg4yOWXXz7nvte+9rXkcjk+9KEP8cEPfhBN09iwYQMve9nLZo/50Ic+hOu6s2Hz2muv5S1veQtf+9rXjvAnKE52SrLQ9egnQLlcJp/PUyqVnjbvQZwYbhDx6HCFnRM19k/X+Mkjo2wbq1FZ4By7A8a//WHqj/6c9BmX0/kb75j3eFuDl58/wB88ZwMbu2XxhBCu67Jz507WrVuHbdsn+nKEEAt0uNfwQnKQTE4SR2Sy5pMkCVEcsXuyTtkNcY8w1AXTI9Qfuw2A3EXXzHN0U3fWZlNvDtuQX2EhhBDiAHlXFAsWxQnFmk8QxWwfr7G/2GC05BIs4DGuVm/no/rnOFfZRuXO/4Akxl53AWb3uvkbA2s7U/TkbUxdfoWFEEKIA2RykliwqheSJM1eu7IbsHWshOfH8zd8kjfoP+QCdStnTf+UM+9vAJB7Zmu9dTrQ35YiY+lYmmxMLIQQQhwgwU4sXNLco2m03ODR4TKT9WhBtWE3KXu4QN1KnCT80X+5RFGMs/5C7NVnz98YSFkwUHBwTA1FOuyEEEKIWfK2KBYkiGKGSw0eG61wz+4iO8ZrhAvrrOM12s0A/NO9AT/bHaEYFu1XvrnlTTr7C2kyjoEpvXVCCCHEHBLsxIKMVzymaj67J2s8vL9M1V1IXx2kcHm59gvGajF/9mMXgMKlv4Oe72mpvQr05mxSRjPUyX7tQgghxBNkKFYsiBdE7Juu8ehImYmqT7DAzXKu1n5JVmnwph+6FF2wetaRvfA35284w9IV1nVlyDnNTYll8YQQQgjxBHlXFC2reiH3D5W49dEJHhkqUfUX1lsH8DvaT/jhtpB/fTBEUaDtqreiqK0PqRbSBp1pm0LKRFHAlHJiQgghxCzpsRMtieOYe3YXuWvHFLsnqtSCmGiBc+vOUnZwtrqTP/6ZB8DgBZej9J3ScnsVyNkG3XkDS1cxNFWKZwshhBBPIt0dYl5VL2TL/jL7inWKDZ9aEBHFCQstWfIa7WbiJOHekeZGxuG5r1pQe12D03pyrO/KoqsqmiqhTghxYu3atQtFUbjllltO9KUsmi9/+ctz/mi+5ZZbUBSFXbt2LerjimNDgp04JC+M2D1ZY+d4jVI9oOpGTFR8ijWP+gL3rStQ4WXabeyaTqgHoGkaeltrtRgPyNk6L9jUxYauZgkx+f9BiJXlDW94A4qioCgKmqYxMDDAa1/7Wvbu3bto51i7du1srdjFMDg4yPDwMBdffPGiPeZSc/HFFzM8PMzg4GBLxx8q7F577bUMDw8fgysUTybBThzSrok65UZzLpxpqExUXfYVa9T8mAWOwnKFdjeO4nPfTG+d3jG4oLl1AKvyDpdv7sGfGQNWJdkJseI8+9nPZnh4mL179/JP//RP3H777Vx99dXE8UL/1zn2PM9D0zR6e3sxTfOoH2sxLebjmaZJb28v2lFuMeU4Dr29vYt0VeJQJNiJg3KDCD+MURRY05Fix1iVbeNV6n604H3rAP49uoyXe9fzxW1tAJgDZy6ovanA+evacUyd8UrzP6ycLVNEhVhpDoSI/v5+rrjiCq6//nruv/9+tm3bBsDXv/51zjrrLCzLoq+vj+uuu45GozHb/qGHHuKqq66iUCiQSqXYtGkTX/3qVwE488wz2b17N9dff/1sz+CB4cUdO3bwyle+kra2NgqFAldccQX333//7OMeGI78/ve/z2WXXYbjOHz0ox89aO/U9u3bednLXkY+nyedTvPCF76Q++67b/b+A23++Z//mZe+9KVkMhne8pa3HPTncWD48tZbb+Xss8/Gtm3OPvtsfvrTn7b0eDfffDOXXnopjuPQ39/PG97wBsbHx2fbJknCu9/9brq7u8lkMrz61a+mWCzOuYaDDcVu376dV73qVXR0dOA4DmeccQbf+MY3mJiYYN26ZmnIyy+/HEVRWLt27ZznAlCtVslkMnzpS1+ac65arUYmk+GLX/zi7G2f/vSn2bx5M7Ztc8opp3DDDTcQBAspYnlykWAnDqoysz9dytS4Z1eRHz88yo6xMsVGuOC5dQfcE2/kh9uaL0Zn/QULatueNTm9L8f+6QZxDI6p0Z4+ur+QhVjpkiSh7ocn7CNJjvR/iyc4jgOA7/v86Ec/4jWveQ2vfOUreeCBB/jCF77ATTfdxB/90R/NHv/bv/3btLW1cdttt7FlyxY+8YlP0NbW/IPy1ltvZWBggHe84x0MDw/PDi+OjY1xySWX0NnZya233sqvf/1rNm3axGWXXcbo6Oic67nuuut461vfysMPP8xrX/vap12v53lceeWVTE5O8uMf/5jbb7+dfD7P85//fCYmJuYc+3/+z//h5S9/OQ888ADvete7DvtzuO666/j4xz/O3Xffzdlnn81v/MZvPG1Y86mPd8stt3D11Vdz7bXX8sADD/Cd73yH3bt387KXvWz23+aTn/wkf/M3f8OHPvQh7rnnHs4//3yuv/76w17LyMgIF198MePj4/znf/4nDz30EB/5yEcwDIOOjg7uuOMOAG666SaGh4e58847n/YYmUyGV7ziFXzlK1+Zc/s3v/lNkiThVa9qzsG+4YYb+PCHP8wHPvABHnnkET75yU/yhS98gfe85z2HvcaTmXR5iKcp1vzZXrE9k3W+/8B+HhstM1E5uq79YHIvUXkcNANr9VkLatuVsdAUdXZoeKDNkUm4QsyjEUSc/p4fnrDzP/zXV5Eyj/xtZufOnXzoQx9icHCQ0047jbe85S289KUv5b3vfS8Ap512Gp/61Ke45ppruP7661m3bh27du3ine98J2eccQYA69evn328jo4ONE0jk8nMGRL87Gc/y6pVq/jc5z43e9snP/lJvv/97/PVr36Vd77znbO3v+td7+Kaa56oa/3UBQX/+q//ytDQELfddtvsOf7lX/6FdevW8alPfWrO/L43vvGN/N7v/V5LP4sPfvCDvPCFLwTgS1/6Ej/96U/5zGc+ww033HDIx3vjG9/IH//xH/Mnf/Ins7d95StfYc2aNdx9991ceOGFfPSjH+VP/uRP+P3f/32gGQ7vuOMObrrppkNey6c//WmSJOE73/kO2WwWmPtz7urqAqC9vf2wQ6+vf/3reeELX8jOnTtne/m+8pWvcM0115DNZqnX63zoQx/i3/7t3/iN3/gNANatW8f/+3//j7e85S184AMfkPeBg5AeOzGr4UdsG6uyr9ggihNMXaHU8Nk1WaPuRYTR0T2+u+MuAOzVZ6EadsvtNJpBTp+Z3tGZsbANKScmxEr085//nEwmQyqVYv369aiqyn/8x39gGAZbtmzhsssum3P88573PJIkYcuWLQD82Z/9GX/wB3/AZZddxnvf+17uueeeec95xx13cP/995PJZGY/stksu3btYuvWrXOOfeYzn3nYx9qyZQubNm2aE2hs2+aiiy7iwQcfXNBjPdmTF2eYpskznvEMHnroocM+3h133MGnPvWpOc/r9NNPB2Dr1q2Uy2WGhoaetvDj0ksvPey13H333TzrWc+aDXVH6vLLL2f16tWzQ+W7d+/mlltu4Q1veAPQHFav1+tce+21c57DH/3RH1GtVhkZGTmq869U0mMnCKOYkbJLsdYcJlUU6M5ZGCr866+L7J6s0QhCFprrBpQxPqB/kY+Hv8V9yUYaM8HOWX/hgh6nI61xSneWVW0pHFOjJ2ct8EqEODk5hsbDf33VCT3/Ql144YX8y7/8y+yihANDsYdyoMfmwOd3v/vd/M7v/A4/+MEPuPnmm/ngBz/IO9/5Tj7wgQ8c8jHiOOayyy7js5/97NPuy+Vyc75Pp9OHvZ7DDT8/tXdpvseaz3yPF8cx73znO2eD0pP19PTMLkg5kl6vxegpUxSF1772tdx444285z3v4cYbb2RwcJDLL78cYPb6vv71r7N58+antT/QMyjmkh67k1wUJ2wbr86GukLK4LTeLO0pk+89MMK9e4pM1QIWWBIWgHfo/85ztQf5T+s9/HnyRdy9DwMLn1/XkbXZ2JPFNjQG22UIVohWKYpCytRP2MeRvFYdx2Hjxo2sW7fuaaHujDPOeNoWGge+PzD0Cv9/e/ceF3WVP378NQPMcBkcULkNIuIlDUhzI2+5eam87MNbWpm6BZVbpqaZWpubmdomu66XbUntUWpa7c/astbv5pqaSIp4yUt5TVRQUlBRrsLcz+8PlqkRRFBIHd/Px2MeMp/P+Zw5n/fjjLz5nM85n4phwbFjx/L5558za9Ys3nnnHdc+nU6Hw+H+Z2pCQgKHDh3CZDLRunVrt1doaGid2h8fH8+RI0fcriaZzWZ27txJfHzdJo390rZt21w/W61Wdu3aVW2y80sJCQkcOHCgyjm1bt2awMBAjEYjkZGRpKenux13+fvq6s3IyKCkpKTa/ZUzhC+Pc3WSkpI4fvw4W7duZeXKlTz55JNotRWpSVxcHL6+vhw/frzac/D2lmtT1ZHE7jZ3vsSCza7w8dbQMiSAyCA/SsqtfLY7h3UHcjmVf6nOz4MFiNVk87DXz/85ZFwMAqcdra8Bn8aRta5HB7RsYsDo50PjAB16bxmCFeJ29ac//Yk1a9Ywc+ZMjh49yn/+8x/Gjx/PqFGjiImJobS0lHHjxrFp0yays7PZu3cv69atcw0/QkXSl56eTk5ODvn5+TidTsaPH49SisGDB7Nlyxays7PZunUrr732Glu2bKlTG0eOHElERASPPfaYa4h31KhRmM3mK858rY1p06axadMmDh06xOjRoykoKGDs2LE1HjNr1iy++uorJk6cyN69ezl+/Djr1q1j9OjRrqRs8uTJpKSksGLFCjIzM5k3bx4bN26ssd5x48ah0WgYNGgQW7ZsISsri6+//povv/wSqLga6O/vz/r16zl79myVWba/1KpVK+677z4mTJjAsWPHSExMdO0zGAxMmzaN6dOn849//IMff/yRgwcPsmrVKqZOnVrLyN1+JLG7jVnsDvJLLdgcTnx9vDhbbObbo+dZvu0k6cfyyc4vpchyLWtHKf7k/bHr3RFnFF8XNgfAq1HdLp0HB3jTuVVjgvx18qQJIW5zffv25cMPP+Rf//oX8fHxPPPMMwwZMoR3330XAG9vbwoKCnjmmWdo164dffv2JTQ0lE8++cRVx5tvvklhYSF33HEHISEhnDp1irCwMDIyMggLC2PYsGG0bduWUaNGkZWVhclUt4XUfX19Wb9+PUFBQTzwwAN07dqVwsJCvvnmm+saOpw/fz4TJkygY8eO7NmzhzVr1ly1bb169WLTpk0cPHiQ+++/n/bt2zNp0iQCAgLQ6ytuaZk4cSITJ05k8uTJ3H333WRkZFx1xmlYWBjp6ekEBwczcOBAYmNjmTx5smsJEi8vLxYtWsSnn35KZGQkHTt2rLG+pKQk9u7dS/fu3WndurXbvunTp7Nw4UKWLl1Khw4d6N69OwsWLHAtoSKq0qj6mI/ewIqLizEajRQVFVW530Fcu5yLZZy8UEapxYYpyI/j50s5draU/BILh88Ws/+n4mta2uQxr1T+6vOe6/1T1ql8seUIRVs/xq91J0KH1X6a+m+aNeLFh9oSHKAnIsiXpga5v06I6pjNZtfsQl/f2k9OEje3Dz74gKeeeqpelo4RN7eavsN1yYPkit1tzGJ3cMlix+inQ6upmBWrlKLUYuXE2WtL6pppzvO694eu9xsdHfnqRzNF6f8PAN8WNf/l9ku+XtC8qT/++or7KAKuY9kEIYQQ4nYgvylvY04FNocTh3KSU2AmIzOfrPxLZF8oofQaFvXW4OSv3u9i0JgBKFQBvHCiO+f//VdQTgLueojA3wyoVV1aoHljP1qHBqL3rpg04aeT++uEEEKImsgVu9uYw+nkdGE5637IY/nWbPafKebY+WtL6gCe9NpAN69Drvcvnh/Cj58tAIcNv9adadJvfK1nyRn9vAgx+tHUoKdZsB9B/vKUCSHE7ScpKUmGYUWdyBW721RhmZXvc4rYfqJiVtjFUitF5RbM17gIcZwmm2ne/3S9X+voxGdbfkRZy9BFtKXpoJfRaGt/xc1P50VIgJ7YiEYEy6PDhBBCiFqRxO42U2y2ca7IzJ6cAr4+kEtucTklZVYKym2UXcczlV/2XoVeU1HBeWVkSl5fLh18BYDGDz2H1qf2kx6MvlruDA9k2D3NaB8VfO2NEkIIIW4zktjdJpRSHD1bwqHcYo6eLWFPdgHnSswUlVspKnPU+akSlxtnm8ACFtNbu4eJtnGcTP8PKCd+bbqgj7ij1vVogZiQQH7XIZKO0Y2vs1VCCCHE7UUSu9uA06nIKSjj+58KOZlfxqn8MgovWSgx2yguv/6kDqAUf561TaKj5hi7yk2U/VixOHHQfSPqVE9YIx2x4YG0bGogQCZLCCGEEHUiiZ0HM9scXLhkpbDMSm5BOT9dLOfo2SJ+Kignv9TKhfJreE5YDRRa9qg7KD+6Hpx2fEJaoAtrVevjA3WQENOYrq2bEhkkjw4TQggh6koSOw9ktTvJuXiJvCILecVmispsHDtXzL5TBZwpKqPYrLiW50lUakQpC3wW877jd2Q446rsv3RoMwABd95f6zq1QKwpiNgII82C/WXChBBCCHENJLHzMOdLytl27CKnLpZRYrbh5aXlYkk5GccvcrrQfN3Drm00P/Guz3xaavPoqj1EovUVdql2rv2l+7/BfPIH0Gjxr0Ni5+cNUcF+RDf2p6lBj4+XrMQjhBBC1JX89ryFWewOisptnCksY1fWRT7YeoL56zNJ/fEsu7Pz2XH8PJ9/d4ov9pzh1HUmdRqcjPLayBrda7TU5gHgr7EwyGubq4wtP4eLGxYBYOw+Ep+g8FrVrQNahwfSJtxIyxADkUF+19FSIYT49WRnZ6PRaNi8efONbkq9+eCDD9xuhdm8eTMajYbs7Ox6rVc0DLlid4spLLOSX2rFbHNQZnGQW1TGj3klnMgv5djZEorLbZRbHdicCquD6xpyrdRG8xOzfZbTRXvYbfs82yP8w/EwALbCPM7/ew7KZsE3ugPGLo/Wqm4vIK5ZIC1DAmkTauCOsEC0WvniC3E7SkpKYsWKFQBotVoiIiLo1asXb731FlFRUfXyGS1atCApKYk33nijXuqLiooiNzeXxo09dxZ/t27dyM3NJSQkpFbls7OziYmJITU1lZ49e7q2Dx8+nH79+jVQK0UlSexuIWabgxP5pZSU2zh2/hLZ50s5ceESZwrKyC+2YHUobM76SeYAWmrO8LzXGoZ6bcFL8/PK5xdUIFNsY0h1dkTZrRTt+Jzi7f9C2a1oA4JoOmBKrRcjDgn0IjhAT3TTAFqFGiSpE+I217VrV1avXo3T6eTgwYOMGTOGgQMHsmfPHrTam2uQyWKxoNfrCQ+v3ehEbeqqL/VZn06nq5dz9PPzw89PRmQa2s31LbkNOZ0Kq91JubViWPVssZlTF8s4mlfMd9kXST1yjjX7fuKj7dkkrz3EvK+P8OZ/DrF0ywn+vfcnMo5dJOuCmRKbwlJPSd1vNEf5VDeTTfopPOr9rVtS97UjgX6WZFKdHSk/sZszy8ZRtPVjlN2Kvnl7wkf+BS9D7RYVbuKroXmTQFqHGOjQLIhwo289tF4IUYXNDOWFtX9V9wgrc1Htj7eWXXNTK5MIk8nEQw89xMyZM/n+++85duwYAKtWreKuu+5Cr9cTERHBxIkTKS8vdx1/8OBB+vbtS1BQEP7+/rRr144PP/wQgPj4eE6ePMnMmTPRaDRuw4snTpzgkUceITg4mKCgIB566CG+//57V72Vw5Fr166lZ8+e+Pn5MXfu3GqHYo8fP86QIUMwGo0EBATw4IMPsm/fPtf+ymM++ugjBg0ahMFgYNy4cdXGo3L4Mi0tjfbt2+Pr60v79u1JTU2tVX3ffPMN3bt3x8/PD5PJRFJSEufPn3cdq5Ri+vTphIaGYjAYePzxxykoKHBrQ3VDscePH+exxx6jSZMm+Pn5ERcXx6effkp+fj4xMTEA9OrVC41GQ4sWLdzOBaC0tBSDwcCyZcvcPuvSpUsYDAaWLl3q2vbOO+9w55134uvrS5s2bZg9ezY225VX1K+Mxz//+U8GDhyIv78/MTExrF69muLiYhITE2nUqBFRUVG89957VT7/xRdfJDIyEn9/fzp27Mhnn33mVua1114jLi6OgIAATCYTv//97zl79qxbGY1GQ0pKCk8//TRGo5GIiAimTp2Kw1EfC4zV7Jqu2C1atIi5c+eSm5tLXFwcCxcu5Le//e0Vy6elpfHSSy9x8OBBTCYTL7/8MmPGjLnmRt9KbA4nZVYH5VYHVrsTu9OJw6m4cMlKidmGzaFwOJ1YbE7MdiclZhsFl6yUmO2U2+zkl5g5U1DO2WIzZjv1subcVduMN520P7ptO+EM58/2UXzjvAen5RIX1r5F2dGK++u8DI0J7vUM/nfeX+v7J5r4e9G1VROaGnxpFRZI6zADem9Zt06IBrF1AaQl1778KyfBL8h924K7wFJUu+M7jISHF9f+82pQeYXHarWyfv16Ro4cyYwZM3j88cfJzMxkzJgxFBQUsHLlSgBGjBhBbGws6enp+Pn5cfToUez2iqWd0tLSuPvuuxk+fDhTpkwBICQkhHPnznHfffcxePBg0tLS0Ov1pKSk0LNnT44cOUJYWJirPRMnTuQvf/kLHTt2RKvVVnmOq8VioU+fPphMJjZs2IBer2fWrFn07t2bo0eP0rRpU1fZl19+mT//+c8sXLjwqs+DnThxIvPnzyciIoI5c+YwYMAAjh07RkRExBXr27x5MwMHDuQvf/kLy5cvp6ioiKlTpzJkyBC2bt2KRqPh7bffZt68eaSkpNC9e3e+/PJLZs6cWWNb8vLy6NatG7GxsXz55ZdERkZy+PBhrFYrTZo0YefOnXTq1InPP/+cbt264eVV9f92g8HAsGHDWLFiBU8//bRr+2effYZSisceewyA2bNn89577/H3v/+du+++myNHjvDcc89RVlbGnDlzamzntGnTmDt3LvPnzyc5OZnf//739OjRg4cffpjp06ezYsUKxowZQ8+ePWnTpg0AgwcPxmaz8cknn2Aymdi4cSMjR44kMDCQvn37AqDX61m0aBHR0dHk5OQwefJkRowYwaZNm9w+f+bMmbz++utMmzaNHTt2kJiYSGxsLE899VSN7b5edU7sPvnkE1588UUWLVrEfffdx7vvvkv//v05dOgQzZs3r1I+KyuL3/3ud/zhD3/go48+Ij09nbFjxxISEsKwYcPq5SRuFk6notzmcCVyZTY7FltFIudUCodSOB1wrtTM+RIzpRY7xeU2Ci9ZKSq3UWJ1YLE6sDuclFltXCizUGaG+lptzhs7kZp8YjR53KHJoa02h1jNSYZYZ2Ph5+VF9qsYDjujuFObwxFnFEsd/Vnt+C0OvFAOO+e/TMacvRc0WgITBhF030i0ev9at0MLmBr5ovf2IUDvQ4hBT5OA+huCEEJ4hqysLJKTk4mKiqJt27aMGzeOQYMGMWPGDADatm1LSkoKQ4cOZebMmcTExJCdnc2UKVOIi6tYiqlly5au+po0aYKXlxcGg8FtaHHx4sVERkayZMkS17a3336btWvX8uGHH7qSQIBXX32VoUOHut5fPqHgn//8J6dPnyY9Pd31GR9//DExMTGkpKS43ds3evToWv+SnzNnDg8++CAAy5YtIzU1lUWLFjF79uwr1jd69GjGjh3LCy+84Nq2YsUKoqOj2b17NwkJCcydO5cXXnjBlVy9/PLL7Ny5k88///yKbXnnnXdQSrFmzRoCAwMB9zhX3ovXuHHjGodwExMTefDBB8nKynJd5VuxYgVDhw4lMDCQsrIykpOT+eSTTxgwYAAAMTExvPnmm4wbN4633nqrxosJY8eO5dFHK+73nj17NsuWLSMmJoZnn30WgBkzZjBv3jw2bdpEmzZtSEtL49tvvyUvL891z+Szzz7L9u3b+cc//uFK7KZPn+76jBYtWpCSkkLnzp05c+YMJpPJtW/o0KGu2Ldu3Zrly5ezYcOGmy+xmz9/Ps888wyjR48GYOHChXz99dcsXry42ux5yZIlNG/enIULFwJw55138t133/G3v/3t5kzsLCXgrLwuplxDEkpVXFmzO5wVCZrTSZldSzEBlJjtlFhsXDLbsVvL0ZYX4HA6sDkUNrsDi9WOxeag1GrnfLGFgrJyyix2rHYnp+2BlNi9sTrA5qhI4kzk46exEAKgAQ0VbdBQ8bMPDvRY0WtsmJWOvaqN2ym00OTye6+NGLlEY00JTTRFhGiKCOei27BqpfaaE25LloCGWfYnKVV+7Fcx//vkihhc3LAYc/ZeND56wh5/C72pbZ3CqwVMQb7cE9OUxgYfWjQx0CEqCF8fuVonhIAtW7ZgMBhwOp2Ul5fTqVMnvvjiC3x8fDhw4IDbL1WAHj16oJTiwIEDxMTEMHXqVJ555hmWLVtGjx49GDx4ML/5zW9q/MydO3fy/fffYzAY3LaXl5eTmZnptq1z58411nXgwAHatWvnltD4+vrSqVMn9u/fX6e6fqlbt26un3U6Hffeey8HDx6ssb6dO3eSkZHhlrBWyszM5I477uD06dNudQN07969xsRu9+7ddOnSxZXUXatevXrRvHlzPvzwQ15//XVOnjzJ5s2b2bBhA1AxrF5WVsbw4cPdEjiHw4HZbCYvL8/tiuXlOnbs6Pq5stwvt3l7exMSEuIaRt25cyd2u73KRSqr1epKPAH+/e9/s2DBAjIzMykuLsbprLgJKjs72y2xu+eee9zqiYyMJCcnp3bBuQ51SuysViu7d+/mj3/8o9v2Pn36sG3btmqPycjIoE+fPm7b+vbty9KlS7HZbPj4+NSxyQ3nXLGZxu91xrvkdJV9GiqC9cuAnW/Sg9Wt/4rd4aTUbONciYV2RWlMLXyz1p/5uPU1tjtj3bYt0C2is/ZIrY7f52zFEOtst21NKWK0939r3YZ7tUfY5Wjntq26hYeLd66m9PuvAQ1NB71c56TO11vD/a2bMuSeSOIjjRSVOfDXe9HEIFfrhGhQ3SdBl+drX97XWHXbpP3V33tXHa9rX2A8ISGBjz/+GC8vL8LDw696s33lL/zKf6dPn86oUaNYt24d33zzDXPmzGHKlCm89dZbV6zD6XTSs2dPFi+uOnzcqFEjt/cBAQE1tqemIdXLry5dra6ruVp9TqeTKVOmkJSUVOXYsLAwV0JyLUuQ1MeyJRqNhieeeIKVK1fy+uuvs3LlSqKioujVqxeAq32rVq3izjvvrHL81Wbp/jK/qGzv5TmHRqNxfY7T6cRgMLBnz54r1rVjxw6GDh3K1KlTSU5OJjg4mOzsbPr164fVanU7Rqdz/x788rMaUp0Su/z8fBwOh9v9BlDRQfLy8qo9Ji8vr9rydrud/Pz8arNti8WCxWJxvS8uLq5LM69ZfqmVIFX7zqrVgN5bi95Hg105sRQ4sdbxJrjKq3G/pKh9G/RYq2wrxFBNyQpOpeEMTTjhjOCIas4hZzQ7nFW/MJeznsuicPNyAIIf+AP+rWv/lyZAUz9v2jcPYmDHSPrFmcgpqLi5OlAvE7OFaHA+vhWv61FdstcA/Pz8aN26dbX74uLi2Lx5My+++KJrW+WkhcqhV6gYFhw7dixjx44lOTmZOXPmuBI7nU5X5Qb2hIQEli1bhslkwt+/9reVVCc+Pp5FixaRl5fnumpnNpvZuXMnzz333DXXu23bNvr37w9UXGTZtWvXVYf0EhISOHDgwBXjCRVXkdLT0xk0aJBrW3p6+lXrXbJkCSUlJdVetatMaGozUSApKYk333yTrVu3snLlSp588knX7Oe4uDh8fX05fvw4AwcOvGpd1yshIYGSkhJKS0u5++67qy2zdetWgoKCSE7++Z7V7du3N3jb6uKafqtenqkrpWrM3qsrX932SnPmzLnqzZsNoYlBh1cdlttoFuzH452isDsVhWVWDp4uwngqCA7U7ngnGny14O2smBRRmeJZlTcW5Y1rCJSfkz2FBjteWPDBrHScU1VnoJ5TQay0P0QRAVxUgVxQRvJpxBnVhDOqKVbqfpVUFxpD4z5jsV08TaOEQVc/APAF9HotLZr606ttOGGN9HRoFoxWqyHIX4dWo6GR381zxVYIcXP705/+RP/+/Zk5cyYjRozg6NGjjB8/nlGjRhETE0NpaSmvvPIKw4YNo2XLlhQUFLBu3TpiY38eFWnZsiXp6enk5OTg5+dH48aNGT9+PEuXLmXw4MG8/vrrREVF8dNPP7Fu3Tr69u1b4+TAy40cOZLZs2fz2GOP8be//c01ecJsNl9x5mttTJs2zbW0SnJyMgUFBYwdO7bGY2bNmkWfPn2YOHEiSUlJNGrUiMzMTD777DMWLFhAYGAgkydP5rXXXiM2NpZu3bqxZs0aNm7cWGO948aN491332XQoEHMmjWLZs2acfToUcrLyxkyZAhhYWH4+/uzfv164uPj0el0BAdXv1pCq1atuO+++5gwYQLHjh0jMTHRtc9gMDBt2jSmT5+Ol5cXffr0wW63s3//fnbv3s3cuXPrHsga9O7dmwcffJBHHnmEuXPn0qFDBwoKCsjIyMDHx4fnnnuOdu3acfHiRZYsWULfvn357rvvePPN2o/S/SpUHVgsFuXl5aVWr17ttn3ChAnq/vvvr/aY3/72t2rChAlu21avXq28vb2V1Wqt9hiz2ayKiopcr5ycHAWooqKiujT32pQVKFV28X//FihVXqhUeZFS5uL/vUqUspRWvGzmqsc7HErZrf972ZRy2P/3cijldDZ8+4UQt6Xy8nJ16NAhVV5efqObcs0SExNVjx49aizz0Ucfqbi4OOXj46NCQ0PVuHHjVGlpqVKqIgYjRoxQLVq0UHq9XoWEhKhHH31UnTx50nX8rl27VMeOHZWvr68CVFZWllJKqezsbDVq1CgVEhKidDqdat68uRo5cqQ6duyYUkqp1NRUt/KVsrKyFKBSU1Nd244ePaoGDhyoDAaD8vPzU71791a7d++u8ZgrWb58uQLUpk2bVFxcnNLpdCouLk5t2LChVvV9++236oEHHlAGg0H5+/urdu3aqQkTJiiLxaKUUsrhcKhXX31VNWnSRPn7+6thw4ap+fPnq1+mB9Wde2Zmpnr44YeV0WhUvr6+Ki4uTn366aeu/R988IFq0aKF8vLyUtHR0W7ncrn33ntPAap79+7VxuD9999XHTp0UHq9XgUFBalOnTqplJSUK8bsSvEA1PLly922RUdHqxkzZrjel5WVqT/+8Y+qRYsWysfHR4WFham+ffu6xXvGjBkqPDxc+fr6qh49eqivvvqqyudV91lX6981fYeLiopqnQdp/teAWuvcuTP33HMPixYtcm2LjY1l8ODB1U6eeOWVV/i///s/Dh065Nr2/PPPs2/fPjIyMmr1mcXFxRiNRoqKiqrc7yCEEKJiuK9ydqGvr6wJ6Sk++OADnnrqqasuhyJufTV9h+uSB9V5geKXXnqJ999/n2XLlnH48GEmTZrEqVOnXOvSvfrqqzz55JOu8mPGjOHkyZO89NJLHD58mGXLlrF06VK36eNCCCGEEOL61fkeu+HDh3PhwgVmzZpFbm4u8fHxrF27lujoaAByc3M5deqUq3xMTAxr165l0qRJvPPOO5hMJt5+++2bc6kTIYQQQohbWJ2HYm8EGYoVQoiayVCsELe2GzYUK4QQQgghbk6S2AkhhBBCeAhJ7IQQwoP8GivbCyHqX319d2XZfyGE8AA6nQ6tVsuZM2cICQlBp9PVy2OfhBANSymF1Wrl/PnzaLXaKo8iqytJ7IQQwgNotVpiYmLIzc3lzJkzN7o5Qog68vf3p3nz5q5Hql0rSeyEEMJD6HQ6mjdvjt1ur9VzOoUQNwcvLy+8vb3r5Sq7JHZCCOFBNBoNPj4++PjIc5iFuB3J5AkhhBBCCA8hiZ0QQgghhIeQxE4IIYQQwkNIYieEEEII4SFuickTlY+zLS4uvsEtEUIIIYT4dVXmP5X5UE1uicSupKQEgKioqBvcEiGEEEKIG6OkpASj0VhjGY2qTfp3gzmdTs6cOUNgYKCspH4NiouLiYqKIicnh0aNGt3o5ngciW/Dkvg2PIlxw5L4NqzbIb5KKUpKSjCZTFddwPiWuGKn1Wpp1qzZjW7GLa9Ro0Ye2+lvBhLfhiXxbXgS44Yl8W1Ynh7fq12pqySTJ4QQQgghPIQkdkIIIYQQHkISu9uAXq9nxowZ6PX6G90UjyTxbVgS34YnMW5YEt+GJfF1d0tMnhBCCCGEEFcnV+yEEEIIITyEJHZCCCGEEB5CEjshhBBCCA8hid0t6I033kCj0bi9wsPDXfuVUrzxxhuYTCb8/Pzo2bMnBw8edKvDYrHwwgsv0LRpUwICAhg0aBA//fTTr30qN41vv/2WgQMHYjKZ0Gg0fPnll2776yumBQUFPPHEExiNRoxGI0888QSFhYUNfHY33tXim5SUVKVPd+nSxa2MxPfK5syZw7333ktgYCChoaEMGTKEH3/80a2M9OFrV5v4Sh++PosXL6Z9+/autei6du3Kf//7X9d+6b+1J4ndLSouLo7c3FzXa//+/a59f/3rX5k/fz4pKSns2rWL8PBwHnroIdej2QBefPFFvvjiC1atWsXWrVspLS1lwIABOByOG3E6N9ylS5fo0KEDKSkp1e6vr5iOHDmSffv2sW7dOtatW8e+fft44oknGvz8brSrxRegX79+bn167dq1bvslvleWlpbGuHHj2L59Oxs2bMBut9OnTx8uXbrkKiN9+NrVJr4gffh6NGvWjOTkZL777ju+++47evfuzeDBg13Jm/TfOlDiljNjxgzVoUOHavc5nU4VHh6ukpOTXdvMZrMyGo1qyZIlSimlCgsLlY+Pj1q1apWrzOnTp5VWq1Xr1q1r0LbfCgD1xRdfuN7XV0wPHTqkALV9+3ZXmYyMDAWoI0eONPBZ3Twuj69SSiUmJqrBgwdf8RiJb92cO3dOASotLU0pJX24vl0eX6WkDzeE4OBg9f7770v/rSO5YneLyszMxGQyERMTw+OPP86JEycAyMrKIi8vjz59+rjK6vV6evTowbZt2wDYvXs3NpvNrYzJZCI+Pt5VRvysvmKakZGB0Wikc+fOrjJdunTBaDRK3IHNmzcTGhrKHXfcwR/+8AfOnTvn2ifxrZuioiIAGjduDEgfrm+Xx7eS9OH64XA4WLVqFZcuXaJr167Sf+tIErtbUOfOnVm5ciVff/017733Hnl5eXTr1o0LFy6Ql5cHQFhYmNsxYWFhrn15eXnodDqCg4OvWEb8rL5impeXR2hoaJX6Q0NDb/u49+/fn48//phNmzYxb948du3aRe/evbFYLIDEty6UUrz00kt0796d+Ph4QPpwfaouviB9uD7s378fg8GAXq9nzJgxfPHFF8TGxkr/rSPvG90AUXf9+/d3/XzXXXfRtWtXWrVqxYoVK1w362o0GrdjlFJVtl2uNmVuZ/UR0+rKS9xh+PDhrp/j4+NJSEggOjqar776iqFDh17xOIlvVePHj+eHH35g69atVfZJH75+V4qv9OHr17ZtW/bt20dhYSGff/45iYmJpKWlufZL/60duWLnAQICArjrrrvIzMx0zY69/K+Pc+fOuf7aCQ8Px2q1UlBQcMUy4mf1FdPw8HDOnj1bpf7z589L3C8TERFBdHQ0mZmZgMS3tl544QXWrFlDamoqzZo1c22XPlw/rhTf6kgfrjudTkfr1q1JSEhgzpw5dOjQgb///e/Sf+tIEjsPYLFYOHz4MBEREcTExBAeHs6GDRtc+61WK2lpaXTr1g2Ae+65Bx8fH7cyubm5HDhwwFVG/Ky+Ytq1a1eKiorYuXOnq8yOHTsoKiqSuF/mwoUL5OTkEBERAUh8r0Ypxfjx41m9ejWbNm0iJibGbb/04etztfhWR/rw9VNKYbFYpP/W1a87V0PUh8mTJ6vNmzerEydOqO3bt6sBAwaowMBAlZ2drZRSKjk5WRmNRrV69Wq1f/9+NWLECBUREaGKi4tddYwZM0Y1a9ZMbdy4Ue3Zs0f17t1bdejQQdnt9ht1WjdUSUmJ2rt3r9q7d68C1Pz589XevXvVyZMnlVL1F9N+/fqp9u3bq4yMDJWRkaHuuusuNWDAgF/9fH9tNcW3pKRETZ48WW3btk1lZWWp1NRU1bVrVxUZGSnxraXnn39eGY1GtXnzZpWbm+t6lZWVucpIH752V4uv9OHr9+qrr6pvv/1WZWVlqR9++EFNmzZNabVatX79eqWU9N+6kMTuFjR8+HAVERGhfHx8lMlkUkOHDlUHDx507Xc6nWrGjBkqPDxc6fV6df/996v9+/e71VFeXq7Gjx+vGjdurPz8/NSAAQPUqVOnfu1TuWmkpqYqoMorMTFRKVV/Mb1w4YIaNWqUCgwMVIGBgWrUqFGqoKDgVzrLG6em+JaVlak+ffqokJAQ5ePjo5o3b64SExOrxE7ie2XVxRZQy5cvd5WRPnztrhZf6cPX7+mnn1bR0dFKp9OpkJAQ9cADD7iSOqWk/9aFRimlfr3rg0IIIYQQoqHIPXZCCCGEEB5CEjshhBBCCA8hiZ0QQgghhIeQxE4IIYQQwkNIYieEEEII4SEksRNCCCGE8BCS2AkhhBBCeAhJ7IQQQgghPIQkdkIIUQ2NRoNGo7nRzRBCiDqRxE4IIYQQwkNIYieEEEII4SEksRNCCCGE8BCS2AkhhBBCeAhJ7IQQQgghPIQkdkIIIYQQHkISOyGEEEIIDyGJnRBCCCGEh5DETgghhBDCQ0hiJ4QQQgjhISSxE0IIIYTwEJLYCSGEEEJ4CEnshBBCCCE8hPeNboAQQtzMunTpcsV9kyZNYvjw4b9ia4QQomaS2AkhRA127NhxxX25ubm/YkuEEOLqJLETQohqKKVudBOEEKLO5B47IYQQQggPIYmdEEIIIYSHkMROCCGEEMJDSGInhBBCCOEhJLETQgghhPAQktgJIYQQQngISeyEEEIIITyEJHZCCCGEEB5CEjshhBBCCA8hiZ0QQgghhIeQxE4IIYQQwkNIYieEEEII4SEksRNCCCGE8BD/H/Xa9FaEn5PVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "axs = az.plot_ppc(\n", + " idata_d,\n", + " # data_pairs={\"L\":\"L\"},\n", + " var_names=[\"L\"],\n", + " kind=\"cumulative\",\n", + " # backend_kwargs=dict(sharey=True),\n", + ")\n", + "fig = plt.gcf()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "plots.plot_posterior_predictive(\n", + " identifier=\"peak_fit_double_normal\",\n", + " time=timeseries_d[0],\n", + " intensity=timeseries_d[1],\n", + " path=path_result,\n", + " idata=idata_d,\n", + " discarded=False,\n", + ")\n", + "\n", + "plots.plot_posterior(\n", + " identifier=\"peak_fit_double_normal\",\n", + " time=timeseries_d[0],\n", + " intensity=timeseries_d[1],\n", + " path=path_result,\n", + " idata=idata_d,\n", + " discarded=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: 2024-10-13T15:50:13.319852+02:00\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -idu" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pp_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.15" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb b/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb index 5fc93d0..516b397 100644 --- a/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb +++ b/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -36,11 +36,11 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "with open('test1_all_data.txt', 'r') as file:\n", + "with open(Path(\"./paper raw data/test1_all_data.txt\"), \"r\") as file:\n", " all_data = json.loads(file.read())" ] }, @@ -53,11 +53,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ - "df = pandas.read_excel(\"test2_summary.xlsx\")\n", + "df = pandas.read_excel(Path(\"./paper raw data/test2_summary.xlsx\"))\n", "df_normal = df[(df.loc[:, \"model\"] == \"normal\") & (df.loc[:, \"Unnamed: 0\"].isin([\"area\", \"height\"]))]\n", "df_normal.reset_index(inplace=True)\n", "df_skew = df[(df.loc[:, \"model\"] == \"skew_normal\") & (df.loc[:, \"Unnamed: 0\"].isin([\"area\", \"height\"]))]\n", @@ -83,11 +83,11 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "df_comparison_total = pandas.read_excel(\"test3_df_comparison.xlsx\")\n", + "df_comparison_total = pandas.read_excel(Path(\"./paper raw data/test3_df_comparison.xlsx\"))\n", "df_comparison_single = df_comparison_total[~df_comparison_total[\"PP experiment\"].isin([23, 24])]\n", "df_comparison_double = df_comparison_total[df_comparison_total[\"PP experiment\"].isin([23, 24])]" ] @@ -101,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -224,14 +224,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2024-10-11T17:56:34.996952+02:00\n", + "Last updated: 2024-10-13T15:10:41.315414+02:00\n", "\n" ] } diff --git a/docs/source/notebooks/Processing_test_1_raw_data.ipynb b/docs/source/notebooks/Processing_test_1_raw_data.ipynb index 5518ff1..2810339 100644 --- a/docs/source/notebooks/Processing_test_1_raw_data.ipynb +++ b/docs/source/notebooks/Processing_test_1_raw_data.ipynb @@ -20,17 +20,17 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "raw_data_files = [\n", - " \"Normal model_normal data_noise level 0.6.xlsx\",\n", - " \"Normal model_normal data_noise level 1.2.xlsx\",\n", - " \"Normal model_skew normal data_noise level 0.6.xlsx\",\n", - " \"Skew normal model_skew normal data_noise level 0.6.xlsx\",\n", - " \"Skew normal model_skew normal data_noise level 1.2.xlsx\",\n", - " \"Skew normal model_normal data_noise level 0.6.xlsx\",\n", + " Path(\"./paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 0.6.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 1.2.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Normal model_skew normal data_noise level 0.6.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 0.6.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 1.2.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Skew normal model_normal data_noise level 0.6.xlsx\"),\n", "]\n", "\n", "parameters = [\"mean\", \"std\", \"area\", \"height\", \"alpha\", \"baseline_intercept\", \"baseline_slope\"]" @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -149,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -159,9 +159,9 @@ "model: normal, data: normal, noise level: 0.6\n", "model: normal, data: normal, noise level: 1.2\n", "model: normal, data: skew normal, noise level: 0.6\n", - "model: skew normal, data: normal, noise level: 0.6\n", "model: skew normal, data: skew normal, noise level: 0.6\n", - "model: skew normal, data: skew normal, noise level: 1.2\n" + "model: skew normal, data: skew normal, noise level: 1.2\n", + "model: skew normal, data: normal, noise level: 0.6\n" ] } ], @@ -180,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -191,7 +191,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -221,14 +221,6 @@ " 0.1425229338854569,\n", " 0.029251994462966387,\n", " 0.02178598822049324]],\n", - " 'normal data, skew normal model': [[0.9993873333333333,\n", - " 1.145324094260921,\n", - " 1.0038603930164334,\n", - " 1.0021702322498285],\n", - " [0.025492314214288193,\n", - " 0.06460165579288266,\n", - " 0.0295645094605588,\n", - " 0.022277250178015084]],\n", " 'skew normal data, skew normal model': [[1.0003276666666665,\n", " 1.0178059537564914,\n", " 0.9995769654521169,\n", @@ -244,10 +236,18 @@ " [0.029588612507556917,\n", " 0.13828870506270582,\n", " 0.050852728197426554,\n", - " 0.03782158437972263]]}" + " 0.03782158437972263]],\n", + " 'normal data, skew normal model': [[0.9993873333333333,\n", + " 1.145324094260921,\n", + " 1.0038603930164334,\n", + " 1.0021702322498285],\n", + " [0.025492314214288193,\n", + " 0.06460165579288266,\n", + " 0.0295645094605588,\n", + " 0.022277250178015084]]}" ] }, - "execution_count": 6, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -275,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -284,7 +284,7 @@ "dict_keys(['normal data, normal model', 'normal data (higher noise), normal model', 'skew normal data, normal model', 'skew normal data, skew normal model', 'skew normal data (higher noise), skew normal model', 'normal data, skew normal model'])" ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -297,7 +297,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -309,14 +309,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2024-10-11T18:34:57.629742+02:00\n", + "Last updated: 2024-10-13T15:03:43.532805+02:00\n", "\n" ] } diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/Template.xlsx b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/Template.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..0d7afe32719d9ce6fc37f99671d8f15a0f33bf01 GIT binary patch literal 14933 zcmeHuWkX#{vNrDS5F}`DcX!#iTX1)GcMnc*x8P22_dsx$5Foe(_ji+X=AN0%nRkA` zz3anXy}GNOu3o#UyH<6zf;2b;1_%@g3%)*!`{S6hu+=B`fWZ07-cR97?A$|uK&ev;7gK@RWBn(=qdCAGI?`BOe@o1jc0A_ zm~83;sHT%;kOi7!{)}JO%xw>jDr$(w%;b;E8y`=}^=EswP_piB1lK66A21p2~jP)=$g-w3&e@&mQ>O$l(8sVb|*a@7Sk z zosZ)b%_@2TTSzh^XPdIK!9CdNe%b<0b*|~h*cN#WCZFKq zno{Rj0}!&HiEF`N8YjM|&k3g?-VnZMMDx`TcV28wR@9Dq{9f#PjKA}tGdcpAW z%M0Ks{^%C!u9@}U?L<<%jB_IA9gh7*RXc%nrtL)py|x?Qj6}7>i!Tr&>&&+HiIn(E zsE56MSy=y2@{{||#k>(6*t&s?p-iGjpn|=;fP*Ofikadc&kH|AiN`1(6*MHCta4{4KIW$4Fy2N!5+3da<2hl_6dX*IB(k7arEbHMhM51)+$MiG^+0~f4+Hyv1Lwzy7+@5!DV<~? z4>5WAPR$9%hny!X$2o*KW-I2>kL~Rni%5~YZlXxcaH9>#-Iqok&3Ud99ben2pNQ~x zJC6|vB+!b-G{%r0F-G$0BEgu3R~Y4;dgG=Dquj3Z7MvmRic0jSLwFM9ddT4W$dnl~ zG>7_q&{Ll47+L$3uVbB-o!kNLE=0mynTd2747{;db|Tw*M#H{94fuCex=Dp?5C_h+ zjX+gG22uc3>7SLTP-Vn+g%PC#drttR{hihk#3utT$yJQ;BA7^8Y|z1QJk8*iQZh^) zzl}VVW`L8_R1_yZKi@<~$kLrf^AZAPN{-aRWQtzrr8Q~6MSmOQM^(;6kjlk+y{8(hK5&EZ1jWb!i? zqCu?Q#u}e*>=%pU!34CYtXK`m97^9R+;%2s3DjAf6LKTkF1WqxJ@`OL{mIxJSCVVS z(4mcOUZ_a&nwW=&Iq@!3OM0`SS(cN$%oyQk%sQ=Xopn;X7Q52sR;nwM&JCh-yO=|9 zcUXoNR0X`RoOaugI?{sMLWhcT`uMKLXyV+d(khpl5qJmOjY=>nAL!Rzixe@kh*l-g ztN?#2E3ln2_3IZ7J@A{>Miqi<0>8^?Vm2|E6-y~S6!_9dg5Z=ZIZW>kN+RA7h8R(K z@%@ng(G+z6ahrp7MKqaT+SloN){Rx-qrI(AS7tDdg}0^l&YAIbvNkv3nxz~u^`4|E zr&30+faJvdo|O-`VRZrFchZyr1;bO%JZa@7_z@BjUN0rI4r562(+a7OC7@nuiw`|d zWQUVjyaEr-Lc0a0G@~|eN5Me7XS0`tA&fltB(vUcvEjS2B06Yi?&R;6$WNu>O?8NZv#`-#eC8_Dy zWiVp+khIEXLjXmXS zIz2n@pv|P)46L)s+v|hx_sqJ=^h_}y zED4Q6&E&YCG!MRkeV3l3;a)+3DVh@fQKR>r-d+9=2!_kty0gBwdk^Hr$t#Qq?$}68 z@24}rXmnCZk-tHcgQFGd(wNc0UmR_R*NM1WDfS)K)C3>M#8UA!S6ZOD=ou?B#QzGf zal;d7@B3|@$n27QoD1EWiZA!#P2R56#N!v};&Xc;14!y)q<3TS55Z6@!SDTeXJPNf zM&ugS2_kl@3*WYo!Ivf;mOg&P^-}J}zNG>Ik$x5Jh5|TUjBJJEnAZ38tA`|n6{^(OG+Na%#nvfjkaU+8$@p;#Ow`y|_ z)TSh_<4M7tFw|5xFtFmIa~9vSa<`K_>Yy&(kfOj7QP>8Vh?#FFIUzFF3YWeIdDoyN zcpm7Pt{jE2qCpOZ266x`Jmsw`KGf9YhA_bepQ$4(dPeF#xy(lY7kYyP(n09EAvQs_ z)@smhx~oq`>(Qnuwxp3@(hj9837#c$c+`1kYpP(kg=oamMW~3@$v+k+m6ohjbSKC- zbKAs0npv-DW5ih-RAk0$Qv^)o=iSL;Et{QPY5leF=wfBR?2YIwA1kw1T17XC2UjJx z`NhhBG#f7$v*w%aun%dOre4`)FtLutr+DHHWu>o7U6 zs!olWHbiMCYR$tVXM+*2Ps4n|plfKBX;%5eT7U`{nQ?n}*Ee}qD;@i$={${tG(Ryf zFe`(V(4JSeh=6#cC~zu{tS2#CIUw?$P^YR)SijgW})XQR^ref`r+{iob~^GS=d??pNfVC z0rBJfk2cEu%SJP_f4xwRdBdQUbZ)u!z{c6IXXdB2dO$FDLY zCBWKdQorwde0AA)TtZ~$`@DZp#KU`yY{MgyRC8Eeg4|crl{tPtAkt=YA7#67a!FHu zQey-4bZIYecoWv7`C+4B?aMS7mFbFUM+PD6$FLj5);Y@#bGx>InWi;FiQ&98)}Rkv zej29_9LuifgsV+ly!^)kw5`XwsBVYjp6&#BGb64JcUQg(1nF%twl^Fj=>u=P9=D+% zT{}3PeVXy;F*taTE{ANY%&uglIMl})Z3B+4NAh%ZOSTO}TP7j~{#6~#AfmqTps3#X939`Cx=w`8vudwzK)_;jxnP>;^!{UrXvOqjoc zoY+=uC*YRhH$S#1^c9j1Gv&CJ`+??OLmBuXDR`d+Jt)Y*k^`#7Dyk8^BRAdC&m$T>8qe^`Dn(PE_c=m@UWpQ!u z&v`_q-Iz^>HltU3R}jX>=kmPL_B4yP4sK$y>K#8-f3^Ey8)hP)>HdhdHlgcwcQM}n zIi2tD!}~ow^6Z+Xg^ifG8t}1;ZZ7cI8u0Rq?r2cU#egf1T!H~NySh;MZdxv6TAbWa z0?OS0@>i0X3&97U+Y{OO8t~oS0Jhhv`U^qykDOg>$HVwOP?`sAk)`D5RR}((e}0^LACplLa*ffQ&1Di>nuU$-e5uA+6najf-jZk{g0wsd{Rd|(1{11tk{}ACHAen!FZ2t-J zr<|_>5dblM4b!>WzfBWmSsC2R5y+b(uK7m+IIKkFKP34R1mh17iBnTFCzsb@D=Ylb z9{5Kmf3}z89@SpLQo*(^4X)Y1U&TY*Dl0r|aO1o~Db0nbbMA(K!b}oMK}r?OOHdk~ z21VyoQ9{z>)(49K07#^vW%L!LG>!NDVOgoEVrU5%10=S3``S)7w3gGrc&VvkfmKsJ zRwsil+wmZ=fKgIu=q(7st zT1!usvZ(*NoY(+_6y>KucR{i83fQ7#4c^@RkojOVX<9;sDJ?7EPvlt0rNeY}mHOxY za1U^q+Gs7w#LdGK!YW#E2rXjsSo!OL#=!O#6jf|85!?73$f$>@z$?hQE)+~02zH!d zIFVU{IQ$l|CY*e{plu-KFbW$knS`x_4phV_LIP>?XYL?TAE*%ng77xmqA3@67rbB^ zw&?S3-eR^69Z(UGh_5u3K^m(=k)w#cjc;B>U7)M__Exb^2yPo|!6B}6`z@qnR5_RA ztWz9V%K#ezSsAxv!0Pu=B(z3?LP1*xALs};WToyV0*-f?5>CP@o+wpUjDtZJm@NaC zL}ZryFlGEO3qCko{PSon19L=V2Lh52tKacZ&{W?RirPAm!$fGID3LUOCJYu8gQ1Go zevc`fPam8#Ojm_StVkdX*v3*1k1ItbCa0};JZ-Mqd&065gHeyd*|G(t7Kd4g#@PY| zc9l%(JVB^yL<5vLc9P3W6gWOi*sOX96<|d|Tqy-HrehQhU@wyokH#_T@U@T+?6Wm^ zVu_U6G0IBjwW7C*(~W^N_D66jdtRb_RUqLSvFJGLW*NHCYD^_iFfZZ!``}riV1jv0 z*JtK)z>)~DVuY|IP{e{7v*ExS$g7t%Zhm-IZ$itB)#fg?u!pOv9P8y|!kBGgzb%3f zv7Ry2VYUL#cB-Zkgmo4C&r>YltKMAZ(VY!I`%G5P4V5IoH=514^sT(RW?kN&>dAQd zTQA#et$u7B_+fVh40rzrFPr6c1AT2bof;B7g<`J(KGz={lwRr6iD)x573`T3RbIf!$|l)TW+g0eEyF)0p+QW!M20 ztTn5CDkE=^`l50T^NR_3MRNl4B8BZgE4EkWHW7qFjnEF-0j5$BwFcw^%2R!9Ggzw1 zpoo76!?j)KCaHKkHkT%wIz@PNiTVt3EI#iLc$0rt6US@{vlqhNd&nH>;S?;S9f36c zX8aB>GD%k~ao-YA+#!?(WLc3cSAp3 z3VKw=MUs;$jy)DXK>^k@7VrhYGgb>-Em{qVBc%q-v3%n_lA)s3DnTxUT!d6-CurX} z3}ce+5%?~EgmPVq{5@S>@X>&PI)N$v_5Ha%XXGSNl;yGWz#M*b7HpUttX+)i90e4S z5A>naXM+@z2sN6(#=!MrgQ}nTu*KfIw9!L%x?E;2u+un6wrOHp257X3sLwxG_L3qpZ&2s zDA7f9mmvEBJUd_)7yrz;abr&Q!`wxGVRy+Jtl;wbWV<6zhp(bXtv%C8y&BQgD&=jh z7RP)zeORAQ4aAKWc+;{;i!;0{jTOa-T;MlMW$<#PYS!ceeddw#hXbM_ zM_ynHPbo&_-nuWoEN-YdV1=wTvJEa`gyj)f>*sKk4)D#u2LJ$+kN7xB`E5d|*Y-B5 zTg83$tVdx}`in$v3y@9ib&EfUaHJolK-g^-`?Tni>N2o1O+H+KTCc=~vgH!>(-01) zq7^|-koeV5*(5ck!yXO|T?-^XLH?ardqOxT+ywmc{EGA+ZG!35CMwi*Vwbs5e5z+( zQ0_V)pj|al@&c>MuJe@UsvoQa1I!aS>&EL=^fqwcpuPL1?d_tj&0ITDt^@FWzP&vO5Czm*_Q5HhC$&3@tuw55rV)jBD|t=0Kp-Ro zMsyE7v4*HuE)qTklzKqsSclN2g*H24muopTG3il9apEGKZYAts)*`TYz=ti`UPKE- z9x40;Xrqn57x(xzezkHjrK#8615o53UA4(1u_;tskStV(CW)G`KeU$z8y|vw_sug( z$!ZzTfWK${TBu-H4lRhSEx}-vJvf7tigh82gsQ(xI?_y~IlW{lD%GBv0r50?r^xjp zk$T#QB7fVnD+>sPiD9TAlI`poH6O=#c^l~mjG%}Zql zea`r-{xrl=;i+9GsUqN8V{PjDW|-M#3IA_NGWhdTF7pp4Y7iy;;}f3^*pf9s^CPxS zTE*-SesHS6$VH5K`ek8COjbVC2{YE^bFWgQJ?n{y<=ZO0>k!rKFM_A+^&f?a8cR`a(w&ds(}Y8ES3 zYm36B-3iOY-zX*ttY;T)h)E5kj%D`9&hpPeFK!^NLx;QAha$mR2_8Gw=9JI;^w=X* z-ON_p8V$%I?*Oczv=nMaVe7Fny#@#R8}u+=)cwAs#E zjO)+3^#m`y+w|2cDrc1~Zv19;;ha|)S z!41Uc2V`<)o6_5#Ng>ZSxLgz1(ZNUA`wQu>N6y_konq9hd3vS@=IE4}`!>b=QIm_x zQddoGw`5P~7%dUwF*gCz2t?*ldewTJ8jU}?_pj)Rpg@DIS-h=e>Mx&~+KU1ku*>q$ z)@K3mhWh1hzANT{vUx(Z)!0D&6Zl@T6V#M^UT9I2Cyx#HA~Zy%3jNHqpuS$oq_Jk6 zPpnj&3dg;vNu}_++<0`HQ}W^vG>w+3HuNB~>MrAedzOV+c^{?hIFM@xNrUguil?`p zsx%f_DrFt4xY^*XT&3+R+Z|<>dq3JlEO#T>P6oHq~JYJdRd}qLS8Y_ zy_$Jxs^t;-kCRcPH1>D6mk>ebnt65}(XMdiS2;HOI`Nyl$g4Rfx9=zTwig9hOi5dE z#Ai&tZJ3;NI>{ra(L`Y#1UmRuOsCOFqEx6)`iEMk^+6#XW{80AP#UORn(SOY=XT6& zqlk~(L2C_YnrI%;m&l?R8K)i>d@}^@qLhwXc&1s5^yD8pHzlKN~@b>3eCvY6oL zYx8ce!bd=v@FFwqzMG{Lj+@(Uff}n5IqCX#`vAY+T7l3#4*#G&7^Gfhb0zf zDZ+pqOQbSurO_L>JB@^4xjY2DHlEsAWv^FP@%2n^8+_$yny}+ugbu;mlm~^3ffZ&C9GTj08dy%XZV`IXkJ-k~n#;$_ zoxPGJ)=3s=+ug;{8D!bD86p@sR&27N6z%VP9NXM`*Lv52bEEs*mmEI_?DZ@KJYGpb zP4U`z-rIfvJ*K*0O^3EiU_AS&iQ;*lN!vc)o#O6+Ccfg)-U9e(+{@>&Z9{R^XWu^V zY*5E4qcE|ZTFxY*OhpFU)aB4i#Il)Fm3Bzq3+O^fp8BUK1>SZ6!FHo7k8z z{QCX1upVj3M!n&{>BPP#3T@$ePRCu5Zto#nk;+&jGtNrFH_^VPEXPfYZ-0XhM$UDm zL|It$QP_?zX<85*vEy=xmaJhvc8_L!k+gEhnxDOhPP31>z~k~@>Y>x~(&c=*Bb8f% zb0?VGrr9&^J2xk8J*p?3x? z+miKrm%RUBL@E9VmazrVDXWP`3R=Bi!7DYzv>0R2qV@@52PeMY1q~x;>2QV$*T~Jy zq)EQVmEPVaP@-j9v8R@uwJ4K@ zMD=__X`RY-!Ka<8pKytN>6R>6G4nB=*{6_MjXsdMhUg1+mqETYO(h`ayrJ2q@0~Mz zo9B-2xYWQ+VzE{_#H)4L&eEUmp>{to_(ACgFh8tA`7*-vM7@^V?arkNusmOj-ZcSs zD%^b42H!9#^U1hY1=SyO39CHYLS=9}3`3f|?Iufi2H`P``?%YT(UnueZCbDj+Gq(t z1i`4#$Q=3|Ka`jw+`Sx01eytvq2=wBl{w)tkLT&dKI|yxN{BNDLF$wV_cK@1UVf+rQF%KAY3q@Hu(B z8@pj3^2=iL!Taj+7?soMe!g;A&5X=P|Ni_j;~hgbzsK|ON59A0MZ=E7{CFgy1RSSb zJbqW(Ivj5E%~*;3j5!?fa2z%Th$gz?2NGugg_Q7RdmZc6GgmljBXC{aRkqKBqWi)q z(qrlciy$W~;%&5z+~3Nqr7zCx-|>t znJo`pkcrYHaj?R*hLM@rR^4&wAR=uj!YGSd`)=aGt;vv6_BDpCTKpxyGMdQw1#&gd zwPXwXHRkF;hSY}n%*6A#;)qjbYjY)%P1oj}iAXALuj=j+ay-&ou1iI@$mnntZLZkA2<@EYi8+Gz=`Urr@Wb3dZ@RwR^mf?L=5)Qs zhC}?WQ!zI;%D3KXpMwTK?oas6S2cfv|D$LG1a7Wa_?UL#O^XLa>>Ybg_qbBw0VfrD z4k{{vs5uh+W7%@uguAULaNl98=0ttKk|tVyNv$nRtoUfMVCfJ^S$jNO51`-e;vTA@Dg|Xb4_LBd0AtlRs8&=YB@F=-txA*q zT()gOYhlW@OzF*QR7Ve+OxYqQ_ATGUoS}wHjp9wgpKX#%vK^;Hct`Q8MBga~rNU%# zC-vK?yZU7zvMS=`e^#}63-hAoNEesv_l66m71x+I>wE2FUsbZCyjgYbS(=(gSJ{Cb zathlLSg#L??1wB=ok9-O!qkmY0JI!T*jA3^k8#+5i!Y6Fn0IcLhNC9x0tzZzNy((# zu?qYJdxqIP$>CM|rOl1V4bAOezfH9O zSLH5D`MY)3A7P#)^=fh`W#YS^KgvO``+ZJxC4?zzOh%_73Dd#lT&Yr%UN6jAF+jf1lB zAWLZE&?Tct4aZr!myX|JA=V7ZY3jQO3OwrmXp==Bd&x*?OmPvh={m|gv zDnazQszY*h=-!Y4?VgZjTndF^69&X3eSzBkNRdpg6d(D4>sRZmkQ5RH{1E zJf>2=to%@1%9^&+dt_{EUEt@buw{5$JBA$3%NW|__I5TKo92Hjm@4-JmBWp29eJ#8 z`@lPOZG%zqxU1`BX|@m1zj&s!1Hm9>cdgk#$UFu3Qu1 zckpIZ`1wFlts9kEyzN>ZE$#Ru8#E=SGMs5-#Ij`$b}-c>TjEDzC|k>y!j2%&azB?e z43+F{rIlD}C_(xOTIb;mbri&JkNNB8rpph#GEzs8Wppl*q> zxejr!WEO^0fCFl6NB||in%zD-YnJUM*|Na^rAEJyx@3uGm(m7G@?g`0hps2)jd4ogHi0{G;zCy z3|?eHCi!xt`>?!>uy4Fdwo2ms7+n2$(NVT$!dF(Rm~0JdPqVsS53NlheRX>&2gxi@ zW8&ys1!~v&3O2XcwN%MsECqY46x$t@z=@hWI%lb_(h}mWf|NQP5?{LKp;IfXw?Vc= z>Mr9%|8f@lw?6$USFEfqFT5OP%8yOSIr|_yb9m6jEA zdZl-N-jXHUF^YI?vb-Qa;$#^xL*JSww_r155wHBRhFP4pdO$jXSPE{+W}Rnn!8=D3 zQf*uAg~3O!hTY}H=6}6FiI4TIqQ`YRt^m&qZ34yD{0f1mfMQLd@>60I?p>}S)&`)8Df=~+yF~JMoSs2$(`6qIUDoppCr-&Lg zI3E$O_Dgu=$DVM?;<)Q-!dRfAL|Y)tDrg(D{m-zk+Djcr+@E6EKsBm z`?-Q?5UWz1kd72!;#h@tv&LH}&(NmheGfHM9B~KhCO9K8e}$T>?dsFjbZ%VgVgh|x zeE%L(ezzOnr%^~sP6@0e)%Md`Cjj+D(Htj=%ve@vCA;$7JqHa2d3gwivNRK@^iZU; zIOMfEH}z!)eI|~1B5ZuIj%oNE*?eoPFsJYQ<{n-`Ix|P+_c+!HP9h{Iav{xFcYI+Z z_>3K=cjde6{hQ%~&^{(=i**j47z$a)eEl+4wKKwMYa10m_MOaY_Icd-(IKV#bk0P} zDI-B*xnSULJK$8zg~3OtUncI^myNeRDAbut%AGY`!cu(U zb<54jpYgIat@ph9Gs^bSq;uJm*19#!+9+kIK!B~q zERDsii)V{$bH?1p%&}`@njX$#xj>I@$qEhL&2gZ^%y`D!n|o3@gGAdi^2}%6*s3Sb zTILDBC=LykQE4HqxLGpd9+*jHa*~6Z(x9dgt_Zown=Z|Y==ucaK_C@1Rn(NG33#g@ zt{M3sR0@L%QcLr8*fd)eh0(PM%%Ol$Lua)me|m*MO{rg0m`O}3O0GNASpS9OdcI5N zzjf5urTgDVV*Z=BLQ4YsUQ3=!H+A8dz+oy3Dhe&ZWGP<v6T0v_FX@W{a8MWwPf}flezgF}LYym=&7_us-51!7gS9sW2wj5sVMjF0m-l8$0$jk}YT1Nl1W;MS-@lp@NEz|uSBbVGiD z{w(}_?eAj*4zi2r1M6IA)57}N(v!0F3sxNU z07PCX%~6*RY7-WbwL3I%U&Pn*+CQ5|8&BAcqgf4ZETY+?4V7pF8U=EN^5~aJkSvox z62;%I&GHG_Bd|#-Oc31Y($BZojk_ZuD zfTPS4K#roHAb0p|9h<5XsBQo5=u->WB9{SMoPnPKDF3X72KM&8#UY@qSns{wKFQa9#CrH~FC#v92tv#Y~?V^a_@Bk*xu()V&V zM^Z}X7%#^qZgM~&{6dqS8HQbr-Wu*)V?E0U8#e(q`J73R_}c$F!0#zPg{moT7}V4n zwFX5y-<6nrnT{38j22q$AQev}vp6Q&<(PI={9#q_tw;RsM>JQ6yugDBKAgxYhp8zu z*>ZC)esAgF7OG@dLuyOV_zTA9-Nk~{_qZZ+O(#LCS$wo%R&t$)bB1MER$t)s8zAe{H7d_Sg zTCxb<2gCQhyXuMpL1chxC!pEY`nf7luz%)W&^e>~!pG^%AlExseG-}ead4<9x;gZl z2}_As<8nF#Cc{Ndi-^$Lg;K()tZfs8b*|^W2hHWpo`tvQ{i9=w-`HKGj3t0DC+his z^7lZ&=zt%se}CNVAOGh+?tgRmO+or!0si$Q&OaDm@5Ml)`KNO^zcc>p>4bk~90Nv& z|MOXe-*J9VP5%oC3;2otTcY~!%)ciY|HT{uOgsLQ`QK8Ge@FQ}4e~D(I^b*n8+9|zB8U=D<&W84pZ*`JGLRww literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/Normal model_normal data_noise level 0.6.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 0.6.xlsx similarity index 100% rename from docs/source/notebooks/Normal model_normal data_noise level 0.6.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 0.6.xlsx diff --git a/docs/source/notebooks/Normal model_normal data_noise level 1.2.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 1.2.xlsx similarity index 100% rename from docs/source/notebooks/Normal model_normal data_noise level 1.2.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 1.2.xlsx diff --git a/docs/source/notebooks/Normal model_skew normal data_noise level 0.6.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_skew normal data_noise level 0.6.xlsx similarity index 100% rename from docs/source/notebooks/Normal model_skew normal data_noise level 0.6.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_skew normal data_noise level 0.6.xlsx diff --git a/docs/source/notebooks/Skew normal model_normal data_noise level 0.6.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_normal data_noise level 0.6.xlsx similarity index 100% rename from docs/source/notebooks/Skew normal model_normal data_noise level 0.6.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_normal data_noise level 0.6.xlsx diff --git a/docs/source/notebooks/Skew normal model_skew normal data_noise level 0.6.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 0.6.xlsx similarity index 100% rename from docs/source/notebooks/Skew normal model_skew normal data_noise level 0.6.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 0.6.xlsx diff --git a/docs/source/notebooks/Skew normal model_skew normal data_noise level 1.2.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 1.2.xlsx similarity index 100% rename from docs/source/notebooks/Skew normal model_skew normal data_noise level 1.2.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 1.2.xlsx diff --git a/docs/source/notebooks/test1_all_data.txt b/docs/source/notebooks/paper raw data/test1_all_data.txt similarity index 100% rename from docs/source/notebooks/test1_all_data.txt rename to docs/source/notebooks/paper raw data/test1_all_data.txt diff --git a/docs/source/notebooks/test2_summary.xlsx b/docs/source/notebooks/paper raw data/test2_summary.xlsx similarity index 100% rename from docs/source/notebooks/test2_summary.xlsx rename to docs/source/notebooks/paper raw data/test2_summary.xlsx diff --git a/docs/source/notebooks/test3_df_comparison.xlsx b/docs/source/notebooks/paper raw data/test3_df_comparison.xlsx similarity index 100% rename from docs/source/notebooks/test3_df_comparison.xlsx rename to docs/source/notebooks/paper raw data/test3_df_comparison.xlsx From 54bd0cba5f491b7796201a4b182e348e47951a4b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jochen=20Nie=C3=9Fer?= Date: Sun, 13 Oct 2024 16:08:56 +0200 Subject: [PATCH 2/6] Fix heading levels in raw data notebooks --- .../Create_results_in_figure_2.ipynb | 8 ++------ ...Create_validation_plot_from_raw_data.ipynb | 13 ++++-------- .../Processing_test_1_raw_data.ipynb | 20 +++++++------------ 3 files changed, 13 insertions(+), 28 deletions(-) diff --git a/docs/source/notebooks/Create_results_in_figure_2.ipynb b/docs/source/notebooks/Create_results_in_figure_2.ipynb index ea6af20..8d3292f 100644 --- a/docs/source/notebooks/Create_results_in_figure_2.ipynb +++ b/docs/source/notebooks/Create_results_in_figure_2.ipynb @@ -13,10 +13,6 @@ "metadata": {}, "outputs": [], "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import pandas\n", "import numpy as np\n", "import arviz as az\n", "from pathlib import Path\n", @@ -28,7 +24,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Exemplary result with a single peak" + "## Exemplary result with a single peak" ] }, { @@ -704,7 +700,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Exemplary result with a double peak" + "## Exemplary result with a double peak" ] }, { diff --git a/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb b/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb index 516b397..0ec543b 100644 --- a/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb +++ b/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb @@ -15,14 +15,9 @@ "metadata": {}, "outputs": [], "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import arviz as az\n", "import json\n", "import numpy as np\n", "import pandas\n", - "import pymc as pm\n", "from matplotlib import pyplot as plt\n", "from pathlib import Path" ] @@ -31,7 +26,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 1) Preparation of evaluation of synthetic data (test 1)" + "# Preparation of evaluation of synthetic data (test 1)" ] }, { @@ -48,7 +43,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 2) Prepartion of border-line cases normal vs. skew normal (test 2)" + "# Prepartion of border-line cases normal vs. skew normal (test 2)" ] }, { @@ -78,7 +73,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 3) Prepartion of comparison to MultiQuant (test 3)" + "# Prepartion of comparison to MultiQuant (test 3)" ] }, { @@ -96,7 +91,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 4) Plotting in one graph (for PeakPerformance paper)" + "# Plotting in one graph (for PeakPerformance paper)" ] }, { diff --git a/docs/source/notebooks/Processing_test_1_raw_data.ipynb b/docs/source/notebooks/Processing_test_1_raw_data.ipynb index 2810339..e29fcba 100644 --- a/docs/source/notebooks/Processing_test_1_raw_data.ipynb +++ b/docs/source/notebooks/Processing_test_1_raw_data.ipynb @@ -1,19 +1,20 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Process raw data from synthetic tests" + ] + }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import arviz as az\n", - "import json\n", "import numpy as np\n", "import pandas\n", - "import pymc as pm\n", "from matplotlib import pyplot as plt\n", "from pathlib import Path" ] @@ -36,13 +37,6 @@ "parameters = [\"mean\", \"std\", \"area\", \"height\", \"alpha\", \"baseline_intercept\", \"baseline_slope\"]" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prepare data in df_results" - ] - }, { "cell_type": "code", "execution_count": 5, From 395b89c922a967676ac20d7cabafc8b88e9aca46 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jochen=20Nie=C3=9Fer?= Date: Sun, 13 Oct 2024 16:15:33 +0200 Subject: [PATCH 3/6] add environment.yml --- environment.yml | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) create mode 100644 environment.yml diff --git a/environment.yml b/environment.yml new file mode 100644 index 0000000..8debee2 --- /dev/null +++ b/environment.yml @@ -0,0 +1,16 @@ +name: pp_env +channels: + - conda-forge +dependencies: + - arviz + - jupyter + - matplotlib + - numba + - numpy + - nutpie + - openpyxl + - pip + - pymc + - python=3.11 + - pip: + - peak-performance From 7b8861da72b28df05fa8ff6b62c9da6e1eb5046d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jochen=20Nie=C3=9Fer?= Date: Sun, 13 Oct 2024 16:21:33 +0200 Subject: [PATCH 4/6] update installation.md --- docs/source/markdown/Installation.md | 17 ++--------------- 1 file changed, 2 insertions(+), 15 deletions(-) diff --git a/docs/source/markdown/Installation.md b/docs/source/markdown/Installation.md index 0477d10..162bf72 100644 --- a/docs/source/markdown/Installation.md +++ b/docs/source/markdown/Installation.md @@ -11,20 +11,7 @@ If you have already installed Miniconda, you can install Mamba on top of it but The newest conda version should also work, just replace `mamba` with `conda` in step 2.) ``` -2. Create a new Python environment (replace "name_of_environment" with your desired name) in the command line via +2. Create a new Python environment in the command line using the provided environment.yml file in the repo. You have to download environment.yml first and navigate to its location within the command line interface. Then execute the following command: ``` -mamba create -c conda-forge -n name_of_environment pymc nutpie arviz jupyter matplotlib openpyxl "python=3.10" -``` -3. Install PeakPerformance: -- __Recommended__: Clone the PeakPerformance repository, then open the command line, navigate to your local clone, activate the Python environment created in the previous step, and install PeakPerformance via -``` -pip install -e . -``` -- __Alternative a__: Activate the Python environment created in the previous step and install PeakPerformance via PyPI using -``` -pip install peak-performance -``` -- __Alternative b__: Download the latest Python wheel, then open the command line, navigate to the directory containing the wheel, activate the Python environment created above, and install PeakPerformance via -``` -pip install name_of_wheel.whl +mamba env create -f environment.yml ``` From 0d08bd7475e452a72cba81014b36201bd6d43677 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jochen=20Nie=C3=9Fer?= Date: Sun, 13 Oct 2024 16:29:37 +0200 Subject: [PATCH 5/6] add raw data and update .gitignore --- .gitignore | 1 + .../A1t1R1Part2_110_109.9_110.1.npy | Bin 0 -> 1712 bytes .../A2t2R1Part1_132_85.9_86.1.npy | Bin 0 -> 2032 bytes .../A1t1R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../A1t1R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../A1t1R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A1t1R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A1t1R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../A1t1R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../A1t1R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../A1t1R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../A1t1R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../A1t1R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../A2t2R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../A2t2R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../A2t2R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A2t2R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A2t2R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../A2t2R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../A2t2R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../A2t2R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../A2t2R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../A2t2R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../A3t3R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../A3t3R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../A3t3R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A3t3R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A3t3R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../A3t3R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../A3t3R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../A3t3R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../A3t3R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../A3t3R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../A4t4R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../A4t4R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../A4t4R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A4t4R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A4t4R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../A4t4R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../A4t4R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../A4t4R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../A4t4R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../A4t4R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../A5t5R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../A5t5R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../A5t5R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A5t5R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A5t5R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../A5t5R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../A5t5R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../A5t5R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../A5t5R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../A5t5R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../A6t6R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../A6t6R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../A6t6R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A6t6R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A6t6R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../A6t6R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../A6t6R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../A6t6R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../A6t6R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../A6t6R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../A7t7R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../A7t7R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../A7t7R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A7t7R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A7t7R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../A7t7R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../A7t7R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../A7t7R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../A7t7R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../A7t7R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../A8t8R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../A8t8R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../A8t8R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A8t8R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../A8t8R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../A8t8R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../A8t8R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../A8t8R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../A8t8R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../A8t8R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../B1t1R2Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../B1t1R2Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../B1t1R2Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../B1t1R2Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../B1t1R2Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../B1t1R2Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../B1t1R2Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../B1t1R2Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../B1t1R2Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../B1t1R2Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../B7t7R2Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../B7t7R2Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../B7t7R2Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../B7t7R2Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../B7t7R2Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../B7t7R2Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../B7t7R2Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../B7t7R2Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../B7t7R2Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../B7t7R2Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../B8t8R2Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../B8t8R2Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../B8t8R2Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../B8t8R2Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../B8t8R2Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../B8t8R2Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../B8t8R2Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../B8t8R2Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../B8t8R2Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../B8t8R2Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../C1t1R3Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../C1t1R3Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../C1t1R3Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../C1t1R3Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../C1t1R3Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../C1t1R3Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../C1t1R3Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../C1t1R3Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../C1t1R3Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../C1t1R3Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../C8t8R3Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../C8t8R3Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../C8t8R3Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../C8t8R3Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../C8t8R3Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../C8t8R3Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../C8t8R3Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../C8t8R3Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../C8t8R3Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../C8t8R3Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../D5t13R1Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../D5t13R1Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../D5t13R1Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../D5t13R1Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../D5t13R1Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../D5t13R1Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../D5t13R1Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../D5t13R1Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../D5t13R1Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../D5t13R1Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../E5t13R2Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../E5t13R2Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../E5t13R2Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../E5t13R2Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../E5t13R2Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../E5t13R2Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../E5t13R2Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../E5t13R2Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../E5t13R2Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../E5t13R2Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes .../F5t13R3Part1_23_85.8_86.2.npy | Bin 0 -> 1392 bytes .../F5t13R3Part1_24_86.8_87.2.npy | Bin 0 -> 1392 bytes .../F5t13R3Part1_7_83.8_84.2.npy | Bin 0 -> 1168 bytes .../F5t13R3Part1_8_83.8_84.2.npy | Bin 0 -> 1168 bytes .../F5t13R3Part1_8_84.8_85.2.npy | Bin 0 -> 1168 bytes .../F5t13R3Part2_14_43.9_44.3.npy | Bin 0 -> 816 bytes .../F5t13R3Part2_15_43.9_44.3.npy | Bin 0 -> 816 bytes .../F5t13R3Part2_17_45.9_46.3.npy | Bin 0 -> 816 bytes .../F5t13R3Part2_1_30.0_30.3.npy | Bin 0 -> 816 bytes .../F5t13R3Part2_3_31.0_31.3.npy | Bin 0 -> 816 bytes 163 files changed, 1 insertion(+) create mode 100644 docs/source/notebooks/paper raw data/exemplary results raw data/A1t1R1Part2_110_109.9_110.1.npy create mode 100644 docs/source/notebooks/paper raw data/exemplary results raw data/A2t2R1Part1_132_85.9_86.1.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_3_31.0_31.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_23_85.8_86.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_24_86.8_87.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_7_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_83.8_84.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_84.8_85.2.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_14_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_15_43.9_44.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_17_45.9_46.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_1_30.0_30.3.npy create mode 100644 docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_3_31.0_31.3.npy diff --git a/.gitignore b/.gitignore index 03a0001..38096fc 100644 --- a/.gitignore +++ b/.gitignore @@ -605,3 +605,4 @@ idata_summary_*.xlsx idata_* *Sandbox*.ipynb !/docs/source/notebooks/*.png +!/docs/source/notebooks/paper raw data/**/*.npy diff --git a/docs/source/notebooks/paper raw data/exemplary results raw data/A1t1R1Part2_110_109.9_110.1.npy b/docs/source/notebooks/paper raw data/exemplary results raw data/A1t1R1Part2_110_109.9_110.1.npy new file mode 100644 index 0000000000000000000000000000000000000000..6c91a49cfd9e70a0f07e72abea7d359a65db8aa3 GIT binary patch literal 1712 zcmbV~YfzL`7{_-bQIS>5(Lpn3)s+16h|#S)scq zpbcwYs8;ZTvWa(BZ8TfU9Yv57Q@0r>O%gApYo(2?rYW>^&N9P?zI49)=KtKzbI$W@ zh)arnd#+qoB>PaEq0dh@sU@YFW(w*^r8+auRAACBUYKXf(0AISv^n{DpFMw()~NUC z(c>bOq8J{jELQ&C6SQpq5#4f&fG=Na9yHP_K)G+);nOw&$^GYNW!nXu+;b@)*dgF) zzq>~dI0arDJpAEZ8hBRgH-v4sR%b}k=TX(0%j`uN0nE5YPCMZpyt!QRQGA;orr zn_pDdD;)&0FhG0CN#L8pz^q1sKPGKE*xOAIUVBu(uZ3V?&+~(4dkD_@#_-Tf@Iv4M z!{>5}+!}YFq@b|B==u6uC`HItZL(QK5f$)$AC-pU(B}Jf4TQoY_a#JAC^LtK^i80s zkX7z=q*9#fTtEZG*pA`P9~DyQ(}jao7K)3{55!KiQuNd{$Xjg``OhY9Sz)Kx<6Bp? zgJR&{XMb;UQp7I2u|2nuV&$p7=Ja<{+)pt+JlsMNcCxH4*+a2@LHpFFUJBX2C!TXY zr;anWyWO0|b?Sfkleyi*>96Z2uV`&Je)znQMprJQ z%*1sTW7j-#m^SnIr1AeX`|X)Lp8vm@Yd>Au?)k0^re%6gzDNH0U3vbvBpw&X$@jBs i?*2V`r@P;OuZ-7s@ps7<@i-l$c{bPnet3OfpZ@?w`q-iX literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/exemplary results raw data/A2t2R1Part1_132_85.9_86.1.npy b/docs/source/notebooks/paper raw data/exemplary results raw data/A2t2R1Part1_132_85.9_86.1.npy new file mode 100644 index 0000000000000000000000000000000000000000..c16ea5505d5f999f09e7f6e6590b4bfce18f2938 GIT binary patch literal 2032 zcmbVLdsvNk9M5VgSu!EpaCUC*d(L?em3mUNKAO>uGLw@?J)AU>o{nfbS_(_Loir)Z zu_wt!X)YCwteUWa-GYxv|?_1+xtC#_;>F=pXYn|e7?8eyKVNoSwSI#%+{DC zGE23(C2@?0h?yEWnc+lCRyQo79`|_DL*Y)zeZ4MT}wi2uy$^=hhC0M%2wam_2g2v^R z=O2bj@Y5~(v1j8Y7<=}PS4p-6BfWbK8}>`^-idc^ht=~uW1FSNH3_t1x-_HvdEV23F*06Qqc7Nv=Y!6xxGX*5eLH5hgDR zebLDCY+{nG+~9c|^(}{=OHuwRU2GU3gYB)*&!W{bST0ke5$Z1oKOCw|mJMKI5 zokSUeCuzcNHy8HTO3>Wk~*dEKLYf?mq-CQ4SQ9wo=(*?qNE zj&cN_u^4vOSB^l8h^Sv8M}_Qm>hAS&laoOw4V4rjG=9B;i#XlTuUmVH6%#ifLBbh=LG zLI(4nEQ)=4m_blf^v^BL4EQV9m*3-gzxcat8N|ZqwO~u+hb;1|qpp7H%HnyE`|ELm zEdFahibc>%2i@-}EPUgc#v{8};7`}lxyN`Oe}8W#y6)=RfWKF2yd7td5 zv~J^hRTbv<9w~6s@#MS)OC_d_%1$U2DdCY_bWZP~MB(a~$Me5X!thw{v`w-Js~6B2gjzA2;tY zo+_m1X5{q+tH8ges@7N)I$CAc73nHWsp?aum#Ejfuj)TgxF4;emgXGw67ukIr zQg;^rZGM_V;=m8l!SkLcEwAn6&=!|jTVSik`G-4g*RpDGtWk{+kX@E1=p7;Cz7_1C?E+d93fP-3;32X#gn7Aw--`6w2?MB)q0~n-=^Y@Q zk^+I}@|}PwMggyr?N=h$-lYN#p}0NO)lz7OruNO$m|eaBLM6JZ_cB~#pVe@F5g>3$kh9nx~h5ovU7fU+r6bHrI2|H7S{7%z*qCII+1%Ea5y@N1~FgzXq0>qs{b^rhX literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..2ba5cea1eaf11f003d70544bfe35cdce77718438 GIT binary patch literal 1392 zcmbV~|5MX-9LGnOxG)q`YF!dre)jn~2q;cO@LmO{Ofx1agch*aFi#!04YCl#34sba z@ymel8YYdYd@*&7BfKt@L)7Brx+BhH)oGI!Vpr-8kTzd${(;`VJns2=J)iIQyD#A(q|~3eqDbrpqGNM4Vq;mBNQwg)Yp9LrJ&H6)L~g5hi%bm&lE<;L31i+ zUD`@HTsav1NrYMs-D0>JR4j+Eu@KLlBXS7c6u!KtO%B1X2(z_M4!SE(zA64q4%+3x zvoa@rxy84cH(#XTQlsb7`B5}n2%We#rli4-tGP7HH4cNVga%#a>0FbA2JOwx3)yFB z$XeYuJMo$?7gf(o?$F?{+jjo@god`)96#KYFfdnK`Jgq1fxz8IllH&EK;F~EK-P%S znN-F=`ulr=WDN{B64ymco@1ch@zJiIZ!j>g@r@Jb|M2BP-~Q)N01MMKsulUKu#jz# zZC(}2Lb~VmE+&BI)^VOn|fF{z`~=3Im-7& zS;#26wI%Xd4pP0N-E&^$pyPIz>+TW`Y#IGAm)CM&9T+Na+QNaze~}6f9z{C6nO|~{ zv2gFA*iH^qH5T0qgB+|3{QA559uDk(7X98I$b(f=5!)i=!Sc)D%8Ga%yx;p@gop8E zhRH-74=P!5_{&v1C>zqYKWyRw7N~m$yLf1N9DTR#Cm!mzLtOQJUoL(A#!b%&@ZiVr z*5t(k+)Ig^mL&?H^kFJpfVXVH#^C}1mP-9UNr3uUf4OT<3UH`&BEH~~FPD4$!_`9q zjNTeAcdnfwm2 X&p7d^h#nyCSU0mj>03!(QVstBp}vm_ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..f8a995e43ce5cc0e7f2c598cd5051f2cb41980f7 GIT binary patch literal 1392 zcmbVJeN0t#7(Qg=#9T6US8iXIcD@e-7J0!Edx~+#DCnv~K~X+0aN)*wzR&x~vq;Jq?|3zXMf}yfGl^ano!_1@ z@l7mz)&b|DE*Abr+xLzB$YQp+d$eba#hqoRBR~3!Me_aqn|7|`5byGJZV2ZPJ9+fa z@B|Kr&%I#|%I0t=uEBMyg2Sws-q?4D!*qM$jn-}slV)#JWj_ZSlejtcCWrOj)FW&B zns0}6ez}Rq`@_+XPe=0DZ@0P6C-RtHV>+(dO14_ose4`qDFWBszgv~{2J zu-2|P8gfDN6;1p!Gs&ZI;`b*n|IMRzdw{1qM8MRGmz(!S3Ao-fHkF?w;Q98?mc-=? zu$p_fS@sBsXu8w4;|ivn&9RmC5;t@&Pg_k-dGL=2z(_~(}% z6A^vf^{`+S5g}CUc+f6FXsbVQ!zrTf?X82Sszs=C1zd|y#MsTX3A;{ezVw8ajh93W zT-p3<#4jQudxS@p21*c~v1Z+VLPCAW;+pScB&Y{h4Yh5Q;9bg!RW1o5+Bwo{C1_Xh zS=%J^j|cy@;u{IlS?y;~g5`yKIT!9o*u(eLe!5tOR~x@3R7T0_>vHyUGA{YMlVVe3 z^p~G*HM?a<+8Jiwkr8^uw{oyUMo99pyc4Hn?2f9eZy1tMdaU7E!ClRFAbl<_NWrFAYyMt^dR#U3ws0R?C~oLQ h#OaQV!3{s%$>_@%?>G7z_c!iIx{(i~ZZ`GF!9Q^2ezgDq literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..648dbf8f65ea038674c02b2793e0664e8bb6b5e2 GIT binary patch literal 1168 zcmbWz`%hD69LMpNI^zYGb52jsIbDWryih6ywW-xf$v$9IG;)cGV7wM7VPj6ydPOB2 zQ!$&jQV~I|8ta9dfFaf^qQ)O2i)d=ZI5B`s$D*@wNJ56o+UGfcfzL0myuW!)p65K? zjO_HRs1{ON)v8dZY z7CF|v>bfBot;O$4kLx%LR(5&I=5kp5VxDSS5r>K)3!m@d@G05%^U?qZ%ZmL+(8b}z zsgJ7ZDm8*PU-2P{{K49`^-GD=A;ORa(R@kood)o!sEUF*wG?CkJ!6=FXXiII5;vSq=k6gpZL;X z5j03BoL@P~ra}Im85fy64Ssvz6P5ckP`%k7_pU*MqWJJ11T{FD)_3v2kOpH8q)XRz z0#a+k7n&=e=I_V>0(!=JYf3!=7Gw=eu7Cjd`oD~8x&*vwUQ(5*5~1rz34b9X{5o1w zrij*QRa2zRA|`K+svdP*#H#X8?LeD|ipG~Wx?hVJ{%3yt<7f#M)@r+DmT)5bR9!=^ zgrM`l&8iX!NrA!mU;GlBPx@?I+9f=fGU^LL5+d6d3tDV1K4+R^)1s-;n>;m73-QHp zy>6ctipY9aN$vJg|E#9&JVQ-AO;yMpI!BxFQ(NS=)YGo6rTS{99~!8SWDA>VH?>eZ zTdB^DP=%D7c z6WvSh(|&u0_JlUtz1OHMH>g`>nX9xH$!!hLPL$uN>_VE%F(h*Nb~lq(snsya#HH8oTYfCRCN`0Ux@P4^`yS3t6Y{(x@-|zk7Pv1YD*WRDc^Z7o{K9wmeHQLpF zBAcjCX)s##7Udj;a&FEnrAnd9FHzIaliCWt{wHj_46&ES@!;7NpzLI0!m9jw40HJ~+dq=P}(l)5yJlfgi4 z_|p$x8B8sezkbGvQQ_R3R2MHslgqTaS}#WQwDzZ`?P6?9Zg^dKO^lZE=}Wf15@Xcm z5S?LA46}P*V```b7X$O(AW?#G%R84unU6}qIzUM0NS z6ePo`{4M>f)H3+hwx=iQWSHI7U{VV*RE>}7oa~UHJ$Axprdfu0J4@F3d1SDi^bT+= zx;nilo&`JT{M@K#v1?vT#$7v$o9SU@$2Arq=gYc|y<(Aif5(@iK^FIheaf(g$}uqU zxj8dY4xJ&cd#Oo|iainTxJo&GHB@A(YUPOjDCF_oa-3B5b_a~$(6Xq*{VkG1tbP8v z9xVs6BWi1_jYC`SiT4lBa0m)0{d%RIL&B78!%n$4T*>X)x<80VPf2r;P0d5&jPc~? zcoe(B{8tD(`cwxk3mrVdk_-1nHS;)7{>d}Z!=t|Xx&K%`7?JKc>+kqrWCcbRyY#_m zTvj>IVGo9A=q#Ylq7D_kkAJg<_LHa?)XCHos&DS!?3-Io-}B{cl7(DiRS_}Z0CDVD zV#NjG%NnBe&X9upA@NHisn@g&i6bva9z*^9jAW*Pc>FHWbe(vc-oNoY$=bujsxl&9 zOcbm{cRulb9#Lc@J}?l44b&Xkr&;8a?nhWh`@X%bp*fAZk|^kD_Vu%A_U)N|U$lwT Vwe-J)0+Ju>A^s?$(*0ht;|~}{I4J-C literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..52f52ce564bf3339cd065a51726edc3598fa7834 GIT binary patch literal 1168 zcmbWzT}+c#90u@$(=ape?Z?~qWooD*DX=<*DWW3bF-|}dusRI2qJVrTYALo@KN#67 zA`C?|beV!iYhtPib8Nb0L5(mrHlf565&?%mBak!a zjxA$*x^72+#40IQ7Zh6Z&FXb3_4=YUYK=-=WHOhT^Gb3|=7Pd^eRAGGOQFBF?8_@H z^ykP`8rAB!D2=K@^?zrfa?|pZ^biIadl>y%ErXvO$Nr2mFqr;r?;tBM$PDUDS>Rw$ z7tyBoIT_3pM?QS^lEEi6$|sLFDH@z#rM4wX(d{wrXwH`+cICjsOSMw$PwRYA(;|hd z{?pAzA4~D!cS{Tfvr?G6r@Ati$#5gM>@TFquxQ)x=2)W)$tI^^sZECO?`XS&TVKZ{;_T9%4In^UPor1>yTqs z#u>{!a_q?xo*oEMpsB26I!miSKk1Elqo*WID&%yQi zp!ZcYhxpnJxf41LCP&PnUMq+G$&2n^FLMY9s(E>zJL7ys1|C(O@OfVdJf<{f%^Mv&!qdu6#`N$wQ$Owt^YQ3t?wj`!ABt#ig5{sY zP~-(iS9$V7(Y4h!Gguo6i8vWlJvEg&*YAA)T*xI^D5Cwo|9Ig2oNJ-?4^ru#o%W!5 zzb5BQ6Y*v}N({df<9{KZZXvF@PE=ea-n>B6+lcGW6H9A|-fE(~l3Gqg1<`ec=q@AX()`0Q tlF!rLPIb@yQ!zQ0n2Dd!-fkq>eVC}D3iQ80-)X0N?!Dw*JJtXH{{n8BN_7AL literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..dfd1ff5aa503fe56552f45515abb893d1e9e2323 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=(z|&vHzi~oHU-c0cTSXXcz^P+)7q6X4mu9+OvOLR zI9T=1Jyl~R>rlpeV(+siS%=NlpEd-XmUZ~>QD(_5VL1og4EO0OF>(%B_X@lEmdH6Q z3z<{<f0YvmpECM@`2cud~GwE5{*Uv>qDkbPC}o3s@iihlCH z-0rX7Fwtb`qc_D04&rzItdXCg;9w>`X<5h~pt>OS1)UER9EyAQ%-qMK=rHj_;N;I5 ziVho?pZ93^Dmt9At7(fZRCEY^b~#|eR7Hnk#Z0fGI~5%!#r$*rbr+~^`ea*uCMAdS zmo&^%)RY|F^6oR3>80er;~A`VE>Fo}(uY-F7$z$@Y}5vNcso#C+STV-x0M{;EzEj2 z|36UO-T$|)C@VW?OH94O>7ncZ(q@;V>~P^%ee{6 z3j9@eU;u%JKqwsrr86NkLo}2Qh0+mFd6>FnC_e!zAB4tFLKSy_s%waas)OohfSP+C z5h5N?2BB}XL1>m)5ISougf83$p_4a3=yl5>bj<_^ZO{Uxiy*WE%s<%>{(&s0cp8Le fNQKZ1Fn{Gh#bN%3$~&OB7al%Pbuj-i#5n)}ACTIB literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..7f137f167778538e2b85f830dab710d043f80c3e GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMVwP4o8lcZ!El27VS`;#Q&u)sd5Gi|ku!`-bdH5We1 zIJ{;t5j3-rbx^O4V_DE5>yYxX<2&bBS%-z`n_m@+$~oM-3k0!p4$>hU7u}c1IfS1w zI=ItmWnCeb}p z0u&rF^FOqnEKzXyAm$P9XNH0UU(j7o!@UX)y1hltX%B(wPO#g~W>s{^VxDVuK~vG8 z)6U3%)lbo3S>Mq@Tz|E}Wu$;H# zmV>&I!%+{;E2Z8_4o{lron4i$^V4J;n6%r)ZmyGYuwS^5)A_rM zgYSogc`NK?9lFxGCkl1QIvl&RwWa2QtOIlKgYst*at;nBxv~QiobQ*gM)#MveP7^u#6UULY$qJwm$ac!rz zqJ!0z6J`7S6&=Fg#}<4pR&=;OZL5{q3`K{(7rjiP_b58Z@IKI;@BpaJqg4GUi;_cR zGne8o4JC)NeeDU6Z>Rkhw^7Xs%^F_J4{pTD=oYYR0j;k zW&f2O7{I^-N?Sl_h$sVt3X~6{amk~L!}P<%VKgCgVDd0J2x`A0l=g$tQ1><@L--AW gXzI|_!_0%Z14a|_H%uKm?F6+CW-g3ofC38#0B8EVp#T5? literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..13543b270a6f17724a4fa2f32e9b49bf43a6efca GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=Kj&oX``M)&EM47;e)>x}xJ~)S7C%GEp_xnZ*NF#G z4hI^%-x_I3JN*4t`e06>w1ZXdg3D~Xq#ep0pE_2+B;&9p^6So9UNQ~`S1j>!m@MP) zPwu?qs@pOS)>D6)h^WXqRC23m)aA%JY;E+Dez8T?;nVjDzM#Ld4*GeE8TYu#IoRwC znx@z%=TK!_+u40h&SBfi%lAfYNbL8m2A+hq@p%eMwM0Oxy{|hnWvE2WoymIYjMm2nVrRdVV&sKBJx@7@c`JYx zPLy-FBezQI-%U9O$*EU3GnC{VLb?C{xtJyIFsV`VgY{;4hx0(|mj0G^U^BOW&90>2 z(0gy%Rx39Jht-lg>+`b|98QHCT(P82!Qn-J*rJ=86dc%2zn;x^UBN+>t#PXJZv_Wu zN3s42c}0g)FLEPSJ1aW8RAvr-kgn*!9zVlJv`5iFb(XH1*9Jugm#c^D>#ry}Bnd=V zZuz0;(CGcv=%tL31N&!}ztWCM4r+S0z6GQzIk;rze`xJga!6jn@@m&wC5OiQGatXd WsN}FfO8>6PHzfy#Aq7;1jC%nU(yWI7 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..dfb433e427f73196ae1f63773d2cc3cb1a054df6 GIT binary patch literal 1392 zcmbV}@l%s^9LHzaV$~^1;=Jx~7ki#(&+}kM3vMwmKNu-PlzA!4Fkq)!JEO^Mpwy5< zG#f*K;c7rb;3TDzO>zlhhnSKc#yJi&&bkxG&^*aS9cmEv*!ROf(D#?ueLkP}`~7^M z&-d_#&Fi&W=81NRY|M6pb(@7z%a}ytYfQ9^G48Y!SoG$cotEu}C;c`0JgY(ITTS|W zgHS7!(K1y$8!g)-`@iSe-r28hlVNh`-hICRDkq0;f>)QfCCg#S^`_PKY&k4Q_qhy3 zaxll1c0i3B3~iN?$P;qNrW>-Rdj;Qf=923-1>gSSz^O-a@c!d?$r(<;f?u-U%v(W$ zcIh-rP}vch@TEF+w~C( zbtC5!H#V~1+!CmK`HbLuy}4a7DEK;jA-C_bFdEan`J$MEq=>4bMi~d{s)oK|H3#(t z=84Qr95^S6SH+n*a2P9`i|riTUANUg(agc<#U0`+XF0gB@&jG#HNh8^YTI|81EojT zpDW>^W-l8|h~mNVw`%pWl{}PL*SMxKco@?y?HI`C;l=^n**K1MixoX~~y z0`!$)o(%ujgx^a>_Tb)i$j&N~BgH+p;vRHZ%W%J@xjE`{4-lUn-y;llp}6m!ax%Yz XK0pR>9z-9YE`aYhjJg!m)!N}-!`_p3 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..0cc6d6b432475f81efddc76324be99d933ec0dfa GIT binary patch literal 1392 zcmbVKeN2>f96zYmlrpK7A&Pg~^ZuMcY8)EmMR^4?=BZk@vO?&9R51ahi^Ur7Bm(Tb6`F?(n zf6=mqc`FihYjs}UYI7I6_*r^ByCjP@>iH6f%i}7lEO5B2w&DD|qH?!Q&AUsBs%&a3 zOf%|DGex6*qyGPXV-L@Kkaj7VL0$7x&PJKR4mtIF?HdgG$KQ%r3m8OehfH&;8C*{s zvu%o>!E3R;#-Tg#K4!;{Z+;DETWSeV)I{Oaigwf z7B`>8>k)ZMp)9;&=&l3Grr@Ys6ihn|}0Jd}#x#Dax9)5J@*B>{&K1o2; z?bDm|nF6l#ZaH#qv4GGL|Lxw@0z{Mbg)^H47*4rLcYh=xMXYJ7Y*l&V@_&5uiU8;E z0XJ1%`OEo%szG_O~e=GMSr$ui7@0&N!gz-Vq(Ws`Gg;*x8r8w?Vj?TS^bcvXU{>Fll< z%OsQu-~5#9kYG8|J>!oLC3N~4mUkVM(Dtz9wQ`k+JgRZqwD}GCuQL-Z|-%G5i~C-!9|1!8w;oj>|~0=NWR($$0D+ zv)j-oqd1gacYjcZZunCian!j8D+x>E2q)p{M`IoJWvq$km8v-EM)7oZ%F}$UPaz(P zsZM<(dTjB0aNVQzfSY1-9HG@|ub%WO<-}hVM}_ui^TX5^Bpn(CDAw*%N@yR=SI7tL zu3#DIpm_oEMIoKqT&$-#&`81&YSDJqg{0p=5dfEU0 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..052c26df3ec37cacba170efce533a598c5acf34a GIT binary patch literal 1168 zcmbWyTTBya7zW^C6Ba0k>0zc*K&ZNFK|!JJA|lG`0b({=a1F*2yyl=jLCf}c_ z+jU!adWkHeW14JJ(O$DAL9I#5iPuD_H8}<5!)D{bi~@7E$f^oh-V}`G!3iV=;Ywc18ae7CKkvrEB3F z$^z1E)FyNI@OyvQseBGg3ffm5s^L)ecTlsjkHhfj{0-d%hh^-(@bzLPjN0un%OaI{ zJ;C9Q)d#gm=OL``8;Ll6LIsx#!QLyy8mzc;o~ z&m-A=ZgmL{Yp`GM(N-Q)dx{q2IeCO0cmKh~bzMzsrm7WQzK_AwWzh3BXbtEqeqbyDcFg}u$^Y0vycjS+ler#ZfpXwwW+>cdwvXOiBr>I#ES=hA}&pdAo|Tk5pQp!IXHST$z{b#;#NrjF?XF8 zvAgsm`F`fcw?t9O1kv&ADbeQbq`hRAdTEfFf0O#Ghg#S{9lS~vwNV?dPz{%6+x_kKw7OXtgv|MNWO+;gr=yG5f* zpT=|Wj>t33c9TuMMkZHUR?8JKxn-{{$7bAP*lWu)Pt+5QS$6Yy-EKARGmqz`s}!=> zm}LrCp6q|utn`|g#<*}k>ia8{ifBH9VZ|DWo)3d|`2I{MALn*=HGZw)W7MlrbwA}J zwlPloVvr9vRrTNzL!l+g^{iG!L1`aRRhTH`l=Nwf3MpKxZ8JE$6zHM&CQB=YO>jg-z8)#aPEkNPRHyyKG0t|?gbR)L~kVnTFd*29fI``u9 zwon>RN{in;j-(OwYFJmNqhSel8810#OkC$oIgRP*%FaALjcj*S@}6EAm3Lh`^x;Cx z85?=AF}}cmFM~pSTojVp!H6J> zA2bD2A{6B7o9~-MsK1=lRZ}R!lAar>WnK{sp`OhARuRrcoI0@orwF6w@e4(W5p%rz zn`XTj?gp)SZMGOKT}nr!OAO_*>h5`W#IPrx9iH)4jP{~m=3poTLCq(}`$z_d`_n!& z>lpaL5`y&(22$-c%k^>w$-6HcEcY|Gs>JhsWwivQEn(J$0SOu>#)l-B_?@GS6j`a8fAp!OXg+`2+HR6!c3t(M zhC(TL|6FRezMA!)L*vECeJ(F%_i;{D=lb0F+#HwHlg{DhC(G@dN^YL(bD29oiTw_% z(?qhzMx5y+es>W|Du@}C#C#ud$z9^-dw+B){3MS(BpOMb=e|jD$rYl~LwsFIw4NY( ijuM?&MBWZIXZ$U18{6mJp<%O{m3udrIkjwmF@6JZDlHuV literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..9ec74ef792a324bb320b2d47619a8675795909e7 GIT binary patch literal 1168 zcmbWzYe-XJ7zgl$7MWo?JKN3{LbIZ!h+R;L+~TiNn&Fz7lq=FTw-hyPv!#`^h=@g{ zwQh!XS0sy-AzB!gND+BW1IfyJnhL3uD>O~_p7S9;MbDQX|K~jK!}}haDmGFbH;-rL z9hE2QO**4|qfD+aY>@lPVrJ^s2;wd@b%}z;dU-kqTwT6HD0yQ!pD`A-umxFd`#IRm3?pd2&@lM zHIMR9NEJPQ$xvwZvo$hig+S|1vIAI8N(UMs1c$xVMnywB1Csih>k86BBG}BolBh%Cpz+bzKsg;b%jezCnJI^cvM%X z6yfwKO-q$dgz7uty(Lx=R`oxQ$+wFT?|Lio)O!)Gc%46Va6*JB{mg~D#0WUq_aib) zjKbF{{iZZAT6+~{ADb8o@8Z6tPsK28xir3@LyYz_zx57R27;0ybB_;$Bf~qsw5S=B zxrI8a%?zZf2Zl!l45Cu5A14OF;Fovn=elAEF1NZREw7WHes+9Jg4y3W#YmAFv;EhgQi_(Vl}YV7DcsA8vtL`K z;5lmpYcT6d)^JwtJ137VE_2SE51DhG+xxHcvFv$n54WF_>#Nu~&bjBfel(f0M6vUG z|JI@-8OMl^F0%P9@mjf4OVtaa@(t-fX>p3Mc9Ls9I(;$R#rlbOzs)H;o1F5dYl#;t vh^}^G!yV$DYs6i7#I;r;?>G_J#HK7ZrxGp6tOi#0UA*0FP9XC1to!f>ube$x literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..0e172154fba5ef48a37fddaf6862db63c950c5bd GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV*KMEwUXhS-Xws4UXqPDCuz!)qlNBpv9R5laUl;l$ z<6zZ4_f(CQtV0>=iM`L7WF0nFf7%dmTGrvfsfDiFgykImIh?Ujh>>%!-u_LyYl)mg zxvrx8mp5__TNZl@#hJ=Ge3S(0td)1ro3P-A;W2rKdGD7W^JZ6Y*rR28pg~)~;dbh! zom>4C9DXiH-~6gr!9o1apEdF`6dcUNCoK!vqu>w{q`si@0Z`q~x~x4ciVnX_L{dI# zC^|?Mtc+FjRdg_0Z5JM0sOS*->~g?_sfrH8ikV(VcPcteiuvdK>n>0oOBkOnlahnE z{cH9lH6@48ss_gCUP=xnTSb4L&Qo%j^kLN(hRI3}8?_zYnQm8dIG=X)dDd+u2cWJ^ zbN>U?c^+DQNmOWLM_y=+!v_d9?Zb*jE3^4b@+?xaucYw+_ghSN_LdBu( lgX@R-gCQFt&j9lmR3FUz2We1qp!yk7q3WUG0Sh0Xy#TK2*!KVc literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..41fc4a7b02b92be3e63a2c379a6c6b8ee0cf43c7 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=Z`xfheNr+G#*4O?|45Q?D3G|Xm9$#MVO<}m+?mfZ z4zF2E1kG$@9n`DiSQfO%I;4E;_|AD&)}heBq9ucP6W%!=?Oq_H&ww z4j)&2VPN)Cbl`v1`OCaW(Lqm9{!7j@MF*dlEpHd@Qgq0k?)m)MJ)k>+GJ-wvZTgk!qL&Cfj`AQDi+TW(%ovh^0mDW8`Xor%+@`VcB?st?N^gSy= zs~D6Wd|P<^*Q+QyW8U|fbwB9OdZThm^v7rSlR+=F0uM? MsY4fsnTy*U0F;ZZP5=M^ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..193c1f671eef262197914bb9474a32161376a15e GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=Nb&6#8RTRfruIHOl9eXoaG9BB$CY(54gytXtL?ta zIQV`@n76`S)}bq{d!kT>ti!Q8TU%-_$U0onPL+HlA?F~tsGr9tQO?0nV%PtzE9D%z z`<{G~|0L&doQ3~cr0H6K9wFV+DuQRS6+M?1~P}Prv%M zYb!b|Qs{QyrkW3i&c{b^gR)Mh9;{JrR961_*!L5BB%?t}-54ptte>PK0W z91gxe^YOcelEZziq}MvWN)G>0zduPVRC163SvXb6!TOHkjng}o9KhjmPsyP?$mg^v zld{9VpNpqvs3|+hnp*bH^-^}QE;!e5DNorUYISlG`($N@@@GG)ZMG{rOjGPDExfJl zuq8%0f7yR!2L>>3g3>Bb+5$?$#2L^4OddwV)WP^L8fG3$9>#|m=j#ArIik@fP(HeP qh-wA~bn{_+m^_R|*AL^v)Wc|)IE;33fS3T2htV)`Tnl{vBwtx=cvJl-PfaOlF{^}c^)9sav%EZ*)a=U}rp zXqsZ5oI{myZD;p2Ifrd4m)CrilXp1$BTO(lUEYBqzmetWdU*%ir>no~{g8LqtD9Zw zqoCk$Cj%(sqTujr@zjiM843=P_qCE<_b52bZ)?(#+o<5M@1VF^@KvC?KWpSWekwTp zHg}TTE34=rS$tjSlcS=8`MMk)^)y9?u$PQ%FoO#Xah<(YOR2dUWxCI43|Iapphnrm`F z$sru*>dY@n4h&#m0ihdWp?nW09f!t`hVo%_D3lM?&kzCO2NXi+1w|0Lp$a9G-slZMS|R z<)D;PQMFV@+QDGAIzM-*v_r085L4-1X@^zIYrfuNm2r3`yZnWRpNs=g*X>QyWE>K> z{+yG!FXJ$`LG4hRx~#+M^H;;(Ca` z?Tz>{c}0g)FLEPSJ1aW8RAvr-kgn*!9zVlJv`5iFb(XH1*9Jw0HIA(UwO14!PS;3r zZTbOJw|zbHa~UNE_RlVVr5%+V)bwtB3rJORaLLU7(Aufwki3ND)vmQl4zIjpw!FQl a2z*C;~+!*v6RR<}S! zpp{s_LfPUJA3Tgqoezu;rcs$i(4aF~@Btd!I>K}gM6dgP`VZ{>a&pe+ob$c+`??>t2}*f)`q;bhPQgWJ}2KG>G>x8MuWsT zRir{4%||LWEB@~@@pHTP;K+Lvw10iB^SVI6&)(~^n&K#!eybt2B$I+E$t_g|GX)ba zpLrZ>r@+uuE)PFUK_*j|KH4GWCgm32x-aFn7rBqVq@ekgb+#>-hA9uym*mW$AuwZ| zL%WoQ@gDONMo&ZLN$uo!3Ta54r^~!wMZ>W$e(T9*8k%kDZpURB_DzhZ3;Ly;H)L7L z7!9vYbnToF2C`N>KOLlGAoWtfyN|UDBtx+NLN)^}^uulSn;Fp0iW0gt4$R>9_3tDi-#uT;E#~S#TX{>di8; zAhQ*ZYPPWOLcTL8td<3@WsmFcqb#JDa?ZOurCi^))0zjQ+^@^krG6YVELvS^oXLUX zgz5K>qd0h37d;-H%)x)JZ{lE}BK61H77nxpY)6}u1Nb8<)P79Lbq8v`baPOXIK3?4 zDF>Au5%<^t9{xHwBJ&UD;Yo!5CmuBqT6s^wsg*n|w)9`BUe81HsCUMu?|7*3oQqlM z;=z{YE}#1g52ZKmc_wvBx#KPV14BIYDce_F3>08-NQK#@5I|E=ccn-pz=uJHKUn># z0JdjEi=uJ`uo`#R-Y*g0>GF)WXFmwgcX3_d)l&l8S@?~v@urlENGRO)rvNIau5*oC z1p8Lr`%#1l)_>KpGZuG8^U=t&PTAXaX0a2)DRr0CfHj` za18azI>G}GBOQb{px=z#iM=_<@8Y}-dwS|gZg&I0^FI-EHWC~@L@)+<>;b|B^qs(5 zoRjD}e1F*jl+uvJf{r(jkqVuwO5sP3Dnt5nVvhkxWW!14;7BS6!plOHi^S!Nqd;fX%e4gj?`F@_~ zd7HDhZ_U}cfUDyCqTS&u@`~&AVtR3!Xwr+tE^npRT2bKg+8y)wW^0+x5y5>+nB{;X4x+xdjXH>#yQKz8Xi|; zVh^lo=J7;$vTLr3huIpwJAOXG+x)5F%oLA9gJ1gIp5xJwHugpN!$wT6>I`pr#E5IH zJ?n)nMvN^z_vS*I5$0QmPhIsJkzCQSpufe4L)$9(cTO46aOt(G%AgUoSxpyme~j=H z+jY}FMvQm3GvZbVurxkZ7)lY49Fx;M{EPt6pTDThF5r#AWYND@K<#8k&GSbDROdZ= zF|}L3xMkJMvP%LkpH?vw5|Gk*#}>R7;Vq5tIj$3-->+L-|EP#S`Ok8}RuR?HfBDm2 z5;1u(`2LDI5tlP3W`BQIL~vkw<2N6RkUM%EAAKF+tvug*AS^=H@@=d$MncWY$4r}6 zN^svivsZ7HFgj7+e)~BI!QAGX6D1OcM%uGJ*(bqp+Usn3Pl8Ua>#OLE@E*$h{^?N( zp7{Z;ODN%7b&DR5F%o+6=(W`{KF`noqd!fCA#;uHNS=(ufwiT(%VZ>&(+BbzWO$O6 zOs#E`vFmWsy7)dB)+I`P_==3-8*|6c{wkxdH1_Yd#R?L0ze{?>pkVn(xP0dZ1#z4H z95ioNuuHn|LxM|zt$pmV-}WmQZs^=G@_~ZBdp##Q`xSKWId{8$EW*ogSzS1*ApZU# zRLrkGkyl|$-50u*q2k4pO_nP=RD9NKd*P%<#r$t{@SuthU$4FEJfilSh0>zx}axci?&i*4Tj=7AC|4-^w#O0hzVD5IS5s2*@>_|R@GvYc}gZY7-b z!Su;Tpo;p+sgKodTF!K4-INzmWPI|a_h>jMa?FoU!vn;R`XnAIwfYdv#dJ8DFREvw zKJppGX+IqC-Fv8y-q(}RDCr}jp${#7nbJx!YqR}>*n4&?J{JST{+f1 zAj4w^KixPZgV&o`ewC4O#SPPL?+FVEod`QMuXyDE6Z`nE-6T6xs}B2=$+^61Z(Hm(@s@nc6p zphgr>_#|_VB3{6&kiKeZwt(QposA#O0*d#92Mx6g=s4*&_vwHDe!zI5cSb<+*wzcJ zks_`ycLvobiuka;YwnR9B7UojI$2yJqUw5xMQ<1JX{t2%*Fh0lVSD7yQYG}d^rhNp zB_4YoyiN(P+BTbau@c)|o);_8G$D;0b|~Q;x3g(rREdO*o3GstRH3DzPi@nw@TRLX z_I!p4iSFlCSEx`P=HFRrRbga{DJtKoLPVMS3u7uAayXk4#ZdGNx(~#MVxFh6Ly?)l zEek#t3W=w1n%ZAWO|7HOK120ong5gKUet;&wY8Us|NCi9A0~45$BB7ivsOvmwRue8$vi*ad-)b04c@y+QPZ(%B zHyFFe8C0<~ckb~ldLv7oUe~kGWl!qQ+gKbb{$xB^$fB>;+?MNQ!F}EI%=v;vuC_ip zm+Ye||fM%&MBi10x)++%DN;36ml8 z_hff`lnk*8M*FoE8R~Z@?a+8+=+BR_akVnUx7R-p>5$?0+wy@g<1&0)8e)FO%c0&h zZtKv?aiYM|(`u8$cgZkVS18Bw;Tz_1uN-OOYJ0&8IUX7$y@!9wG35vhv{(WA)xZaF z3RFEdI-)Zb5QjDgPNaY?ymn}QivpK3=Oxd5t3cn$Uk<;RhqP|gJ+P8T?&qWrJtiKF zl32gb%|m6p=4`0sk+{F&NM$>ZTi%f2QzJaaI>!AuVM?U1yY}vjQlcnwYfiF7i3wNZ z@Mez^k;T>DSJf&}+AB$4(xF7>boy5%rq4OWtB_&d{^OHgg`Ts`>3ud8<~G$HeO#!5 z=GJp2LKjV+o0 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..279d505446d692245320592348f01e44657fa30d GIT binary patch literal 1168 zcmbWzdq`7J90%}QuE-4A-Q9LK30eiMLZpX|sI9&wl?ATZ5_3jw?xB&IY^Bo>R`jw5 z71G1dw1*;DSc0Tcxuge_E6oX!J=84i0cnIYGHdRf5%_24pAX;fIrpA>f5qCwcwO=Y zCYRZxv{)TxyKltp47SVal=k^Ss583RTSf zNJXLIf7jIH>KM=Ra3Pw$UQkCy3*ier9xpQpk*XcKGsPvunH{~JAC*Fk*2Zf-JQYIa zS*~px6rzl+ynCN#;f*SOc3s0l?HJKqFtgZo^0W3x5sOZ*{$4>X3-0@>=e7qJPXA9y}9ON7Rs$t#7$A`D35bR!KSD5F)T{2Ft_ifzNA)yR6&L1K!*em<3hc=e@QTE^?%STDJ)n0 z7p#+_?6KCmB1;OvvJ#t~Re#BSzko-<*UcZ> zbv)`qV|`7zJmlJIwi~595_X)=D{ba+t2U(XSU-<}mO-C0T!thzC4GCe3@4)2I};5u z4B6}Y*0^MdI$1His7i*@-q4KMEi!nSkB>}!x;;O7&!;)?ccP!mdH7j z>nh5Bc_ZhrWwEzVoTbKo;#$aM-)=WkLG`pt_%RS$kL%9e$aJq#MYD*v92~>CDfXI)#Ky@r(e7a0Z4(9f+ z*^|_i973xa7^izFIh1S_{e3!5$zjrmRbLn;D>+EbVA^lI9jNZ|^c@+ul^lS&HqHGH zROfkU^(AFxhsiDBOW8e?9X9TNGtVYR+2O*k#uCXH0xsQ!nqZ;oj~C&yLGGlxcm=)ZkEXn3~#=9IKH;xXjG6x#=xsf{q}W@@!S_SLycPLM4%yn@rr({cV_oau2%snDzhwR-CSG literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..9c1fe10be3029b6b90afba663392372898165d58 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=Nb&6#8RTRfruIHOl9eXoaG9BB$CY(54gytXtL?ta zIQV`@n76`S)*;GXz?iQ?)?wOKE47LXvJO|YQzais$TgVxElymTt*!6$wN;!w_ zz9*mLKgl^9XW@U=X(jJ)HF#gu`zCn@p;Iq%BTvgas4wW;@Q_o%!R@x(Dlt6;hZM0b zi@k#s9GU|?=QflnI4tbBH*M=I1&95|izmF=2UM4TI!gAjfE~vSkd7=$YC=S9sXYQGKt=!=+IKR=wI&xpt>#QKMt`dIUIa{ z=Hqt_C5QW3Nw0N$l^p)1et(i!sN^66vT&-BgY_N78>e>y)inb(-c@pVu#az!F_W^x zzn_bzW~eDU$eLRA&-GGvur4^)aVbyPA!>DU6Z>Rkhw^7Xs%^F_JN)kraLd09RCn^J z{gVI64h&$R0;Qdxv;~xgi4#jRpaGaZbn`sW>_L}@@nOcfL)13}LTHBsC_fxkoB^ti l!2}}CfNl=VJusR93SfLEs6H4UorakQQwP<~08@wH0|4>_!ZROxo?&(NP;v+d zx;pcVk^=)6ghFWxG=4Oc?}SFjLHQ9-Is=XG1m(lbh0(rH@gOMe2ca91q5NzJ{h%B| zYqUVa9JZaiq+$L< z%HgxiU+IN9(hdf@)%m$gr5$n&gP2P9N;|AtUi0-HtBk`l+2t=h{A3(}x^8cpCgWiE zxS>GezKla&vDLm1JxBdr#b#sa9FeU zMtqsPqQj{dKnt7|9bPIk2R}$xbjUv)B`e&c=+MXZLCj-=qQe@;R)N|piVml1q_{Ty z0IJ)*p82_qk^?&^ARLt()bwtB3rJORSbNp*U~{LE!)bxzyLPNqa(Lw(v*qnYB?r#- Sk872_DLF6>F^LQf6GzxCdk+7=?k}Hwzvq0P^Ss=X zTes=rKVBmFOp?p)(OY+0SdD@WH-xe(1#8%E$+l#e()L^S=okDCGqS9D(YG2i%z9CC z!77D%Bd<~%QvBcVHShez+-W}wZXE2o|DBS8fE346QxpYj9@IwKQYly!=PuXhP+$rv z@PLB?{e==)fQy3Ljx^P*SIn(2#mApa2s$X}0khP8m>8{KQ z?ME~iBEmYT3>s29v@2i9rJ>XL_Ip2-({NeNAMR+Tp}9;wP|-t!??Im#%cz)}@{f+6 z6LUl3nSwt9X20LHBD`&xd)gJOqFbn5`onIElvanokZcH(- zASuiLTT{ToU$PTA`DqrCpQf0fwXqOy%(~TgpM@6PrpM>U#oX;J>SIedsNKBdm|-mk z5?XLYY~WzFdgFXR90&hx-^fAyoZR|DAqUz6thfCP2aP*kjF(;(a|2S%zCI4BV%HSM zOo+MlW6kt39{y~4E?FADLxSBK__LY^t!(hXwFDj_3P1@+va-tH- zCi6CLFezdBd)+5~HYH4K+0{N-r-Wa+Go|;gDIu~cjBgkcbAd6rN1lo~pS3lqG65Wi z`Kho#0g7I#Bj4I2z#k8N^v{z77~TG+r{65VkNvdFT_ix5XGSQh7a%z3)%?9T#N5IU zH7vmKl1J0;P75Ge_y)@eqa1|MsB=n)HlH9&w-ee?Z^ybH_S;U9`byNjxSk4iI#PnU zQ0%{1L~_5C5)Nbi3eJhfxh>e&g7w73d0&xSC9ZGA{%)Lq6WNV@;T5Dm^lQR;WVVy& z>otV$R1*eO5gJb+D+znc3ER=Pp})G0_%2*;q@L*T2ExKd!eSTU*g3)x%t_A@9gFjO zaom1&n9d#|a~VI>oNmT(-kr!Dp7%ovF?VDG z8Eeu`4s2;;Dzl*|$sA~T!!0|ofSL(5lhqDbqB+w3Ak$v@zVB^a|MmX!+2?uQ&+~kq z=Y0dOuUlQPA&#ryszj^JyV)aV>BJZ9OGKkiw7Wb$Psz4om&aU{ z5iTt<>P$;zqwXEu|2?w~Eq##IKZi%K<572;%Hxlw>w(%8JZ>jVM6AU;M(d_buT=8L zbMWyXrBVQ(d zl-VKRswwq$(q*C}FcA@u5xj2+KNKK7me6@@zKGhpKVGfQ6yY!bRW4pFVx;KYYgt=F z4EKc(&8rqMkUMne?uQ~Wl;d*;&WMmdJ!?Dht%$n4R1A zr!AH+IP~5pf96XF7Y2SG+A2XdS)V+!M}q#8r}Tq^5~>?>>YZnaF0ttPtAi5U(*xWj zI_Gmm@iS!fMwTDBktRdwOS;s(M20?h!TjbT8OdKPbnI}-*m?ND`vo;J+$pn17PiPJ z+n=&1p_}L`C)SRBFQaF2>e$6wGM*VCgFK=jx$s)bF1>=sd&kQ+EK}fV?`n8{oq{sy z>!0Vi6!gtLFyq!<1wA#b>w6C?=ziFFy!E_-ln8l|ABgVF#x(OCqRX*oFPo*pao!hr zidSKIVNc}VODZlVubnx#Ud6e9W#dV=is^4uU$0{BWOl#(sEPzffj;*F(GgfMtYULG zJ$Qdo1^3UfXc*d|q2Hw;=b+rHA>5R2*U(In+otiTeyhe=+|Rh@-?|XxTq(V8qZr$7 zlNQ&}{v7j3`$v7*wR@p0v<|KBr}vl-zn|u59gg|fP4$%HEsaO_!QynD0bfj>&H<+u z2g}Fo$y}-BTdFh+y-kt&VY*N`trO!TMEAh@gvzL%`eV8l%Kzh^?UCj=x_7oGHaDxw c_Qvi-{{@{hy6>3(;xE*EnJYA8@9Zzf-zoKa=Kufz literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..b6e9e043744dbc680cde1d7b09a9fa0db43971de GIT binary patch literal 1168 zcmbWy|4+Pe?Qv1E-S^=&q_0INO9%y2AyWgkSN|OTKy}B{0aVeFYA{X3aohg?nt{?fo7k0&qr1Teol>4U$ZNaytOvp{#XIqQCEFe z!0qKA`Cfk|ru}rPb7m`19-g=-b*&Q5R>asA6)6#ZvR)o_Nr{~6Wj+(zlpy2oEI7?K z+ps_uxt3L4zhYTj*d9BoE1SiKQlsvPjYWJ%<*{2gS?rgU)Sc~Q(KGA!sFU6*Oh|sO zD=?^Vuqys|Zh{Ie&5`!>JQYGc>wFU{R7f9d3yyA4!IAEMVv17*x%HEM49_9sUZU&C z9ICrwLjIaLj0kQx@zKg5dT#mY=XMUK3*~(IZ`WEL0U1>jHx}{OcWz{v`4W#N$L}+yHXcFT8vmK@0?dXb`k+7ocl#e4C&111 z`yQJFtZD6kv4HYk_t1`;0-h;9M?CBl5WaMI{S9vsIoWfXY7HV@Ha3JFPY}U9EsxC4 z6OrrV)v&oj#QCXxO_mlBzFS>4I7KWz8W$D8t8t~xwO~}E=SNlZ=wvk#!-SN|AEbI0Q9Tb(!=(B4LYfl>_NDJ>duhK* zvPPO4P$p%)bncg8I`5SBWhFG%NI71bb4d4eN#9$gJ&WZ1Lv+t#qkgTTnl2ExB|V_7 z?4bPxy~MurgCk_FV$zhvJ41Yle@X+0Gv5ah!(N3DgVe!9kMwawW49mi#bTD&E(|3) zdVY}eH_Ueuw{^TG;#e!qQ4fi-zqe`bZlYO!m0EC-np{uS)ln@2R?{3N*;z@m{uKTJ D^GQbQ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..b49886c37855867aa41a7053fb290e1804b771d9 GIT binary patch literal 1168 zcmbV|Ye-XJ7{?c^NF&>Jww+C)W(6lj>^7H`i@yqHlxu2!&>&m$jG~LS*|N-7ROkZD zm>HFomB~J6njl$Jl9UEsx+&QOHB*rpm zkzJI-rSmqkm0PXhA}tYIsD`s-ShK9Ay=fWNbpEd&Yuat&eZFmnDU7|&x@o3LEvlLlH9>Yne6qQw7Y4&OXuNQ7;3h)tQF6WjK|6`DvG! zLDQLncMn4tguVW3tTQsOc>7IP>Q917X$eVb>DxirP zHMi;&NZHzxRc}_H;c8sJ+o^!JLHDV+T7fiiS^9}i1xkVn_wW0zz%SmnP>>Sg#|A#d zuT$b;vw>f`M~RO9NPCD&iOArJfxz2J*kX%6&*)L&&B>piu7u)tFURaj@B` zhG?=D35*svY5wzx5PX`Os{e^j9;1YOv_RTNwMZ!HQ%&bir4}R+Cy@40P5Y<%bWZe? zKI+rFLAa;6ErJ$UbeL#&Az|4C!Y^*ZjW-F~ZxI&XoutFtNI3j}_-F4EuDDHji_@% literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..3a2736f6ebb58375456bdae0abb3b7695765050e GIT binary patch literal 1168 zcmbWxYe-XJ7zgkLE3!zpoo#1}s9DiT5v|a5(Zyc{FO+LtgfvjsJfpD8wzVu17G*Wb zGG@`m%EZP#WQru1P>NJWxvq+K!I@de3{ops*=_AT=R^D0^X13?InVo?$Dz&4&}B^# zSOq0aK5I6Zm{lq!!MK8nQZdF|CW}d5n7hlA&;ISF=y#Y|f8V@KU&Q+J;$=}PbzDT0 zs#NvAH6zOv=Z+5*;ndv){YG5A@}F2B0M_wtbgF42x@n{ z_UV`ih2DtVTeKM6(T+#;8Zl=9#4*ph(_ zlVUV&Jhv`6Tmo;=(Y%;c3D!4{KAyKz0=s|xOos%c@-*F#773VGwSKr?f|JFUpY#bS z+&f+I=1wGq=$8|^W*r5iZ%BW|O5u|9xv8R>!qlvU!O{*28f)aI?ZXu6S{+-nL#24# zd(fN`D@F30kwJB~6eTNPe41~QVz4yHKslwDePM~^_d_ZC*T4NZCPnLyqn}^VGN=;A z3|$%-vT{6@7K03JwP`~xy9~ZI^_Qv!8FGa+`DHyaoC!a%XZNHGzgYi4;c~7kJ9gG)kG5^sd>rfzZUn}Xfti!rKPPsF}at^OqOa#qhSKVCX}iJXJU zDc+f^Z{-{c9V~kCP30ZdZ%eAbSu5}GMyI#P`Ix-Jl#91Fg|RC*Z00Fk)2*%GV728$ z**<>-hluyF1)qx*9LlslXKKt)aG09fksP}RsBVF5?4$<@4wr!1jp_@kld zP_}Qrl)kT`!_=Q9A}NK64x2$1PgQidlpoK2Zl|Kd$5me#nC~e%@IUMPWzMAJpri_@% literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..e1cdbab048b6e76fb1ca4644e8de703cce77b096 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=$L~MNERm9NP)L&z;7gWq(A#=?N%3kKhivU{)9-$k zaag`kq1)X?*5Qe`ciqMoSqH_w(n9I8vJUYq3sPD|58s_p22|7QIPO6u8n7c@M=bz*94!Jz)Va6N^4&Cm1{4;bE9E9Er zOU({Ya4^(bDSV+s!NEV(j+b?&fRb_KB?q>c ztm&TWN)EluhZ1YNl^oXCg-379S8_N7boR5!N)9i#H2O*J0IK^S<`Hm5$w5_njbkf= zvV(J)qxCKoWrx$eGg;qyC_B9L(EG2LtL(tua`;EsL}drn{SlwKw<$1w@E9D&A zwJ+uvev)%&UHChGww1iYA#t@})@FH!|Gfcj`KRR_y{=OmT>1S9GX4u4y$% zThW0bzmesrzoLWuDzSe*ixnMgpRWF{H$%}OM#1r8@*YKp>ga2)W;{@Im^m%`$ypX9 zhwT>`?lEa9IoMT3tT6Rea){mXc41bbl0)_TrrGnSDml#3l9+mBCs1AL+CI*EN)Fc+ zICa=DDLZ_*eZ8?*P1&KQS>I=wm$JjGeMekx=P5hv{26I4Fj?8*n#p?$*X_y!_>p{qpJ&r>hpur5l}i6LN_Es z`O#2*2$b&urD5j!LisTB8K3~hN2i_8)Wh5f(+A_j^ufeo_QK?0=D_$cd6+(!ypsa} Dj9|Y3 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..418ec32491daaeb3dd283eb348d3a4891407a959 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=ZkN7UbJ(REj_=yh%N8Kzz+(8gpbfv;%9T&7)c-83(8HX;+_n$vD)zPCOAfS;k?{ zZXmcVs)B>H_u@MfekwRb zwOL#{Dy!&Fe(>!1Uyh0n)BYr#)K61%*kb^o1q}eV`gbGo(Uk znEoUvKN?EI+y%1-<_@Sm3>IkWVDd2aFdAkK%pMpYCJz%wqZjzLB+p+`iWt1G!9Ibb$I4U``)LhscnX2Rfwysmj;n1gF%MPzqa(JLSVZo1!Ky_E2 WXK8;^a$ukdP@$2zG;u6V3cQ+ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..3ecccaf803f7f9e35c91a3294df20892b6903318 GIT binary patch literal 1392 zcmbV}{ZmwB6vvkdnFVJ`17DaNU19Ib-U|(^8ZU)@qa9QNv0MnWFv49y9Z*0-(HS5d zVntzrX~7V%6opu*2nH0b2~Y;5mKSHh9A0b!aR@etz=EKQ&%-~^`Q>xJ=Q-c=+~=Hv zU7^9dBWz^JvQ+MXE-^ZR^Hp$f>Ag8O1*eZsNJ@x`+aI5BK)09=h&qy}lk$l%QAc%> z=GATrFCUeg;*8?|hQmks)~cx$N`x+7nClXhsJH&I!K_ij96NB#5UIq=A+?3N6eX6m z-x~4HS7ILby%p6;M6#Fm&9+Itvaij3gOV@vw59HEC2IaPxELK7Tum-cigRaR_u(Pa z&g~55dsD{PCrg9ywUZU{|&No8}q@HAb%_MuDMcEn~KH^&z z(rW@Y-(xXze5hpQ?<^)Kq?ng{y+5q%Sj%C1@XyiL)Eu_mc~qYn#9{Fn`}G`5%4WeY zjl+!n`QWt|Iao8kDEq69!{}_~pWU63Z}^l`%_s-#&DNi@;ZeR#`go0psWIl)cee1z z^E~0cF@%S8^^V9Ntr=f-%B! z;q@lT*F7+_yhnxfcmGh2jjJ&1aXYltPC$R<{cD#M0(^5Xb)5DU;3=g=QdbxC;V$MzzGRR=e0 zbroUw$IIW@PeevyK;d+lh*RU*k)ER>9(FPIwFVL0ft&Z`ToKXH;%|<KsN^rI@m^|geZ^@JYZ6ZYRAe4~l*P9358JHjgJcez5e z{42tzl&$n0E$wfnePti@(~mTtLifU7Aob5FpHK$T{!^4% b+NY83O+)V~qJ7rUIw#6J+NYOlWdZ&J{rH+( literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..8ae19c3cfd7e1a2498dff51e705d79216913f4e3 GIT binary patch literal 1392 zcmbV~e@v8h9LEpTF~EixjU7^++w=P&ah3-mZ0|`hM?xpf3Ua_92ZtQoafcvX9Eag~ zfQ5z@xwTHremX&loDAa0{DqJrv_o67Ybmm|%F@g*vBU58`9uHg`RBFw`}_HPKhN`d zKOH$6vJH75np%yMFEKeb+4&S5pIVyCC+PT6tG&i<|AQVxTup&rY5S_I-cL&=+9PK6Ki#YleX**?+P!hK1|MmDuN&v-t7t zz7%dP3xCv!o%4!WocE4j4mepPRvic#*vo>ucI1V3yIFWfx7F4RvuMoNeP;d7ENZ`c zKQ8eui^&7Fw1`*^=i?jOudU#a7;5M}p2dN87R>jRa9DcN@?wLFL*u2i`j!M>=-z7MrLbY5*(^HV%xLxenIHjlcg+s@Q7 z9=5`;bJ`{zW6xf^esdp>;lZgj<6rPl^ndN?J{RnZKXtTqnum7pcj4wx0rjsQOh}Ix zV7u|TOQ#o5ZaF@7_jv)s>pN~-EEk}h-JkL0>jI9Y_q@~bo&c@b)L(T}Ky+98!gUt} zRPQKC^+Vxt%8CmBYJ}CSH<}%lle-s%7*ptUlD%CgZd1jkD&1GP-8pFk}wNn0KYX zvFwtJI~yxc&i*MwbN{IzbZ;UArQ1q1rN&HkHLbT1s=iW5brqpfLhH(@ug?%hV~TM2DccQz6IF{MELMGeGP=>35@qTTd9#YxY% z5C+_Y$<2f|580fS+D AtN;K2 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..0106ba3e1423b89765d45da02328d63ebe233420 GIT binary patch literal 1168 zcmbWz{ZCU@90u?zW>YNow!QbZ60zhirAr0_vtN#koR}R*i^SRrzkKpM_neb+ z?wPflveswMk(J2G_4$^ftu}qCpii@|)W-{Y>u%dVo4GJ&w=Lfi?AMqJiY$S?XuElj zC6JdS#S1GwkBb*7g!i4$!R+v{pXCe|mCk={OJY#cx!1DQ$e?8?r(~VTfQ#~sr8^m9 zrMg~!>SfR_3f4$JgNgHj9lR17e5K>ltCXmIXPFu`D>0eTYaKYM#L}GGrCrTRvYqcYZMc1R=*`JIoW?$Z3SSYf{P0*K{oGi{}ay8$0S;!pXn^ZrGl$HXy zp65_EIZ&=iNZ84*~MdWs%+7BBRrOJ+oD&8XyC~1JGneg z15e3cb>ZtYNDMxpSc7dtoG^7xgWkwPr(U=<_#kyxegC)yg<{}FaxEIq_XxiyX%XgI zcDmlEh2dR9Lyf3KQ^pad!l}imsVHWLSBuQc!>6>71ga`APVziy^J z>mb_YJ=D8{L{$DmbUS4kvcMQchKQyJVq@DU#MZDxV)?U_p!O}X86-cf{gQb9KGD9) zMEf^Ct|a~3#|gx;?vIJ>HXTuGR}j}Xg%BBLhTOyN@)L#D7ewEG&xx|Zr_^f$RAV32 z;-QN7sO{ZSzDu;9k={FShvvyH`hAm>N8L0>-J+T#4@eH*q`fHlXFJUaH>kQ+YKoMf SOGf=6?UU9o>7=>Eh5rHZg;7rc literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..fe8685732f8b857dbf4cb4a08aa554b65594e0df GIT binary patch literal 1168 zcmbWzdq`7J90%}~5?Zl#?{;@LjhYoLbw!UQk*>ZiN(oxa*YcGvy=#$XZ6;*}m!i_> zsl5a(p_E8vDwztEy54DMO)WCYpwdXFM3l&^<+=MKp?^C6eE5FP@7#Mh1%{aQ#<&Th zY|%b-8fQc`}becSqEn90vvIz^XP&Cxx7l@)f2Z z6l$UhH>?hz;dgOjtt|0!nb4h4+f*$@OyKB9BJ3xKM0qj z_@RMYks*io)cTGE1#*N1mVNMRkmE|mw3sPx<>)^4lNjjrAB&lT>9GgI3Ye&bt=qH;xTm|~;uRRO)%336 z6-cV{H-(fbaIVAGI;&NIp9=d6dO!hfh`Dc+RiY^8iRp_@3D<>sYj>&=p|1m8w&W=x z8e4Pz;WDAukJHnOgyqSGadUbhM+lDJ_ng~K_W4ZWqeH~pv&4&6iLnmimIk7qlNi}T z^mmPk&s`)Zz9Kn^WK4NZ`r!v-@^ll)NjHdz*N8zS#H;6tn@$jWju5MOq9|L)yM$~d z@+pEAp^q7tIicV3x1MvN%|h=nf#fF7ywEqL33I~tJny$Ki}WRXi9P#?o_E!pCV5Xj IF*hH-0k;-7hX4Qo literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..cc38749aef3264a510b6478a608ff83f546a5114 GIT binary patch literal 1168 zcmbW!dq`7J90%}QN@&HpciY{)tH@d4daUTNMAFqa?IA&HWj0)tTY8s~mThIVDAtQw zL=Wv{Xb)l%Y53?dgG$pL^g>N7$tZk0X;tReKtFJcti%*z%J{zx4gREnJ1vEB*%- zs*wN4D9z4LA$WLs!;~BqVkQ){jl8A8rHm1Y!``XTeCU_-Jy<}j|Le3*6yWMy{-NF^ zpmplq#QRwS)W#xvNuB_AHvjTMl>lFHQ2XHy0b$+gD|X66n7Nf}*Xc$0PrppEi0E;Y zwa<5pSmhgKjw}#yvLQ5W>@yL+MCU8{R}uP1TSvd3MxN`5`LjWd`qSlU%_(X`zX@-8 z>QRFUtTjZpg~%9bw$i+ex|;TOA_n#)+W(VVGHJh#N;9*bW+yRZ5Aj4c@sO8z-A4?2 zNHoV;_glbBR~N}~Z2_TdCiz=!K&JIRam*d! zv};81GBM&JQFoRYb&5ET&J7RAO>W}U{lpUL1=^3_OZxJC#HigwW*6}o&6(RsuH8;_ hrxPn_Kaj0kX}_7Cqjqf~nW6VF@E_=XmiCMTe*mN$OK<=H literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..5f8a8cb1188c125b4dd02cd33df6a8a3841c2b75 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV*KMEwUXhS-Xws4UXqPDCuz!)qlNBpv9R5laUl;l$ z<6zZ4_f(CQtV0>=iM`L7WF0nFf7%dmTGrvfsfDiFgykImIh?Ujh>>%!-u_LyYl)mg zxvrx8mp5__TNZl@#hJ=Ge3S(0td)1ro3P-A;W2rKdGD7W^JZ6Y*rR28pg~)~;dbh! zom>4C9DXiH-~6gr!9o1apEdF`6dcUNCoK!vqu>w{q`si@0Z`q~x~x4ciVnX_L{dI# zC^|?Mtc+FjRdg_0Z5JM0sOS*->~g?_sfrH8ikV(VcPcteiuvdK>n>0oOBkOnlahnE z{cH9lH6@48ss_gCUP=xnTSb4L&Qo%j^kLN(hRI3}8?_zYnQm8dIG=X)dDd+u2cWJ^ zbN>U?c^+DQNmucP6W%!=?Oq_H&ww z4j)&2VPN)Cbl`v1`OCaW(Lqm9{!7j@MF*dlEpHd@Qgq0k?)m)MJ)k>+GJ-wvZTgk!qL&Cfj`AQDi+TW(%ovh^0mDW8`Xor%+@`VcB?st?N^gSy= zs~D6Wd|P<^*Q+Qy)~ IFq(k@0LW&ncK`qY literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..5429295204ad01cc2576e3470be8cf3dba8bdf07 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=Nb&6#8RTRfruIHOl9eXoaG9BB$CY(54gytXtL?ta zIQV`@n76`S)}bq{d!kT>ti!Q8TU%-_$U0onPL+HlA?F~tsGr9tQO?0nV%PtzE9D%z z`<{G~|0L&doQ3~cr0H6K9wFV+DuQRS6+M?1~P}Prv%M zYb!b|Qs{QyrkW3i&c{b^gR)Mh9;{JrR961_*!L5BB%?t}+Gbz97T9AZ&& zIQag|$L|_S4)?W^UhDWOIs8lg{v@$b$w3BW;Z!9D>pO}!PVZE50EfptC5H$5_~sZh zDLef8xp-=ZnzDnesb&9MFJ%Yof^!|0@{}E-Rwp;HPgZs)fA*u=X1lV(G{wHs!rMS~ zC!g9c`LFE200tH~XcaVZ7$2gGfdQru#)r``aTtv*4l@TP@8kec0TYMOj!^L&2z{Xt zLN6$V&<({9`alYVhP%fE%J+cM3{U{G4;LS1uag5r1x!6m97enl{vBwtx=cvJl-PfaOlF{^}c^)9sav%EZ*)a=U}rp zXqsZ5oI{myZD;p2Ifrd4m)CrilXp1$BTO(lUEYBqzmetWdU*%ir>no~{g8LqtD9Zw zqoCk$Cj%(sqTujr@zjiM843=P_qCE<_b52bZ)?(#+o<5M@1VF^@KvC?KWpSWekwTp zHg}TTE34=rS$tjSlcS=8`MMk)^)y9?u$PQ%FoO#Xah<(YOR2dUWxCI43|Iapphnrm`F z$sru*>dY@n4h&!r1f?UOv`|+7CiEBtZGmsNxJTeHKvhI2`Jr<~Srn zXoEHgJ!dk6R+$T-d1gZB4^0qSp%6mD-H`<4L(OA=`3L46n7`a1>KI_|hU#O0xf7-j XCJytzBUB$u9%?Sk{)SjIc|QjLmoCkZ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..354afa3ace9d8102f7cf2dfef63ee4cc461ed682 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV{mJLn{^gQ#$l?6CAU#;hVP(DYl#8>a9G-slZMS|R z<)D;PQMFV@+QDGAIzM-*v_r085L4-1X@^zIYrfuNm2r3`yZnWRpNs=g*X>QyWE>K> z{+yG!FXJ$`LG4hRx~#+M^H;;(Ca` z?Tz>{c}0g)FLEPSJ1aW8RAvr-kgn*!9zVlJv`5jQkL`n)#|A}*HIA(UwO14!PS;3r zZTbOJw|zbHa~UNE_RlVVr5%+V)bwtB3rJORaLLU7(Aufwa9ZH_t{rQY9A0_HYJY>P71WJY+FB5$w7%e+QZzV& zqjo?Qv1q|&8B)!787YjYM46anqm#GIIl8G0lfgtp2C}(5=3Kg7_$s)oScoYD0sLi=}5yn6s-Oyq~_BPC`i~ZJk2hkAo{U# z^_nsYti67^Wljo8lY`s-?UZ~`kM7;|P~ffqE8I0r!7r3gk@a;N68#4*>ffdz`k41w z@){bfx|U#GMT7abn>jv*Xei#=)Bd1>2Jb3|=js(223?Jjwk{g_B0G*9yidc*MP;9- z{Y^u-#Xc1o#DIBUe#k2k3>^QnaQE;!29E4BU%QpXz~K7K`?ZG|=jq{lXQ`3R7oARR(3K(@60qBsF=pL>+F zJxzd)g;UkBdjx1L^%)B~A;4nez-!|*0xTHus=L1yz)v&L;_MS3=e^FKK6xyF>PC;K z@e`rr3r7lsiO}{|ll{#E5gMvG#-DE%VS%YEuwO5N|FnH)Q;7&UgZU+9hX^~inC|Vm zD#BK`IeguZlJBd`jnudZvf0;VL6#B9PZ3h(gleP<>y)J=uEe^%7+;I}ChA=Dt-!vi zs4Fn9oAZ^Be!@Pb_@@nM7d7|wX2t!d%IEeo6B4I!+ zVLR5Poh5p#g0P^9&}Jo!uOw`<6Q-jtsGjJ}PC{rT%tFq5Np#g^!pS;9M-Ab}Ho_BU z2rW3*7*db(Hskzrdo-c;#eJpYo>DPxL5_Sz`ljRk3b4+FbJ{TP#QIds|BnB1=<~(A W8}n||Hl%&-j#%$P&fQOU68;08XOyJ? literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..c1de8d702f6d1cbebd2cb6d2a483293a3e19a388 GIT binary patch literal 1392 zcmbVJdr*yO9R8R|CONeicB46S*zf*jkz3^Qlxs#hwVN|`zC~3;q!2N=cJQ7Jk9$T z47tjqyZ-0zUp!FfD$~zh>*isaxb>so`~*al?6c;K6VL;eZ~=!0r`|z=0MCwDUBkZ? z(4F)}#OopfuUg`YZ~q~{bS3coi8=wsnIS{Jc_g4z{BZJ${vr++8+Ok17vUZ@x{;kI zg6Vli5w9|IQH_Zr7B9V@dU~@6WBs#>`QM2MGrsxMSuWz&3D<%b-caX`-`%A=5m6|# z-XG{8;kEbK{w;b5ZP_(no(qx?nN*biZIpztmS1WzlO=@2ln*y;l~5d-Gd<8Pq3~?M z9-lMnoIBz7)>{(V{n9)xKa=n{cZ=zer;Pa-(Q92JWQ4R^uEqq*n6kp54~~{m6rmns zm$CP9WL`&(jP_$A%jyowXywNaJX#^+-yddtwf(k?&}`qV_%?O!t^Rt5mx7|^=k5Ni zg4`uT_ohzBCPcbrM~a*G2Zzx`Eu~ruR|a z^@OKS%xuu|P3aoa*hON>>mqxp&!xmSsu#qMUR{0sp?7)B7 c_WDYB=zr7yB>zJ7_4d;`{XeRg^vBxq4i@ctp#T5? literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..198f04a78293f02b7f4d9527c73a13a8d5af3916 GIT binary patch literal 1168 zcmbWy|4$Ql9LMn*5tr?<-L=>26|->8WG$nMvlF&CbgzXkD>PHtW+?-4MXRVl9U#ln zNTgvCrrkgS5@d#TW%COar)+@HtY+eBlc|Z{P+?ziehDkH3oN#a%G%H8_7Cjy%OlVC z=kD{lYhAwT&6S0-6txPcZk@e)ZIy0`q{~?Uvd$ps);p?ds%({O998S=@p+D|yxJa{ zSC`qg*ki3X8l?2J6oa%)`oHV(#QL_(oeYbL;YUZEMixEep&vF_Sui@wi`F_8S@Gp% z(c9=dwm8V*X3yT!QkaE#B4IHnaB$6?%6j-JhY53W|D=t>{Ed0T*LHAdia+k-;17P0 z{oO?l(L0}6JW&qs8KT3xla<($d*@1Bwh}Y$l{t>hN~9lJR#4QU#J+o9pD_<8ahYkq z`qG#ZOY>)P^s`l{shlj}Q&bo|YWXo?g$k+*StH>Z6`cIxH-76>;n<=s>rZ|al4|D! zPTp4Gt=6fL0}PL$tHq{HBagqP^9nz<@+f?zKTuo8quJuQR_f((zw?RQw}U(u4n_-K z3-f4yPm6h{K-=#%LOfx41JCz z8CukD5r28EREr^ZVpwR@LJ?mbF2qro>ZxTPQM((cVR>$9q8)KjLoHO+O|6le*-g9b zzvp+-9{GeCXr$hi_nSYZZIaK~C7*LbK1bh7_ZwQNk#=f_Y(^XHUb&gQwAnq>Zn+~J zw0Ct;T^{PeKB{eq`rrc5ufIh^YJ_OI|Jdt_*gD;yCK{$CqBl=Z^rS8#PCcDQ{5?di zbQnn=Y)K`KEO>@^;vIpwKanAd=M_Zh`M=41Qc;N5{nf8Th5HI|`_}W+inDaycZwPq ZpeB7w&6EA$2<>HusOi1bLAhV>;a@9JRzv^* literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..b313a6ee98826557a0cf3e04059de6744107c379 GIT binary patch literal 1168 zcmbWzeJqr500;1EvKHZa?w-5nOzDW7xVFZz>k8i#N_j~sX)>KFv!qTVq)t@3E4uB_ zmbVbSZK?hDg2)2AFF@*{qx!P`+T2gzdLhSRA|KR1%fm| zmOMe5s?o{SGWojwD!D=?-=Cs8s*67qm!eD1&h|m^2UE2(eQIL-VeL$I^Hj)uyjLn@ z*|PsVR`*6dj2mq!IIb-kS1Kv&jLx-kilOkZ^lJvKr|_ex)A*}~LhSU0iNO{Mg$|z9 zox>ES;z}}`SsGs1hI4m)X_P$qHc_jg@usWW+H9bqUJ;U&TSwyvROeILX>{aOPR32r zpsOw{+3F<3=EvE~RKY^rw&*|amMlcSti6me3lXmMv$1Rv;>;<9<8YS{LobW+dlrh| z+M8Sc+FgWvw?Ugn5h6SfeD8Q8O$3E;W5K0T5fZL?R-Ab%Ld%yD+w=huEEXG=Yit=L zg^m<#S2Czd>Z$OLVPI7kVz*k)V127fwzQVPb!z59tqi(XnJ$kFGYHm=+kIxmIC){_ zM!sV7y^S!v(1_tU>{ofmAjWC$YgAR87!MWNm=uhg=BiXx@dq!xWhn0j;$1paob#UN-2hp`+M(=kz&V_YgfYb zQsj3PH>zu;`0gxl^=Oqsfgx}9n-u1}T{VlO_GqaLygTA+56`|^uDu$2Bw3XCv>EIn zm^&{2P&Kb7Yk^??p6~hnzcT+`0Qkk<<#)XNcjxC#+;{jsfXnP(XLhlzrHT-I>z;QGCs{QtxMKHf;~`5sOc{s8byARYh! literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..d0936107af0b0e278983b96b53e05a1e1eff1987 GIT binary patch literal 1168 zcmbW#YfwyK7zglUVi4+_-LrePL3UHKVa=G@nzfX_$hubU$&hB-hFoGZxyB*P?5Z@g z#f*yDl=vW&OJ-bh8>7q^CL>JBG|Ht$!boo0dEfKJN6(kvJpboC&-;Eju9&3@;#Le` zGMHWZWLvt`t~YD-Q&UWOgI1rCX5VU0+LV}PPqy{vvywKX+dO&t+N8}kPahm&(1wSN zGiWol|6ATyzD;n>^kLyYrJ&bnWU(wh%UhSg;(F1?9h}JGYwZi?uW}Zve$V*PSIQNm^^K}Z$xtTfIWKrO}S9^BwMg`injm5l6fmmDQh(Waq9NKU2?`~G0>wZB_ z>p&%f+OkeO8m~l7aOa2{aZ22ce(8TULkWX(X72GKC6Z5voIG?}iTV$PKHEB!@EYnI zWA)*Yx}Ya_v5|*6we{q*1Rma1bA2a?Jf=68w4*9`oMAl=YT(f_F|Xu%HxG-w*Y};E z!rmjE7e%P>_Gw(+J*x`--I1ji94Z_Pt7P3(DqLT5RF~VRLg2AKd3*X)SXI+mnyORd z&i7^9N{bplRnY;KjcSDUmrISpZAI>}wQ4-ccUJqpR>R!X6Tl1-u;p88=*RH_n#}Xc zUd0Ju<0scV$PgeMFA`8yn`bP)EkOOdx2&K;K9F>I4mz z)K#8}5jDtZK6=Sqp~05`CTK!~1_pG637<7^9avsISmTHK(&)=Q5q=1HdoHNW>W5UX z;_$}~KQK}SQlqG|sd6s&CYmpzMp2hi>0De$dn46CmG?x^Ufvf^`;}Dr-hcPW-^=&K z(DQOG@00V@WG=3u=WJB@K00q%Pjb&+%k}BrBCkq46JAZc<|gvRL_!`FBH_&+s{sN~@G)w>h literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..8fc7af55292dfd90c8a1cebe2bfca1b434732962 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=B`mLY-Ib7WcvvN}&OK4a;r+?OPHR`nIOsUMGZp_N zxcXKLjgVz*0&n;nyPI4h>C8o;jL@FsAFT&uQ%L(xzE zm)rdn944A9ee|YS!C`&A)g8qd3J&L1oxd8k2dM68%K7dG3J%j$gVqP@;y-s49o)4q<`^<5Ii!Jr znv%m?-hBo$y_6hyJcG5);%I~=yJ-y-x^ z*?|EB8loUHLnwr9h=uZlpma2phKj?~J0w8WLurQ`2!BEWgnrQrq0dZ)&~KJNX#b56 zI(HX@Uc4Pbx2%THB{LxOhGqz@PywMo6hY_%SrGa`8ia0uxg#0M4}{PRNvQOJL7 hH$c@h#6iRzV0@@Pm^zp_Fni$P1Xb^liE1uTJpk-m*?9l} literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..25d6856102c3aaadfc400986522f3b609609fdf3 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=(5eQ;=~6NdlRm8a!jLTEu)sd5Gi|ku!`-bdH5We1 zI7sQN&$qIXbqHH@GigbStixmpmN34vvJMye^gJs>Cg%`- z%IL_(cXAF>9AdXio69>~+}6ITwO-zVPj}PY_s8WOmIdaW(BV*UIMTy>C{ahj!P_Ld zXG(yALuUSm){`X)4j|S4W+*r;dn#3FyjQ{DsKSP#jE4#ikE304=CUd}FiyXfdP!5! zq0`RDfYndYVOiyIO{*eBhof6!l=G)4Iy`>=QD(_5MF%GBcCnlH6de@OWCZw_l^pCB zZsc@US8_P&!Fi?BTgl-`^SraG@|7Hz_8T9+KUv8^@z;q1B0H2E98BYOdEQZSh%5NK zxsE~Ep>}o0+RZA;4$Q$1%Aa{CJ1F**7E0$TJ2;%=$_|*Q>=4hgAf Ihsh&o0GrCI4*&oF literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..fbc97dc5158985f13c1063ceea805564125555a1 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=?Wt?~IOSv#(zz?Soi{tixAk!^aI5WF3sEqOZM@kaNiY(0Vc?QO=>(-ZXC4N;!vJ zTjK*&KFK+J)9!NVvyyi(UbMyhN0Yomfy8~Sq|@>a;m29{pK&TUlrqiYkk(Uh__Olk zCEp+g2dSrRXPU|s94r-Nj%}Z%;1C|YasQir3Jzt{+;%EHR&bbd@%E-Lc14FxJcVnz zwG|yMy0a}i;IHTq{yw(gbFrdBnbzk_jTwp#Q&KyUWA`XJY+fK6JLv&X9Z=hG7A1!d zVjcm1G?X0pgYJ47`YJh0{b?eSQmEvx+2j=O%&AHam-6G;&+Sxl__*o|1M@wgx@Vog z%$bxO^c3a4WPwcU20x~->|6yH{M z@coc5Z^eIQ2L>>(K%-UA_#RL`OdLi#p{aw3GeCg}RNfClHzYvl1Bp<64un>yg3t`n yXf)K`hCrw|%siMqFn2@EXMpk1<(<&x}ljkXt%IX+97L-v=R3%X@|1Mr;Zgc$vA9@{JQg&myE;5^YUw5Cd)YJ zxp^&EcU#6Gdr!$^2^Cp~8{Rd_jL@9rW`SGwyMfbI5se z_KRwtoWshfAJ6-*$vHf|pmh7EoVP4(HbX?NZvP;PCdvq?Yij3JxU`Uio$X z1gbk-@3CK2(P1N-sM8lmMThf_tE@HC6dm5x*qg?6DLU}%xS}_CouY&G=S+(h9DX0nolcDvZkbL~nFUWZm+VqT-F}C=E9s PT^}r5VD5pLgRl<(`qR@S literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..19d7f2fb1fe49f12ccaf65493989eb72d2a2d91c GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=xLuw+Ox#iqvkglAX9r6;TwgZt)79Bh4x+LrpV~i> zatNCI`Nm2eX@`DJxiiA0(hg_pJ@(h`m3Fvw?tAcKRv8B|S0#5}KN*MM-9A>^r^z@> zFf7+qyf5Q$cKJeuZgp7)E}*ur`LYgfQ@*jq?~ru}dAxM?5e7MjiIErj^gQJp&Yl0& zIAfxm1Gk%MDbp=E2lqYx897Sw4lPDi(bux%9S*Ko;^(kg-r+pZx~0G69oWq6U$ZMI zIH(j|d1B+H;NZMA^Il<=f=hz2S&^FIJEB&>D- literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..ad499ad1b943e5354c78f37ccca137f3bb570945 GIT binary patch literal 1392 zcmbV~`%_e97{{?O5t5<=BXF3bocmd2hZ#W~F3)IgV<49X71D_oSlF-;*j@7$x*!6f z?k-me7aR$VNDD?KP$NxX7DQ$dl#7fg6Nx2SP9`X5ho0Ae!1K#zKF|An-}AobIYr^? z*G0z8a`?hwHMHf;dW~GyYt?BQ*?B(& z6|h23P#M&#KF*JsrGx*v(lA~bsOS}GSeNY*@#Fh6teN&YcJLD#j*r~GoVTH-rD7Vg$1*dcjx?37ILx_-hV%rbIH@t>A}J9?Kg_P^W)$~tmkM>7zY6%e>%n| zap2oH85?5cz+BPsrDr(@xeErmo}A`julX)@{i>WZG_J0@%R%3`e1Ta!1oRwk)Ozut z3_IbhTE+v{dSwfiWOT$SoG9((JfDe_w;@5JUS-Au9%u-SI^72?uOjj>msCl*gBB=P=pR&c@j<% zT&k%K2OkL*%?u<+0#C>6%M%+Uc-vU$ej`l+ohD&t3s|ijts9wrkp}vIgQ-eMEqyuKNpbunvto584c)D^~nB{$gUdX zJhFds9r^~czeM(DE|NYQa!ChL)%ib-(_QE_SU38&pnpc*Z$5)QNX}1_do8TMx`A+B z8Twqp{!;Y1VkA%8UWA@VzF#77E9tY8;Cc*MH(1c^gf=p_Y~p!jz7*-_^RVAa)<69U f{bg=~%+Eq{uEfg-FAzqO|HVMgHAc?)TLJtBZakTh literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..db8a9f971826389f2f1e4825c68c401a5062eb05 GIT binary patch literal 1392 zcmbV~e@xV69LMh{avBLGsSLD}zQ4cZ3<=ICdy9f(!%mD5y5uhI4v~X94?F|}zSiJy zXiI*yhFEya4bTLwi5bGR8Pn9$W|`z%GPKNc{IXeWj=t=9zHRhp-+x};_viV%KhN`g zK2O8?j5Jf0Ugy!3^Hy6?j+=kkz`tTQ@-YV9?sONsErr=mx79WsPq8?PY-+q{tHotg zwGbO)NLV4p7%B|^_nQ+imsVVTn!z`N-pk!G1GfL|@w#LNi;cN!^0FCJE>eF=8SMBd z<;x`v3<^Uto}4<$An<@)`qO~wD~MBiZZY6C2DjBus=kZ!{&a@3n4cWIHf<>jk2H}d zq_QY%)At6y%fcQNHg~w3#ejZjSzi;2zOs?`4s@}2&g?(zIj{N#0}nS2vj|PU`TC2G zSU3}oIYJh2uy^%v%kDkcP_?qQBx*Bb@IcYq?%Hof#%;hm_ zV$Gw--8^!yKWli{%)`8aaew~>kIZjl&mIq`zOKi9-FufuxA4r0Z9xLm+iXsb5-{64 z_E~hi0NwOw5@5b_CHh95fUGS)7oU1xfa%Bk15F17Okcy*BcS7@ONr~hQ+<)2Y!QDK zpl>|d{Y0>czeBzXy1iIL)_5J;Zxpd1zqzC(UBq#d`r{DMalZ7Aw`xQjN~&EM+bTjY zWLcg%t@>JXKfiZX#8`wU_}qQfH5)NI98!=``Xnu3` zs`*X{lX2nJv04f0=}!iH64Dzcu6OjRzK|fkT0K9lo~Mns&^r zr)c?f9{={0=KC!q-%RJJ%}tvlw0Uav|C6WC{j_~R=d4g_@55g}&#(FEJJQj)tM~Z_ D?ud82 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..1b299f4be8a4b9deb184629f8c584b8499fdb849 GIT binary patch literal 1168 zcmbW!?@v=#90u@So8+YpUQCmKl&N~WM=<%O_V7?gF&3+fctdrtp?ecycYJm;L; zlY5S3<-EP!6v2GLRA~z=6(88NDH?5RVX{`I(H555DsASnJ>|9ni`2hmE~&7D`idg+ zN0v~I)9W-zZ^Y{~HJblB%Oel8Y-*IrvA*N8ouBIEa81k(>@~_U{(S824!a!b(sapD zZPw=`c;uLLoxG+A$PqJeWJJa*a4_m|`m;9`xV-W~&a_#9M;mSzjvQ8CSAFv6^&SP9 zPp|U*a7Tfl@2lL-paKcY?0dhARiZ7!H)=O15!&su7Aui-c75LNW+lo7bw!)|lo*k< z-di)S#0#qrO})I7MP->kkBeu~)A&abvyBBioPIx0$zrQtKkap}xbV8uIOJwAlhyEH z|3en<9D98KjEqA=?}OBz!#h@uI zz(KmstGo)g)Y)S(sVYRSNt=nvSE013d)LBY6-chs9#h&Vn!C8l)85x=!25|`W7N!GbK48+y7TZzTl zS;SM;3`xfFXd}_Xrx2496Nv9cyh0SyRuFp^qKR?bGNL^CDWvmFne#+<_EvmuAOr)P2Lmx`838mC7XDrdbH*qv7=-5AClGQn%kAGPT!fzIlym`jz&*^uICA gi!?j>shj(#`9D*&m#FUW`t)U*XMUlIVMFim9}r$-wg3PC literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..f32bbf0aa7edc6884c64e5f5e8ac99988361f119 GIT binary patch literal 1168 zcmbWzeN4=890%|te^8UV`~B{Izf zmhGAnVdMyXCqOPnU{lr-b$}SUf%sJpiDG=@dduhnG3>pc+z}YX$T^|38y^&-seG~X zyLl9reK>jT`AQ0rbF?+aU<$2%{dUzE6n^jRbS^5T5Pi$FJg0?1X)9N&9i?EgAlF`F zO=F$oA(tR`8rS1S$~T15=sW$g)=5WW;6^)bH-qYQ#v&d1uZcB7$F_yW(BQl)D zvSOA079ERogGKi|D_OKoooaXNVxh#C2lI`ECSt(ff|cP}h2Q<}UNX#Wa(gxNu)1`=Z)muOGGMB$KU^ZF6`gAfxlmC{*TA`Id7Go RWcDJ_m)~n&5y>|$;}4fzHhusA literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..24a5e840b9bb0fe5a1e9da03e743402236881c97 GIT binary patch literal 1168 zcmbWze@u*V90%~L^9MC~?w;rFc}~=Go4RnP(+|s!^p<}3G2Cn#nUt$$C0*AKl(>qx zT4bdem#{^exg^>BVWD44NE4RyV`IfE@@uwZ)boA(!Jj_=y!L*7K6~~&PsRF8>kM05 zBsr2iO=41}(X3g*YnCO4Xtca0Io+IPPT0LY-JF;-*+(Vp%1oN*Gj}GKk|wfWfRoqRChsMtx_x-DEG!icb)D+*PVQb?X%%e1<(@MOJ z9t@WH?$vJyVsIg4xF#%?LEn+b4f8DwR!n}tMF#uc`YxQ>#b8KRe(w7?19t6!Yp+=a z4j!L)qfiBIUg=$U$EbkU`114DtO~?<=o+i-3f$UQr9RfHz}NIc0l7{EbY~!z=K0^$g}peAP!^u!-C^t zIryB`MXj-LC>yA{vE(9$Hs_%Z-!2YXj0LlwI2gC}M@cyq9-NPC{v4`;YfE6~pizYs zY4xIRs|pffHvVJWKRH~?fBduGB=%d0miWK3M11b;#J~4^2FXKv#J-ZKzf64BOmy!Q zyq)q?(2_AovU5bxM1K~Hk9U$j&vk`lVyJ$ppr6!5usr9xuy6SFQBY!gBZ#^EBxm&y z8#{>lJEGT#b#~&^TH?nV;+K;|!wI5aDY4s1tUF5NM2E^qUUfvgD<+N}CYnU+3Q4Al oh^H(>6cEp46Zu@CWgk&5{?CRiG3SeW@lGOUQy%Fd-kS>W8({!H8~^|S literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..f6c297a5885bf58d0291b76b46fc822657d7db4e GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV*KMEwUXhS-Xws4UXqPDCuz!)qlNBpv9R5laUl;l$ z<6zZ4_f(CQtV0>=iM`L7WF0nFf7%dmTGrvfsfDiFgykImIh?Ujh>>%!-u_LyYl)mg zxvrx8mp5__TNZl@#hJ=Ge3S(0td)1ro3P-A;W2rKdGD7W^JZ6Y*rR28pg~)~;dbh! zom>4C9DXiH-~6gr!9o1apEdF`6dcUNCoK!vqu>w{q`si@0Z`q~x~x4ciVnX_L{dI# zC^|?Mtc+FjRdg_0Z5JM0sOS*->~g?_sfrH8ikV(VcPcteiuvdK>n>0oOBkOnlahnE z{cH9lH6@48ss_gCUP=xnTSb4L&Qo%j^kLN(hRI3}8?_zYnQm8dIG=X)dDd+u2cWJ^ zbN>U?c^+DQNmgU}42P<}F09!4iX`Dipl1gbbgG=$IKhh2O@0Yto` zA3_(bgwUe9Aav&m2+emMOg9)Dh45EygwTEqAoPh22>qcBLNCaM&<;5ex&h|Sa0vfE k7LucP6W%!=?Oq_H&ww z4j)&2VPN)Cbl`v1`OCaW(Lqm9{!7j@MF*dlEpHd@Qgq0k?)m)MJ)k>+GJ-wvZTgk!qL&Cfj`AQDi+TW(%ovh^0mDW8`Xor%+@`VcB?st?Nj@{YX zQp2F^;M>CMzg|VzA!q+0k0&0=4qd;@og{OW9afs2wf38+>~O3g$+UT^vcuEW-}QFf zRCZu~-lOsMud)LJ3Q$4gqevogsIATdYA?*(ASmAtLOWza=mkYk@l+@cQwP%zqhaPS cKmj@*CJv*~ti!Q8TU%-_$T~0wKPZ1DA?F~tsGr9tQO?0nV%PtzE9D%z z`<{G~|0L&doQ3~crQ;IOdg-n6Z=6dd*+FP`vfpMt|ZCeAMT#|jRAZ09wHuq!$=KmF?4 zuC3^>NTJ((kH4bBfoKKCkHv}(_or>OQk$XZ@b{vZN%S5?2N~W6x)UBKI#_v>svl)h zaya<@%*XEpC0*y9-@>QU;9~vK~o&gFx(Bxr!m^zp_FdC*0#)r{PP;)XMbVmz> z=9vzmP3A%9Ju@Kmj$Q~YPy(SF!XY#R%)OydKFmKb8s;t-?F3Z^nl{vBwtx=cvJl-PfaOlF{^}c^)9sav%EZ*)a=U}rp zXqsZ5oI{myZD;p2Ifrd4m)CrilXp1$BTO(lUEYBqzmetWdU*%ir>no~{g8LqtD9Zw zqoCk$Cj%(sqTujr@zjiM843=P_qCE<_b52bZ)?(#+o<5M@1VF^@KvC?KWpSWekwTp zHg}TTE34=rS$tjSlcS=8`MMk)^)y9?u$PQ%FoO#Xah<(YORhfR8Uiy7A_Iapphnrm`F z$sru*>dY@n4h&%6ghqQn`4Lb$6iUaTiNn;v)NQ2M}Fn2{m#i8~xpt~Q&hq==NsvpLO>POcH S^9S4>n0lE1VSE@J;Q#;%MbA+H literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..a8d6bcd18cbc996188488a18867da615206bc46a GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV{mJLn{^gQ#$l?6CAU#;hVP(DYl#8>a9G-slZMS|R z<)D;PQMFV@+QDGAIzM-*v_r085L4-1X@^zIYrfuNm2r3`yZnWRpNs=g*X>QyWE>K> z{+yG!FXJ$`LG4hRx~#+PZvk6BMUJ1uMLV0YaCkzYOg3doUW1L z+VlgcZu@%X=Q2tT?4Mo!N;@h!sOjDM7Lcms;F6jDp|w-VA$bYQt6giA9A0_HYO0R8c=X8-^I literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..5c68b1c7e9578da1214150ac6dda1dd1dc4ce95d GIT binary patch literal 1392 zcmbV}`%jZ+6vu0_RAF(cP7sHeck=eVb_it1C4eUj&N&2ifg#GqinIbMly-s+m7?)7 zLTd-q87Qt`HK2@GKn7~GM46anqm!F+j5@VpGMS9219faA=iwjN^UEjS?>XP+dEax& z6O!ULq|B1!OA6Txm2Rt+jilHpbvUb_Saq)UQ>`*5EmxbNn)csS?$D_`zAjU#QF$~M zqM*Vecm=hO`oG8fsXXw`GZ_t|C!-X-0u2uq#_hMq(y;m;|C-W|X^74j{>s`-L+Io1 z)oaRVF!y?8E^na05bt;K-%d|1@N|vbnA_%3-LjDcI8G$(=lySa44cD;JiX zNqi}XK$CSM*p~t0t~~#_K@1%JqiE;IS_bxSGhV&1m4TskY4>XPG0@++^KJc?46HmC zlf1>wzzRCPKKwfdnCdMreB7Sg0mafkrx+-D5vlpXj|JD=SIg@|Sm;lA!+m%i3*EQ4 zunaW|E7~SgR_R$_g6A|Wu4G}^S>LJ2W)_N$4O4yJvrsVSnYL+|g@Ms;&4yVVbgTP@ zv;8@^;kqC3UML4_XG?0pdJdMwTx*nMai9;V`0?ih928h;1KKSdXngFuj<<5)d|rGa z&*{nOOd|;+9Pla1xxy6 z7?+wTK*xfK>WCZx+6~e%-=hL7(hbZXuMuG0BX>skB>}utPg)!L1jv5B^QR+^1yEk= z5mjCybkx}rAV7qRZ#G+(M2ldr>==Lkp$PNzWj_5H5xgg@+nP&6$R5foG1^2(Pu34^ zzaqkBr!jEtZBOn(+D3X@1j+R2sz6$gA@_cPG#QZ+6Otl*rZUtU49Lr*e}eSSHZ>skoJSt9Ba@nu zW2CM*i~60@$Vw|R--dM5BBw|_=xfx47m(&}kja;jOFEDP4&-m`$eb2rMI$o37HJ{> zBdbDPN9H>-XUPZX`;oah$UJ*z_C@A3Qy(OK*U3D)h^EM1T8RII__v9+5yldx61I^& kIZ6Lm34YH4Qg;$=`W$@+c}GM1^JI^okerO%ch>;_0e+;EEC2ui literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..41e24772d7a3fc072eaf344bd861034955538ff7 GIT binary patch literal 1392 zcmbVKX-rgC7=4-`263Q^Rw^N*efy&=qE(bG2i(9E9Z)1T;(#y%2m;O^Ymu>)&7~>` z5$poirL|Vjw%`IdCT@u0S}3-}QK(U@0ZJ1iDbi=|eI}* zvRnAL;lnIUMKO`TomX{hXV~f;ESl~I-qQT8$pP1(Jl?5W{UH!yT7vzfz@Bv)a17YDbn&fsZ79LBUf z+M|1ohq<<)>7fq~qtxPlVG)nzdplO|i{(*Qcql(_1CJW!MElC!JlyUV56(Kq!`Zm| z!wHvp47VTn^3UH@U1P?XE5ke@W){5iori$>$?9#ofSO%uCm{k3j!(OdI04QB^M)pG z6fm5)bjj070Z+Q4tJ{7Q5OK-(?9o;MhPeR~w?7b2E51B?&1ew^tMywJdWxue{q0V6 zrU>TwF^G7QsSE2&5V2y_owVbhiZHZ4K412Qh+xCtldSb3zJ2G4|KjVa?#Qp(lt&^e zgq}NNog_SUJvF-9OG00M^RhF35<(LzGd>TK5ZwJub5@dsfJn9S0twZDMeqAoNvJqg zzQgULs;i3oq35QAevfpgi;pEdEZG#X-&w|@%;G^O;8G-rkxv_mR<~;Md8sMU!va7e> zlT}c%^4Z+M_Y`dY*|oeqLP5{T&f~|{DY!TN50@QV6a;!SzL~gRfqzL$UeIX;zT<9R z=Q>nf-=V*l0fo%TmP#>+Al4C#qJAV0n@Og;lz-z39`$QH9}DGKsa}gG65B!Z*vyni z^V`xXKb|1cXq@V``WzX=ucydlQhqkUs*MEuatOxT2-<1u3-bQ9aMj< zfW~Q_pkiXDZYB6jAwi!!iXRh%Rv)d`M)Nx8oa}UNp#7%OIWd}_?nUEidWOzb<7soX t(>`9ep#?@7cn{ZVFp0MFB^piW4XUM%bDW zV9A6`Cdfcnl`(`2qiCjN0*SFq+OZ}xPEk<7Is7`L(nXTlWrMZPbAQ1;zr6DPJkRI( z+%;_8`c6uE6jRE$bUBXVokhAelFqnmwN5YTb~%emin0rKIE!)|k$zHkUa=$GFV4*_ zbcA!fK`*Ubk)W48mHuzN5L4M``a+>ZzIXbp%b-O2*uoQxp66Q#?DRHX0 z^W1X368GAV^h-e{EaTD3S%F2>oM+~L*RmM5WON0xSuEPK$$N7ji<-#wP8J^jw~0So zV-b3Ez}gyO@xDIfJs79Lq2xz5$`e(XsZB|8?p0ys$@OX5>s4r;{LW`Nuflaj)6l9> z71pKBB*o9-P*M;`;}bZHoVETGy@dmJ#XKA=;o#y=zxBJD!@1Xv+J5nHm|r@3;KD-= z?>0OeKB3^zGnBE>ZQ$|e)TZ>$Z9LLn?;0pA=TT>Ey=iab@t6C>P=SI)yQ{sY>jlqko|8b`piqV-{gV)qB{~dVZ38`@^ z{Q2L<3AndCG4EKS087j1+qHWIR9!ea@o~L?@u--L56%l%6gQP;9TiZsGjk+qmIj^* zOTdtzfzI2N@$wc8c8s;=zx0s?z9r!eZVjeQkp&t!s>1^hHE3>6Ef`RUh#v19?KX&5 zH|NCDHk*j!7FAYbxrmWm##z}W!qmCv&WC;xE`Qo&W>Cb~yuPf>f)?}jXPj${T2vN_ zzrAADqNg?{C{$~~L`wQh)Zw;6sKW=S9rE5mc|KM)kY*IPw0G(Zz0KxeH^i{WiIjVAJgQWI&O;C!cP#T_WMMb?hu)>8`P`6QhWT=Trc&( WC1OQWAI&X4QZLK)(EnzhU&Md19ajhd literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..a95197c92e3a573476c386a9dccecc4db24b72bb GIT binary patch literal 1168 zcmbWxe@u*V90%~n(oCtI=YBm;!?{u}Ia{mC&Jk~s^DEBp)GE2I5sAynuQzG?)yCd-1x`mpV#yLd_K?fd~8csN9xy&pwg*5 z%0y$D!KBnGlrxhwN|i#Hlxo^xO4u5oYDzTz>CaEtl4cz4r)^BwW*p7|!79bH(8(%A zrs99g?bg>R)_I;Z3g|>K~sB&yUoHtJ8{vTtV#ykp*fz~%;0kDq~e%C z22AORF-v?zSa>&cyhbNNmCL*10VyK9Q#2P#Y$7Z(&hl`zi*V$iO5WElLhr-;?9P#5 z_`l6M^CVD=?0_DRJ9;r5M6}5-r;DMo&dWJnBu3)J;Il{S#Ax_X=$X+ihRbN{1cRpp z$&vjzE7cN|CU>5l9W8-djvjlS*HHvZN5?rE(4{DU4V`}cXZ+#NzOaor;St<6P z7``Y>imn&>+G!2vS#1B>8S*iZMT>Uv`PX_D zbky|fN9ima>qRUo?YZi*Iu^2@1LyO*Su7jdU46il!_D~RekL`C-o3L!d}Q4l4A9vY$BE4y`R4#d)KlB%-E2%p1X7SN-1_ypiluJnfmq z8aLZ9NxISc&-5T5>SxYJztkF&ztI(}dH?g~C{ z;N48zd5Bn%M|^sLII43T~D(6Ga`4?A&e~!@43HnXzqGR=JH08+v-SWZWGU3 uA%>R`^{0qOZM+uZdj77C43dL(5vi@bF}zVk^CmvW@i~PziPyl-WAGcSL?Y?{ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..f6b8d1352e1e14502e63b82b2a756445fda74e65 GIT binary patch literal 1168 zcmbWydr(Yq6bJBYVvJDt?(1%YY%iOvnWi?gmiVGXNM2c)B-(qs=A7R-=br0~Tel*9!zd<$ z$<(G=(#`c zPLrki-|)QsV}?D-i-qr;q5-|0MS>~Y(=U<5-O?}nIf2FZ`q%bfl`N8eFB30i%fT2Bo0(n1VK)pX)7m&(Nt#x+ z@h1naqF};uKN*(Z&zfS0k)hV(Zd~C z%l7LDF)9oxqy1xcs1W`yoGO&;Ev*QsSD~fQe#85X3dUD`{>&I2yMJ_re+l97%DC)8 zM?4SKG`sF;1`n~llt)dyLtoj*L-l*$LQyx5m6N*bj(DkYGkH~@O|M4p!TAxJ64hAy zp!#B*phjM2@l9iu8sGexpc&0-=+GO%e^tYov%Yey+6PVL(YN{{eGvBHYS25g53C+# zvtH!-fDyw$jiWB422z($S5u{asV>c#M$C33abT3<-r zLZx>Kn@KJt(z>))`VR}OA0j%6h@qE=Z|@NIJP~b(YZb-54pG;sZc(<+Ey@&Ei#EI; z6m?kpMO~Tny`S_q480NS!d0?QIQxv`QH`QZ(`_PCOWajS99>4tp?3;}B;W2JvN=S< WQKIPxkvTvN6^ON2L>J9X+4u|mS~yAo literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..6f45e19f62b8f5b486d4a82cd226e2a1ef919158 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=B`mLY-Ib7WcvvN}&OK4aLGGj7!i_6s9HP@Rr$~R2 zahQI0a(k($wS>L{xv_#I~ zTDAC{KX2q5gg-f+PcxNw2*}7ebfH$>A$GfTxY;pzhqGeJssZc@4sQZ?$hB%KIB@m) zO6>AiaL_#QNbr5Jf`dDA1-Hr!1&35SUe?GxKy^=3&UZghaNt(_b>aYvqJt*bLPZDn z=_-4)d=(v1FYVkKU#RHN!t1|&%2Y*%#U4*qoZPACp!LDJ_|ILSI_--&hD=HhX&|7c zNGC5Od#CPZGyQ*t;Yt`^KXS;^r+&~6{A?Me>mzl6kdZv)ktt`J!CU&&!f zfi2f{Wo3s$t1mJ0cqltOe3t&#AxGKazvAC-r4y7LOW&0cw8(EIcwG`V>+iG|)Z(s5aDE literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..dad2640ea06f9e7efc4b13bd911ea3cd7e11d411 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=(5eQ;=~6NdlRm8a!jLTEa6awo^Q_e}4m@}N-@5Wy z#=$dK>ztj9tV7$$kb^5)WF00;u!QlQm36q#r{`HAD(Aq<8fo(=R?fk@x>?_6nVduW z$F)k^-pM%}NxvbgU@q^#c#ny*t6tuLPj}PY_s8WOmIdaW(BV*UIMTy>C{ahj;qmbq zyQc*xI50BnZ9QG0;2>{zcpbw`1qZvzh!v)L6&#K#Y$(cj2visCnlqPG(SdRLt<+1J ziVg~w^5fb46dmk94k%J|i1nBiR5(r1p$6oPU5XA&+U;UD?*Y}N$q4W>LN+{o#y zuH+DR$BntdTgjnD{LY^>`AQD6g9^VroUG)qvzP6I*bXHJ2h+G+o_B!i3O;YHV^DUe zUEQ&Evx>6A>}RseUw9}x>{8skKsHy|;d%_v!imZb-=^Q4+`bj4&K{`orn1AFs#D?b x|0+8$pa2y#K8hqB4on{bx*-Z`z8{2kNPzM^pmY$FCSVQ&E&$UL+ydUu_SL*5CU4EOIc z4r}bfqc_^iI=tM{=qKGF>+qG?@NvThSqG!4=xeVeEtqxjBrAD`Mq{i6vnRTu!*N|O}Dn9 z!$o(tWe5Bf9X>S8p8vI2(SdKD!Az|giVnIzk4}o;qv+sm65TW90Z<)K+i?~phYw;N z0e>`<9QcFodK&sFIq3ElIj0pWIryAlx1Bvz$svn*uGxj1N)DZNMh2|+fa;!g{xWA$ zcF!^Qvr literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..54a521430534d82ab09e105a0d6d8dd2c8bbef08 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMVop00cPG*;K$jmu(;jh1x!_r4@4yVtMa(EOWzWw3@ zDTfcsk9nJGN;~MveY9IxDD99nMcRmam$bt&E;rRuCK-pv4FwYSy<{8|zR%+JoGjxI zn|t)%rrRiPmvF#U&S5sU zXRubEoWu3TVz(*R5o!-k@aiEn!p9L}x%+oiNo!Qt(TNiE@56&!d}H0pYO z0@Z;Gl2vr@oE22~%~8=I?dtO^?KDM)cQy8=ab1cIJUg!FOhEUo0wx=55 bm^jQnSU8~Z52QfNhl)3ZL;0}qa&iCwvY^sR literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..804add753c7ebad08401dd5cd3c53a6b3c6e107e GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=zK2J$*tn$}PKUpbEeMu!U_U1rcx$$lg9`{ek#Y!{ z{Q1U89chPtPPsF}rP2;(>OJISO`Cx3of(Wl5=q11Jzv# z-d82B=|6939pvyQFPd=n_cR&LDAt(219=16`;DsQ!}>x zP;`*Iua)##M#;fU>Oi!Dqmn}?2&5`GluUT#*VU=y@Y~!;a_?Ft2g%~=LZ2=wIhe1@ c;Zgsl!)TgVJ}3+Y09@v+)Bpeg literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..51a51196f223b50f9e56b9003fb5248c201ace73 GIT binary patch literal 1392 zcmbV~|4-C)9LKRKDh|C=+ASiF{M_gBxz8O4Y{rRV&%!CFe36JRZGq$+!Av-ggJ@)( z$OWR82Sf*qCKPhe68gr8GaL)Op=Oz^jTjA9SwMv7O1gp2-QF+$fj+-H_I$lw&)4hy ze!o6-2`|MbWvuWi@hKB@`l2I7Axa_a%FzlMg^*KVG#Rt=vkHtly*Iu$`}HEdCtj4B zZP0tP7@<)_?oeqI#})tg^W)+>wevC#Pq{8u4@(?2Kj#|l*~7ua*_UjY9FBc>{!o4? zhg;<(rnp)TSLZ8S{HGlHOm*^=E)GF2>voQfd3-}g>(_1$#l10~**7V1EIj$K;t(Zt zpBzp}-lxR1v*B-qWGm6P2G{+{ln9!UP2YWAiGbI(>>lV+!hbx()-tF>{p}%vf zC+l+_nFj_}N8j}L!Wt#{T^`O($6Nm_^5}ZT`Q074fc0xC?_Y=z;CrGz=JY`Ui|&u> zb8`e_j+uI6%mPx=Px=Kn32;WIge-h1pxgQCJ3rkL(7vtk2j?FiU%(50*Q^k+WKG&z z5GW$6C^&Ebb`h!5+b#=}Me?!=Kxd_KVP!9Xg#WekM|-L73M;F z-5KXpn02@gL|#%M$!gEvIOOs9w)fwgR-yCHl3#E5N@&qpws$Bb*nh68v_wg8f8*VV zgxQ@%3(@%!Cciq75LhK4t|__jVXFje${rZHETQ$^@ZYWnIql=F^NK`F!4Gx{CA! z`3&T*vyHKo`ZiO)-$?Hwt+2DY2J(e|#Po9i2klHhd7jZpbHAmzvJY6i zh5Y^RF`Y~EWkk^ZZS-yiy1$m*r@_K}>C5|}dKvLB<>i#u()-SyB_Hi6_9W9C)VG)F SZrt^8Y3H2xd=M~^3zfL15AGZW5e|bi@dEe4g)0{>MBNBG zj)DxujgLy&4Pv9(6k&bn3ZjckCrS=wg3JvSfovs+(%jsz&h5M}EBdeZpXdBOp5OcY zp7%7SW~8KLE#oS{{wdDOQmkL$iLts#j=O7=wi&TJk@7jDca`*?Kx z&~FkOdHAhEuH~IPn!Cn(E}!7>M^o@a=dJ3CIdF$Z>aF_C z1jOBR-g(d@;=|GSM`vP0)Th}zr;|m@#F-jC&l53ySeUHdC1RYcv)Vrvv0+t6*7~nR zSZh`v3?I~aMUy|zPl?z+dGqmee~PGiZJD<#oM8I7b4?$_5?t!JJe{9HFtTnoAt|50 zY7T6*>?VkAJkz<*La_hM)}agE5Y*0fK5^s>!8?V$<&D>L-b?#FD!xa;=*drh-Smir z_`~k|h*d%~socIIO#*4#(|yGyq4vF3hkL6fXm<;Q7Qciyg6F8t+qSVK{j7wc^ILw8 z{!Kzm54nG3h>YMG*B+B$>3req;|VgfhKEMl(q;Ho^3pE1j4}N=vT9`Lui&?~$rzXj zn_d0A4Edz~F|6~Roy#4(E@QWNtmcb*75H@d??xyndH9l&^NfPC3tcIR843m}`dZB% z1^u&wbGP4D5OLnWX1HBJcguZla0^SMu?(S5%lMGEGNIRfKKLcQw_iC`H0vPlt-a?`-2Q{;0yfHX}wEQ*q2B zZVtJng8Tav7^t~u>{t@BdM>Rmi8ZH@2SqOZ-*dPkTHj%yR$^cvkM`wIq;o<0II816 zeZ@w>d*2*m9`hr>=Cgg4{69?BKlc9%h;w%} literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..4b9865ec52e39f678731c9829c5e00f287e4e993 GIT binary patch literal 1168 zcmbWz{ZA8j90%~0I--sxcfIS~RibS&rLEK_f`my;-k_rXz(b})d_<5E61HJlU7$wn zI-w8x@Ydg*$iyyk8AdoF=(sZpiT=g z`0)#~_MJfnDX(fivV<78Sa+>XU@@LGsgAU<&^y1={*}wZ-3QMvUKTe;R{I}zvoPoz zBEA`Bu`A&ucV&jfE!Rs=vq6j3^<#eT7A+1uP1TeXX;C*5&*#@@@$bggk9YQI5x=+c zEXK5GIXA6Yr{OUC)iZvng+r1$t^BPF4vu9>bu&jeJjn|zm}=rM|2d;U4yFCG<@YBz z^o~!~U5(-)#_V{bEsjU#rexvMY#!IWofRj_c)ScWd{z|T5p(C{#fEP%tV7$j=j{VCIxMbA zlfEyaQX;%7!N^h>D zzW)sAR@Q%in)1Oavg8wTxt|D;rnH4n|sK_YJI(y%w=bc5X?G?8xP% zvOb2B4c?C=H`D$@dqVO##?e Na(owA-9et|z<>I_OJD#1 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..9db17a142e714a8ac137a81dfbbc2445a0ca2f8b GIT binary patch literal 1168 zcmbW!Ye-XJ7zglUH!MLCBG+Ua5 zN+gQiV14LDH^YJ=ql->TgK}kRR)$HJIV&s+GT)sq1Hbfq`SJYU=Y4n&rz&=XGH#O_ zWuywF=@|x%UK%QqF3Sv&$|cfFtv+9`&P~zk(=-0%QR*FrjM3b%Rh^eH+WRk(OO^x& z$R$OR|E+1_RkIXIPacZQWewp$JlwGCeiWeM;q(108*Snt!M$BE#ll1R+`AhcRvw13 z{U5&_nEn1+{oI3eeX!tMg~K07|-i z&A=ofiWe1ZejyX$lkr{4!#E*kSGRXwH40H?3ynEjCq&bC|D>Z$LdZf#U(_!|TB7Oo zc25zSYd^*$1&QF+*pU>i5+UmkT0=}CoSLz)YmP;Pj-|d|c&#Et>^Zo_%^`xZCO`Kx zL!-NEw8Cl7Bi1j?8X83r!O6GGG_EJj)>h+_!B32# zna{K-3NcjaVLj_|#HidCU=OPjyZ<(t#fL$qd?7+U(zC43?Ug zr}o7$&{`Ji+Kmie44im#ua1GId+FfCCI&m#+EeTM8C=Zn)*bd_A-bgKEeK+vv<5pe zRV=P~om3~9SbUNn(XX(uh}Zq-UEIo|tm3_6rh`S(`DYWSv)+)|!wkQ}y`lDy758hr z(Y(HD$Y%BiHCA(6Bq>FOICIYNa_&BN&h@e5+;^Sh_D8$Sb2+E$-bj~u?wrdxxxJLL zxLyeoM7o$p`eQocp#wy=nz*N)_`yPadWEQKAlmMXY3jUB6cDMaB&T|BlDXjv#E>&Y rNi7lO#NiTRYN0cCzQ?2?J(Wh}dQ+-1Pjr3QJ2g>FMU|vNBQBY3iD@taQ2AC`&p;B}=o= zh@v~eiY^M;1uN1F%Q*?{rd`z30+X^iEhr1Jz2|({$Npb_JkNXKeaqJ+XkwGS1Qx*_ zMW(^5Hz^|Iip5#s3YA=uWi;iRbh+t9Q>NixAFbPNHjMV>ExH|s(Ht~iC0`g8tdbYX z|92+IRtBmyzCsjQi|<5*3US-E`)RONh_8<~w^OVT@!qZK2{s{0X4NLS96}6b2Q~H# z3NgD#_U0KaLYZSV`K(l_Ip1&Rw5ZNT%0^;2E%O!>7bbjtvnnGvC z=tNPVMjQinJ%z$0VQKfQ6mF%?Fxo09_+KjNJo$=3{KJB82SzB|AM-KIJY9yNY0r)6 zY8kYdkzMO^WGLGo?2Igz;a5Xhx~fKokY08N(uKy<>&!UcN8@I8XWkKC2GR<3cR?rvjU&vJrDae( z<$^AeW$;CH)U@2jATIAm_kv~y#ibuz(_9SduRk9%9E^d|t-w=leJ=^F9BL1k$s5Zk_K_ zxXhnR^H}HKvxPgKL9EkpnY*vfM6z=a*B>ViUnahjA0vJM|U$}HI>Ea#w`;XYj@M$RGYUSU_?5;=!u zA#-YfypeNweCk+1lBv9dg5$^JGqv&#vD>A?&5p@Cm^MHC>dUU+5VEi8eUr9=L(xzE zm)rdn944A9ee|YS!C`&A)g8qd3J&L1oxd8kN5SFE)0Few4-_1Vd-u%T$D-&k@kHR{ z&l-vj8X!t5RoU^NGi!D@icv~shFlnly1NYWtmB)7~I%s{cF8*^DsBZdXTYV-a zhx3;-%v02q9NzNoGnnb6B1PWC^&eVME6Vy zP;ki1|Im7}M8N^1`rix%hhhb-o~W*0OS9Xjod z3|RdX9hOxd*R(29bU3;tMmc|)qQm3&A7z&8QgmR_ZWp_G52)_ay$9UPN)F3;OKv%+ zD>)qX;Ji}mt>o~edEVJo`AQB<`;Cv^pRDAd`0K<0ksV474yJLtJntwu#1(wrT*sj7 z@I>6ZZlj8_19R|$@@F2(4vKxHh0?jo4h|=|vI8b6JH)drNNL@w>`-eD)Ob_bVNTVl z@b`a}9T>0z6&&JN6_X$cGuHxYz6X?si94b3Vd4yE0Hz;J7|z9|53T^pKsN`MK3w83 L^GqBdEQC4$)u^vk literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..3cc1689b6f0dba84cc02a8a25f078d85700dd8a0 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=PCFw5Ryi4mqg!H>^V4J;n6%r)ZmyGYuwS^5)A_rM zLyh>IKWpq|9d`DzeGu!Ab@<9`__*PMtbB>8K;87-MpBa5_$>_e^!3H z zt>|F23RyGPMs^8(q}Ne>hqK-!M8C^XJxm#lkIUUKahQG>AEpmR!{lM+S~vgza9p|+ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_1_30.0_30.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..10647f8c9ba4032efbbb13d3e99b3cf43cdec1df GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=Kj&oX``M)&EM47;e)>x}lP4(3t^q7^nOID~@0RRxEV39tORegf5< zuJ_n4tLU(iP1Na&qoTuk$5qyvX^IZ-YV1wpx)dEsRHpx*uujooa=gyZqnCi{W*z+W z>zks(g{xt2^re*?-U+;Unqsfy!0Xd^e`d0hgLb>v&2#Na4qk^=Ut(UPQ_2;EQ( zp$m#3Gy}RhF#BONE_rl!!PMapZ-|202lX$5JJdZPP;r=jFdAka%-=9RjE0#5v(E`` FJ^*D$(LewI literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_3_31.0_31.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..924edca1d2d6c56ad0aa54c28b3d8741d3346870 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=xLuw+Ox#iqvkglAX9r6;TwgZt)79Bh4x+LrpV~i> zatNCI`Nm2eX@~eni*or(r5)x(oK2|QEA4RW-1p$etTGN_u1fB{eliZhyM3&-Pm^(& zU|6oJcwffh?DB;Q-RiOqTykfGzvjz2i04+Xh}t3R5b}8G>>~_v4ih6U^yzuZIh;HH zt8vCeIR|bx)l#Ngat`i${4;WtEA1(7L6+iD^Iz2dy|3#+v(S{`K~KCsIoOqb^Z-h z=P1@+A+P9=RI|Ect+S#-!*++JN9l?V^FLj!7VlAX*sGge>a#)7!R6{9`}!+DbpjEV zTYe}yG`ZJiw0iTl3TY%2`HNPZaxS7K-_G~NzWD|wBm}4?MmgkNLM!Ue8?0!+qmc zYs?xRGeh}zg)|zDcocrdnX%1bXG>C&7RZpR3Shj-fd=>j_WiQR{G3TQbreWSoCz~=8NC7%@V z^vOVM$Q1z(^BfHee-ZF@%E=2;GpcXs!otfM5o_YErXM$mIBu|gTD(rg>@_xJh_G_s zDv?DZ9(wML)6|P_79X_zc}hfrIrBSvzv>(N$fsjc1UBr+D0h|6v{HR}QG)fX`KQ-H zB|K^jp9zSU@Za&x5+b})VP9|1 zh&V^aA1Cg+xCO|#8|3z;BTR;R`eWzU%UD%Be(AIKWQ0FEXnrD zm%o;==lY1_`9alprqgY5O2(MJJF&-I!79J1e4AE5L{;PE!UzSgc(g6q@RkD0Z-pyE zw<##gD7P#sRj_Nc?$*7-3dVZ2x?lN5!Oh4IjjcCSUr=np?t2Oh4aWX=J#|ogw*u6>ZC!?@A^%s`e7HwSpn&N3aY$A+X-H0xl{&;58yw+_0`z3r=q zbttc#m=2uQ!DaSYyN|K7nlXX&##*M&?qv+FVKkENqIw?-i#L<6i)11w)c=V{*0^bqAWb>u(DIMKj(po!7z2qSltaUSWiV@wZGy@!?Q zeCh|%eWWw%S>8-@u2O%WRu(r9HEm3{v@?#hFn&q%42PM{qPcg7xiqJU_BuuPT~4}! z_UNR0J4gppzORz?wbMTJ2j919Bdfs;ntMx)kezIWD3;7OrncG~N>u~2;L;1JNB_3-q@3EPk)?h5I zGU$_Dmkjzn`v3byCVsajV=$UUQ`>x3tHRl}|Yo5cCENYX7uGnAVFtPMZAbkagyG`w@ z`E(9L3om~>*TTX0_{h0CUJePREpxgWIn=#V#vVP#p|=0Son^fos?zGOXZ;+UlP&iQ z&o~UXI8!5+@c2His_xg7JQBh(+b(Y4A$W7<`SN&tWJ(acl{~6OQ!BO{<58Zy@kU}B zkKv@H_h0PiF>qeN{c#>Eo1R*Fp9kj_Mzx>T3DED?h1a|)K(+rS^dw**5z!~==5HJn;R+pa zPedW(sGj$Ngud}NPu^W7;oF>yCtb-BE(~u^Kb|cirh9qujuHvc#+2^tS_!V$1!K#7 z5{iz*u8QiEU|t~C1a3*V_;B*{rQaoV7DxQ!3zrd-bvyQhco~cO0`{$IWJIp}tH-!m zMv-{^r)Y-^OY_icf9#jBEoQv7|AdUr=k1@J>5|d5>+)31P;f4%ahd6XjHv$}LP5y> z7*>HLaqsx!R0Z#ytxvl3u7YnGEZfey6oh`GLx&W6zOQQ9c1l51ac2Db9tCrM$??RG zDwx`CzcT$$0TcSvd<_T6G=yD4wNOK52gy4$G={wN6pZGW9JME)9R-&VT@KHYrufK@o k$sF~8-aT_K)kkzOgm*@-MdKMGdT8B5-J<7CIJjO(s7K$1-5qLb7fumj#xUb6)=epI<(CzRx*% z&iOd=aK<}FH^|CmAL;VVr5{*y$)YZ`V5crl)D@Ii&R9$*b4x7w=Jhmo6$8gq{stwCEY6Ut8RiYh*Amm0NzGn!()j3|mS! zgN)?i#n(Ix>W=gTXnYJ7+Wa>JC0_kv)%Gk!iN-ba(yU2|2imN_M>Zv5bMK%1reBG? z%1`b6UM0p|+;aPh5*wau3~Go{p(whz;=DnH&a~|Mf)gqP)IL~#uSJElE@#l5VHJAk zwC571RUpUZEDZZBD`7D#s`8HouV%8C?HfP0aE3+1x5Eunw^(HT*3;&8u^82bh1{EG z@pSLnmM#T{oce;s7Cncny;--bj2!;`^M1(5Y7Pm3pG9PMbGW&mZ+hFqVX{cxp5){3 z=0LGRC-5lwKKm6mmB&wE?k0I2kI?Ny?SI*Ll%3wPd8VJoKyy&!gqH{BwOsycg-3?( z*e88a0`BhcY`$p_u<-6kWZek?hg!Ebm$e9Jyc^bG8W!-+Qbp*&X#uhP@u*#LHCm2N zHoqRD#(4QyhxULP@#`NbQ{(s)FD~6u<6*>wE5Ezc*p&QXr*~eBv?DpruN4~fwz&qFaO6_e-}Hc{GTqH0clfG^lZTx(q@%MyLH3Qo|9w zUU}ijPGb^7?ctEESA~^oucb1T)X57}hon)OJ0x#hqH~vnDqg0_q}LRt! zMm5$^mnCJ=o*VTvhm^adeSOkB`xQE$k@n2II4AYiCOWrD=eJ4y$cuMgljhf{tvyuv zC{_HCi1a^*oxiLR2hS_slKHFfw3>J|Cz=@lUo4TYNgx{L5{WnxH9fnaLjQFB`P}d0{LZ<@uF^)S6XtQU zIY*@_CacjR-6oMLQnyNjB+}FjOQyw;o|IupF-`e94F|0zk8e#g95Q+I+D$LrmlF)8%F!?*2^J&b9L}ER0l7I(UdrY-k>O%R^Dlg=epQ zX?Sjf_VqM^-;Ajn)ilm5(?6`vrZIJ$k}?_#5)^%TP8#O&>X`IF8ddk~$+`eO{Qpco z-y`EAV(HgDxsH!oeO#>6#z$XXxRI{mV~?};g-<6R$KI8G{650R=T$zM_ly9Nun}XY zQh*cry6*c%0h%vG_FpLwV2!ImQ(7-Tl5b^7{!0N`BmH`^ehJ_zh8uw)o?s*;8dIq^eai6-?3_fgV z(zawX5UZ}G-Y8>WJ1uxs>11%H-p6%vkil^0$aqeG2=P?nzWp*0ih_6NXmuitS#G*^ z*hB~}uAJCdBf^;;zqFN|B6LmFM@5jy4TEk*jDwo!pI?+>bf0si^%})k+*os@tw0RU zthL&!SWjIGn3Y@hX6E%VN0=dk%)&Gy-x-8a{ttJyv~kIh*fj_HOz zlh9!!JZ~qwevz>1DxvEZp|xq6wr?$j6YYfd4w5@ti4J^3^po3!?mEJbD#GLCgk>d! p>U=_d79r;_;jqQ)n+a`tFO7tpWG`dA-0LO#pNT}<;=H~Ve*s{;E@uD$ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..fe828615aede2693433164484ce97d43fa1d6edc GIT binary patch literal 1168 zcmbWzYehCn#-IYbj_KOTFgsc5Z;0= zMmG~JL2Xoy$ifu7MQK_gm6oMOBvhKFnUF?kqFHn2-G>CfbiVxfKj%5mIh;JbDa;T# zhnL37QpDPlt#-v0xk4ScSrH&t#2vAx*eyxXN9?h->3WDIA=&1tC&yck+FW_fh5)&0 zlYf9bTmHXmLFBDXtwBBlGz^uf1C#=cd7lrHngxi~k3N{s3Q%ykxAkYK08`~*n!XnT zs9J;cuSWzZrb-_+G88%j^IqQ7P*5jNYD%mWQZ5bZ&*o6*>M+)4mQ$dAY(HSOdg@}l%Xc+n+#KrV$ zZSVLrT(7~iwKM|Xj~c2BH1e0lJSt72G5ws}A{z4|)jiowG!lzT_aqI_xOqSCfZ0cc zMSmt=?^24eed)Izm05(cnDD&{R)n5xt(A6)u&b%;jaQ2Z$3GT+{yrkY*OgwzPmCDy zZ6nqejTom-n%f^(#b~&$>%EmD#_IkGV_~@%(R@ej$xbnz>byHrC&ZYtjrCgmB#6E3 zx*$}7;%2=qI8g%rqFUD%Nuc(3_W9OHa3gVvY2il+y3YQ#jqw?1UBA=6mOm&I=#O$=(vz534$Fc@wb8B6z(B7%xKct|P5#lW5ECbJZy z_R9VptQ3Kl9KY5(rO5B_j$hFtMeB6?4=I!?%fJ*PLxOSl_@G9H_A9mVT~-+uRyi}8 zb7bJT*X9{&xja)HSJ!jy=Ul}(+Z-jgzn4?X>6zy_@2Pv{d**riJbC7v+4{q{duE<9 zkvbdB?ZgSRx9q7wl0*7P&iX|3 zBIkJO=kCl~+(=| F`~?n@IjR5v literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..b2d6ea95b41c10ca8a3dea0603b1cdaef7b3b1f4 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV=HLhA&m?3V98Pj&2PDck)Y_ZI?OG}0uxo34pvos1 zhi}?lE`3(A4lLD{H$OMYIyinzJ`;Od)}b!FZ~t*&IfvbMcWg3@k#qPS{CMf?C2|fX zr+8H8`=O#Nvhl2WMXuo-0WR7D5tJBl|>?*yt7-+qzdo}xo}kk4sTCMAcdy$_FM zsVO;ttefwpH zRd!$ig9s>{ipqCLgYu)Hv%(Mb?-hXklR)Ey16P(D;1?oOyb95NyD2ht&QLljg! c%%4yiZVt@8P^kKFsCpPb87dBSheNUh04gTXqyPW_ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..65c3d29363f5a8e4fe9680d8fbc034af43048c15 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=EhozM&6kpK_-MCqBWJRVgWlHDONv*^IAm*on|}AR zjKlJU3f=BDvJP86oR?qQBJ1!e?U#`FSy>1DyDDsrqH+#7!TvvA#mYIXJX!fBWSN}9 zQ~M?N_q~&IP~LX#l7_jwg8^$@dSAV~LvHnos2|7W9j;cqR5RpIaQM8rP9aT4!9nP~ zu+;1T1qVZ|mBJTF6de3h?RZ&dDmYx_nReZLuY$uDckPQg4;37Qn-82?$g1dIxG(g` zHBChapsjnk{S+PYOd7U36e&9N?KsA4;t8R&rQl7aqMaU&-MV(Am!>D>(!xy2wlJP;$tRxhdgy2dECHt(igD zVa+9Go*gR64ySo%vcC0Dc6jNb_g^tr*@3;~@Q<*G$_{EURd!$i0}Ch(;o&A#aHvBUhw;&A52$`WC=KHWLHRIu!1ST>8KA%fsvf2eCQd4i OOFv8;7fr|>6$b!&9kQzc literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..a476d11f5bc1e6807038634fb4cd96aacd3c2f0e GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMVu`P?eh2&%$g0;@s)uhQdOjz*4@Yy;UhqGeJssZ0+ z9JqRYC3e}%I*8x-vqru{)*&QFeL?31S%--y0w;f#kaGa)YKu*jbKu^(tn&CuIR|&` zi#dj$TU~&GHWC)2=?xIxX+e_O3qn6{mv35>3%`c|8S(!zrs0 zLV^?=9?iFp>MT=mV7PrHc;74q2RX4U-_QFL9G31qD6aNc!Qse{Fu`bcMTbYmZ@4CC zD>^XbH?kb{S9FkHCHC)Uv7&?R)79VgW+*zuC^&vh-UC#3e8%o+4-_33nf11wW>IpG zw>!L!K~u@Wt}7`Vb;DQuDA1)9d`bVv=^AH>~PKGy@l&`Wrw&sZp;<8 zf$Bg3^P>K{_l1Z%BtYepAoPJ;2>qY|N|!Hgh0h%_QB*~G|b&FK03{S24Mby(P+|eF3cR5I+#694iF_Uc^GZs007ETzB2#- literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_1_30.0_30.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..d5a33b81e8842337949a8898b7ef91cf590e3a13 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=ZkN7UbJ(REj_=yh%N8Kzz+(8gp%`7NShhLHQ z0>*uE4(u!6Etzpm&cQ`qat4#UyaQNUy1c_a?!3Bd>*XDOH_j+@_#y8gQEs-WOt zwf&oRmy3eK!8o7`GZY-|&wTv;V~>Kvzbh3l)ix?P$O!N~j=rkkVC}v5&V-)|4pD6u z*N)06I+Pzgd;XWBqQn0T)mge}iVm_%c1=#|QgpDn@83IpouWgO)YG;zmlPc;L#rAX zzbiUSo4{XXCavVK_4JbBYf!@cioPg0Fn~Zq2!v(`g3t{KP`)1;KLS;q158~sMEpYmgkI19p(Q3l=nH)iS_jJK zXoB$J_QXN>3^3XQ%7@XRP`(9}c0!|}_BVt>#i9NvLae-j{LE`8NITWOZ4G%$!3P{^rX%EPeFmaQY5eher|O+b=T6Imn-PTxIPk=MdwX zGk57kIftw%(nj33a$vZr5D3G|HCGVi{eHORpW_gF$+@t?C{g!t)`|*1P zpOS*ZYn|RAXEy~0t_-D|iYx_(iTqV&tNRoj)_d_AJlLe*aJF@crs#DAhc^c-mA!r| zIB@?tCsQx4=%8tyBDTd@(ZRjwC;!WIMTc{efw!c46dm4%Ji8pQLD7MGLiO3!D~b+U zrv;Ah`TB{ lw~Ih^SD$BTe^YW`APcCV=|ksRK;>cLeo(#>nm&eM3jkHgte*e? literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..430a38d461a9f9e747cc1815cf55ef7126b0d2cc GIT binary patch literal 1392 zcmbV~`%_e97{`~!Qel`V!x(I6(R21(7ImczB!%zTy5?{Z3>z`0;<5{<1G1nHrh&nL zsIbb)O}RND7sbnf1WFDQ$pB#kQj=&SE0snfRD+m-&|%)kf1vl5&wQTe`JVTj_dWSR zn*)Qx>{NSHdxa=tVx(E{Q46b0-hzi(FvXjb%;9mL#G9jxvvouG&P1b9PmBrQWmH`B z^iX@Pl04M=)c<$cKjxR+o^ax@*q@TtZ2hf44nZzgW-dSFu{Z{ zU(aLuhm>JWIFE_Itas<^>E*82H^Ulyvg&E&DPwc}U4A*fhnX zU@D?(`9cjQ?!7f)uhU?3>ssI6H)wFbKiG0TQUgPadqc%O4g5THFYYhYp!{_^G3=5C z1(ugn-}z31y!mcD3x3mJY*bm(N-p{tdRzny+8pw0Jq7r6{CqhhK!BIu!?_VA0fk(v zye3URUTOE|t|bDp77l#>q(Q)g$=bhe-cWK$&F@`&AOKqrnhx2C@aivYj#(r^7jVYj zuu_C&Me{RM#oDs25Nh%E7dak7T-H%F6LFSl@?&Zo&%-2G8j(*d3 zi5Bj;yAu|z(ZY3ZM*BY>YLPk;dcS{{7G`6l_oW;ywky9+?rAN$+t=2|Uen^6)gd#6 zTUsohU4Lt#nqA0cY&*)RCk7v3&RG~ca~OMx6^EItX--8fI>hQl^c zPFB_z3mF@W81==Bn^*rNt^0pf0Lp0}8$^6eU#u(zZ6U=qA zkKr`)2%_s*=5-esA2u+0HZxWeyBe7%6G!TpbF}}KQ_P)cU#@_;o>)QWoI&TIKhFAZ z(D`NOGk>4@R+7FS-b!;dbU&d~ccHm#x)%$1Cvp7w`w(|heIDf-$)Eo( TDteD7y4POH*@(Xq59i}Q6EK)3 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..22e691d796244e87afff6ccbdc97b9247f241a49 GIT binary patch literal 1392 zcmbVKZBSHY7`;nFjtm+mwgY~xdcQ9blZvZpol18Ylv*J(&|nu?b~jcR7X)d8R+~_V z7-vMvNON0qM$7n68>1oEaguUi7QZ6DCSjDpQYS#oq|`2R-|u7D{o3Qp5lKB0`pu(sPqo#G8`+bqWiv^{v5*Wh_4YQkr7VVo^5TXkS{wV$;W_ zrdd@iy1e=;{~l%$y3561YEyle{xW~t&4N!0uiZ7oVn)a0d+ulsWsTSM%i}o|$#6dwKjME!x%oSoH;xt{;pMaD3|O#PYcU^g1!!nj#?T-Ndh7vq^&!<)|3u$MHw45~pC9iC6A?A>+L~q4M2z1y z@XhQ*5l+{M(+^)4Vd*_R`?6C+dgj%_?>-RG^lHN=Rr^FVG`IYoe_X_*z|P1OXH?(R z&oiZ)B6PbCH#`|G!Kyw-&kPCagB4t>Q9{$NYm;hHB{Z7zYKmPF4xK8w^+vgbi2CHG z68sW|+n?~gga>~6(Lc^f$S5~zBMn%_@ZmxpT<=( z!kWXMj&{o!nirijuw6z*Y;So-Kt^iSoePJWWh6(2DcibK-@w_F?0y-6cY5}}6rmu@ zeB?wdt6=EoVD#Th6b!!HnfuFX1*w96N5e)1%l&niD=QSd67$2ec?T2(9#xu6tqMLX z-W!;6QNcfJ*PnbesDK&%d@h0o8U{TYGMR*Tj^;=7g!iq}&asi`b4U9|_!6RXlXG$} zlQ+7?7{4!HJ7-8=v_AvkeI(bomE@3o6l*orTZ%}|=Fxm`6Y&wAA$8PyMDNwG+o$24 ztr|KA`gdqGwrI!@3=*G@?v>=CP}9-5d}NOnG7sGst$k!3#-aHP)KB(Ad74A_M|0>s mAUSj&G?)7NX)fu9$sW@u?Ssrg-(v)Anx5Y4r~lDdbl^W8*LWTP literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..70a659c0a2498ee4475d3c2980d21b7439613cbb GIT binary patch literal 1168 zcmbWx|5MX-90%}Ehvl74_Sv`3XQ1gU&N)Tf4I`u_Pdb-hPSF&+t?sG;TLc6&NL;|6 zM1*OuUHRoWsg>w)7u<jHY5$+@6TV*>zBtpU$58u z%V%jBd-t23Vh%H9>TFAKmQ9_kQtPcr>UfpfT4*b=nG4=7v}Ics`>&bvi!BTN;v934 zWg)NE#j6ru)WoYQRR6b@-7&>Z)QDJY`{HPNsgA|rjt?wZMi%}j!@nJLuuwdEdm^Qo zMY&m*q3vUF)uFPk3b9z(Q|A+L5*!>YoeaM$K}X!ZjA^q3v#I@7-*E}vs7V^S)h2=a z{JKEg=dE{NoCUb;7ZN+(CxFa2{L8|BbQx8~X$a=i0`y6mlHIesd3{gu`y2jg}; zN)E}f_??ZM0$+x;ze_e1C4n?&ffF*!i#JI)~YRjzk~ub1>=0DqfA^ z;WiD_Z`SaLG;MvndLIvMhg!V+Lmp?IxEzlfdGxQUYzTOHB$}rl-Uqi9P2>T&9o`mjec7Hy4B8k}Z-% zeGFdT)l{`EGX_rU3AeO12FzmZJVy1@QLCz{H-vupQ<`f}QU~g(tYD{0mJ4o~dr-(&K^F*U~c`CC|N)Jc;eP%5&_pXMh-JU=Uu1F?M z_Pj!@Jf|lf2qzMoHfxEU_Bf*G=U5_}B_@W(qKKnkg~_`f_X8sHaGcuXC*rP;+A=__ z`n;FUb8pdnrJK52Ftdy1Y%h^n{R4GpC$;bfb?>*-+AGwq%R*o9*LIqn-%vAzyuXd+ b^(|DiQbWSt-m9b-QDh{mJ`hN;PSB;nelCz_CPkGX&G8NHw-mxmYJblBBhW< zSrIi$3M;~VB3eS_d`PoaTCpi*i4bTINnue~(DZ-zqFxmAfAit@c>Jz9!MNG5!%I>i zIjqSr=bNmWm1@l@i%t`w)>v|_`>knvcja0$%v1TewCsGdC!e30mS^_Fiy}hQE0!+~ zQ5UQK_suTvYg!7a4C9pV#jq$DG~qt={>d^_9oXkLmzSaY^sbQabuwrN9$kF@LW?KccN6=5+g_Ug@d*$CONL!&9|y5vTx`c zZwg=U`Ji_Rg;XzVW2=F}*#)~Dbp;fDruT-Pvr&lR?I`V_VCzyhS;r{69FexCN@+v~ z7lv(#qG4TYSreU1#T4w_>x-|Q8dXwTj}{ipb}@Ezivs4SHk(x zGmxW1*NxQ#rA6uV#2 zifbIYCd;~mog990`2&j2984)gaWgp;Y(Tl0A~3>m>i}GO_6#G3+F z{qCtbH!sJ!b)KqL^}V6g;jz07Ur2^8on}L_WN=oxce_h=ZLf5fI_BnCB`%L6GWV2~ zR5>EOd{wfv=JOTFQoZzl*Mft$11q6sFwHJLm1bgKNRRG_D`e1EQyu%M%wV`_d-B^h z2FCFlr=Hzn;F!7C5q`}eWR~KF1r4I|)yD2j4O}Pp_)gn3Xzg*FYxHUm^Y^cDKXhtf z(O)r^hc!4;l-ROuR)fhp?tFHF790EOmzcA)kSEGhmQ`pmC52nKW-a2^4xLx^YEiJQ ztMA1FE&6_0oO(Zs#hc5~7)fGLJkQVaZ4hm6F%Y2TPQxYs+^WfXGw{inzW%N(?AR|bT34&OaXOpgw6==y}W%)I6x zY-;FwEby?FxdulwdGvII(+BK4rbmV>=e#`TKDVWlN8`%aA#a$+UzPh;)y?uS9*R66 zL5Cy1-RsWJ)*LF8BnTCa`o8O zLJ^;xG-iD*izw=eEm+eoA~?H$I58yRo#+|Y{vpC%G?6u5)WcVIvtT+?kB|CRUw>%V zBV!`r?k%q#DrK3eChBJD`}uqGKG@Hpol9NzL2sdLp%zo={beU%F1(;9 z2Zj`(A0_?IxT5XjNz(08ivG2)6sZ3{k8R6W0^*pEA;bAr^X#BdjJ z@GLQfzE9``>8Qg*<^b`Mmw00z@iPsi3OdWG+|zSBCD( gE;3h@(S7SkB>}!x;;O7&!;)?ccP!mdH7j z>nh5Bc_ZhrWwEzVoTbKo;#$aM-)=WkLG`pt_%RS$kL%9e$aJq#MYD*v92~>CDfXI)#Ky@r(e7a0Z4(9f+ z*^|_i973xa7^izFIh1S_{e3!5$zjrmRbLn;D>+EbVA^lI9jNZ|^c@+ul^lS&HqHGH zROfkU^(AFxhsiDBOW8e?9X9TNGtVYR+2O*k#uXB2jMrwLgk_Q zKNLdv7M&3K#Z(CWV>yJD-3p-vw?OECl@MBF284dl1fdHmq5NV94RbF8)Sd&05OFx2 j4&gIE-3to`nEM@|{$&V(ng{b2G<;y{;r@YzQ@8^F({0-C literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..38df74e118fce7ea9b830cc32b5df96f3a09d177 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=Z`xfheNr+G#*4O?|45Q?D3G|Xm9$#MVO<}m+?mfZ z4zF2E1kG$@9li%YUOKx)*1_Zy?@ZRSvJQm~7Crf*at`aaCDq@Im2-Hb(_7@cOwK`b z@%GfU@8ld(B_BnIo69>CXH0xsQ!nqZ;oj~C&yLGGlxcm=)ZkEXn3~#=9IKH;xXjG6x#=xsf{q}W@@!S_SLycPLM4%yn@rr({c;l-{h+ivlxBbebaxQq!}Ouk JgVxElymTt*!6$wN;!w_ zz9*mLKgl^9XW@U=X(jJ)HF#gu`zCn@p;Iq%BTvgas4wW;@Q_o%!R@x(Dlt6;hZM0b zi@k#s9GU|?=QflnI4tbBH*M=I1qTfiv&0wsfa>y3N69``a7bO15E8_$=+ON1t8cru zqQfGEZudR@iVg>&6&ybnD>~cw!~fm@xBS~cbtj+N zFZr+RzyJmoP#VHxU{HbbVYCO7?*ye8pa7;1rVhr3(J*mz8kae~5c3<7A+$p>lmb z&>vbMv_>a{eozRZ52Qe72B>}p6DS{MFN_cKhaXfv2u&SKJZROxo?&(NP;v+d zx;pcVk^=)6L_=vmC~bj8heG)tP&xui!_=e6Hzc5`OM>uW;te@a`3wjh&UZ{K%goc^J0JXm%6(Y_M2c@C@fvbbL7v@eFKL~1GGOD>SeK48#u(0|2Ac(2D>7 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_3_31.0_31.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..3eb3bfc8ad2d2d5db1fda2d8a53d9b89307f9db1 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV{mJLn{^gQ#$l?6CAU#;hVP(DYl#8>a9JZaiq+$L< z%HgxiU+IN9(hdf@)%m$gr5$n&gP2P9N;|AtUi0-HtBk`l+2t=h{A3(}x^8cpCgWiE zxS>GezKla&|R&cg&Wz7nK}1 o+dr;V`ljT-fC5y|_$ZPz;Go;*1hwA-N{2#en79R$&oJl#02h9-!2kdN literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..7062c070a4a3399316a602898e60e9e0b8c6e37d GIT binary patch literal 1392 zcmbV}`%jZs7{^;QV0Dptt2LWYeq^UPpuP z_*|QexU2|9RExeVx=Q#~M4fp#a$7#6Z zZD$v&7@!sB!`%HC@W{DdH5|%7Rzh+6udxiI4pz-LoykCwp)oe6oPnP2emt=C0t1~b zg#$sqF>u507eW0(@~M7U`}P9^s*5g%exAA9TZHh- zBlkU*iV*tsN3Z`PMQE613mHfe;Y5-B*yTbI9H ztrUIgs2M9}%vOJ>I=u=|9%vs0%X56pKA^p*Xgc_v!C!)vD zH->ru^Rv-^7wa76UPZqR`-f1kDk6Dls7FdsA0bp8CCo;4S&7zH5O!1(c2yEuvCmqL zeTNChojJwWkNH;QMywYdBlX9aKU72Xr89)>rZS?NO9-uaj}g>$ z$W@0(-G=|4g6}tka~V2F>iI}D&QKk6Ph-LQvd(} literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..a5d0d6c05433399a9f6e359ebe4f3f8b505eb796 GIT binary patch literal 1392 zcmbVKe@v8h7=O=Fl$^`04GBlbdVjx1Nn!}Z_$X?~;_j+}%YfsMLw+1^-XRQcu{&a< z))d4d-2_pfwSl)lV=JkRrO zGG?Tk-_tRbj9bXJxwbfk1ikP^!D_*v7YfRq6;5lJrQDfsoAYn5+Fdr)?<%x9Y^p83 zX3)pQO9uT1`v3bvZFj!zy1JA_cIjZSM`4jMe%aixp2dl??XD6Fi|%#3gQ?XlmdJGz zFE_E6e{^4huA9Zfh_+9D{fvFfPZgT+lG$|xSj2o?!6%3=5WpW#tD@-U@ElF6Mo1?%volwN;%-B^hCF4?KRxl-0K}=P2 z)Jv=ac`DKMAW1<~QQF|hCIz)d^$^<>>`>Rg?_&kmx@NOVI~4rHE%K$ERB)yxOec=0 zJoOtrGp&G`d)T5Olc!;zP(#mVVs9h1onXP!w!fIzbGnDC%Vc0 zs4lA4L*}9Vb4ec$nHv>a9l8$>nJYkaql)w)bAs-Z)Mef$`u=kle?H;mJ&hj1XG(~l j@R%IUrg5s9B1k_Pr*sOYPyByKpRa&ys z5zPxt8DdVhF+;~tk2`kEYISn%!*SpWERh@#ohmuuvpVHkTULJ@lDqibEu0&WGczm zJIX?uo!HayhDGB#cWP_027^28*>x*4$m|*Nxym$f+_~1XxmknQ_CwoR@A6=a(2e{yN6tPn+N$336ENty$3jltXQA z#iEO9EhgXH>o{T3LQER;@3(2;*^(tyRcjI0JJ<4sPm2Zp4QDonwAl2!`{(5mEuyEF z%)Aco5VnZ24%wS}^VD`7yzMF1-gz;HM^YCU4lbHk)Zd1h+ERrkkavglI5%}C-yYE;wtOvbK;F9a-Sy|uo9qo&cQNyRG z_KQm2PYhPvC5lteh}im?*p@!?6IFE7w;1BSj}63G>GO%*S0$oz-bch#KAqT5oJySd zAc;7Z#u6iMfkyapSn)5xUAM0Q5pNso`@8^A<^BhN1>?Zv- zsl+15SEr`s8gta4D)ri3A?je2dRJCXUQWv1<>#7HveTyY;uXQF zRV$YSs|r;Ad*%!%Yh9846rv1N{2DC?dgrh0>t5_>spH z?(1%(_YPASPd<03i=$zz_8Dvrqj9c%7q$vWcW%b`lS{nR%Nhna>4(vNx$ zC~RP!SUA*nD2rOpbLjiv=eXwN5FWJOtJ1~6sx!*${yh5a-9;8H4`p?;!;rwE*tO6* z+Q!5E{JI(*?)5M0=8 zvq)g1hZcR2BrTD6=3<08@!m5pYOyZFqfeBebpm4vRTjdlMT8;831co2-nv4#vyM>O zNH}qKnl@=WVYHL@CtC;`8VF}yCmgs$7=MNkcEW5c;j=u!-$!WMNhlHL-Xds`iGue0 nUQvtG2{~~eo)mMQ`xEx_&wmi}@gDt!dH&A5gWRi3Le7joO=lq$ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..9b48d91a13537e8c17b0cd3b76abe700d2f2f625 GIT binary patch literal 1168 zcmbWzYe-XJ7zgm|XwoSp3)iNVBVwS*$B*n4by0ot+stOV`ie&wmWIOzS@{>Pa3P+Eyk>*u{>vCm}c>! zxnY{an*TjhyVX_hs6ZCcCN_3iIE(z;5ld(si{7S`cS@N>XjjZvpGp>mq4lx-Pgy*S zyq5a8kHv7}g@aE-4(1B~o;p2;3lI7SE6p5yCnfATSHK}6WNpr|Y7XTow|eaD9Ny=Z z4U8N-d9?D^-X7eCDD4!G8bZ zuRzSS(czam1@3LIq&FHA_?^D>@O6g*2{-G%mtIuB_59l3lZ^@t@nS}fTY-fO0-Py< z0!sE}_HGLo@bYxR$f`I2%icW72$uz9{krAUR0?>zWNbpKfSKb1`UE)6k9`o8sID>P zzSk?!-DW6yWL6?tsvEsipv3V-m)T3zO7tG!@S}yX2CL9Cu$7Bn zqryCWgS;+71ykJh(@R_`JSi1@=G3a-dpCd=I#ftytVjFN8EIDJ2TJ&o-+I&$EsY0!+vtVE0<^}CKgr@BW@DQ?-Q-f z#NHPkap|o`x%d-tMi;5?>?DqS@Ys;q=8@625ZBUvr)d94bl&vywjsO4v literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..93e312d123f0a9833fcabcf3361706b158ae9549 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMVqpIj@uOws~@;|hm3`vx6Sev$C&%Tv14zKRqTCed* z#^IZGmrI|Otb_5QE#^O(WE~15?rSBTmUURy$0>J4SkB=!i;19FjGTjdbsWorC2|fa zA3MHtzLj$*bg<~jH*o9dv=lrWGnWY&JQ?J9Da{!=?Oq_H#QG9X_u5!oYkFsP0+kFLNd(2R%jk zFF9&T4n8qk-Y)b~a>$(>MnXR_l4pg`G^pfJ+N)Ems66US= z4^*f9ZTekhWrwb`?ukMk$_~pHDs;Q&C_CtTR)khfPO+@4&B_=H*reP#xPp0ol&*R6ukpP+QWTnIm)4MGc)LTCdh4fj_% oM4TZNN<;nI0CQgwL>%UBn7)QURP`|b9DwR;fcg`r{y@3|0ERl)1ONa4 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..48e4c038e65bfd958cd22482a6686a705e4d8a84 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=$L~MNERm9NP)L&z;7gWqh`Zy)T(MflVRlgAw}+o) z9F{Ls=ytb}b$BA~UAM7C)7moGz6pIQXa9@v_cTaL8S7naygifk42JxNKy_mOelBKJbT}C}`ST4; zMTh4-8gF_16dhPW8jBPidh$g#mQGW2SiK4eb}2fXdTPJq{ym^Ng{yN#n3WvZVzQ=t zsw+9DO#eTj&RfaB`O=iG&G||WiM(1ZFD5HFyxh|0C%prx?t_>|z#SzARqZv7tqjTz z&S{R;yHu1Nk``VwdGDd@&~PVPPbF8`VZJz{M&v|g2i5%%pSrgyJGlIM`})95pgPm$ kr(gdnJ221%s8DE+6I4IU92gA~htUi;08Bj&X&MLv0G%(a`2YX_ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..d17f893b4bccc2325de79e2eb268e33ee4a0b87f GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV*V}Td#N=cgngTuNHl)co95`M);ng}BhrhP-nnS+J zI9P2tQMS)s*1?Urf?K6S)}f_x(ZAjcvJMB|pZWM*LeAk|>h~v!iE<9scNA}&UMc5L z9^`Y{^pl(eNZWiXd51&dYQe0{@(%xd1KjdY%R9(5?Va<6Q^CPzZ_qSFJq3s8AJ6;4 zf)pGojcYr*%M=`@=Lt0*n5Ez#Czj>=d7pxVZQy@5jmJQBJyRTF*%ckCj%!*?(pGes z$+X}2xWA&qHro*0KgEg;S1Vqs8O~62h*5C-n7l{Pp*s57s~Hb~>ZWBsIm@Etu>B&# zJtj>hhpRl(uABQRIec-~zL-;}|hwgRC+g0*&(18=+eo`4%bZHTexmlcKDj#VpMe-sBX2S z&ien#4h&#m0j2$*G(?nv0iEvwm3M;DFn$n}4>JcQ&Hx24adbXR+!3lDm%Iv8-UO9y u2!!&Tpft?AF!c;j0MiGv4@Se(q0=yZFm+B25D^#+6Nl06PEoq`PQJJM5mE6t%8U+TlBAudl=|X$O;r?G8;$G7g0xjb1Vi^{x|71WuN5*s~i5 zZp%3QG<>#BRYlgpbcMj8{v26{B01}+Kexy_te=wFk^EQI;SJY>>a(tL4!>U5XBui+cCWT&L*pajnv}bC(ny1YT}m z&-`7{L0`pprG>PTgKzw!MY;A$4wu=iau*~kIecHRwZT#jX)*$Qk7r9cES_Y===(&< z;Q>eLmu))I4zl(A&lO6g9iqPOyw$Z=+F@Gule1q~WgIR)KG{~EsX*4@3TK8=&JI}z!G=kq*BIm+{J!nsaPX9K=*fBh zd*wtqhnc&lP2j&J=Wx~VU~{FCyo1n+*JY2h#Q{8n&S z)X(G7D6i-M(zeZ6(ZRjwC;!WIMF*fJPPraMhn5%0%)uKJ9Tq9?{L_9#(E;eGZ+m_y zIy{*9`29y2C5L}kDqgBNDmk>&T-Y3$s^kE+u2ae3(5GL^4zE>mc%VCB!HIv*mf2lGgTF7f81w21LCuZonZ=1UOv*ggIO-CsV>_j{l3x#ym{ zKW$@bMwX9cm!yIz)RY#KFiIH{uU*MR$r$bSlAR^_#kt!{3N=str2L{%jp&!^@^@%N z%_^c~v2k3KY`5(HF8}u%Jx9DR%3Kazh%E&w44IJ z&0Ec?wG_;|%5T&86y%&zJ^x$<1(~m_b8a+Ia59wp^pu?fyD4_ee1QU+e-c$TDds%E z>oVpjc%q}4mj~03oA%)QMbR{5o?r07O%)C45Saf{0S&#>)SlMeG}u~au2h(5u!i`s zS;uL3GB=vM;vx+X%iNYFztiwu_VF`!=f#}s%#z_y2G*wjT+pdtpi^P}T%W>#^=Qv{ zu9g9bscKgF2?GzM`%*)j8Sv=8w*J+}K!&d9N9Tx`oA`LCeVPH-RHLo+VWDlc`0+9e zW{2+Aw_;d$+!8k*p3cI5?dw>WZpdu^MbCn&j2Sv%VFB*PgfyNMb7OwW51cFtAsZckwh2*H(R`K72*YMJ8A5`GW_AMLm)y z6@U-g67goF0EWL~6PB$KKwp~F^dM7!Np(p7=nes{jZ)HHg8-M4S7g_92%v~wShZz9 z0HG_;nK&*$ZT-|t#Ebxvrz^CP5R8P?s0&R*->N4xHW2CzglBPo3hBn&9BLzSFZvls zFZvGD4y@b#1=dC1xS!~yUlMw;KN;#*F`}z5Z)hiaLo;DK-n$a-lZW?~ z;2hLApD^?t_#T5ej}Dxt4!INkM9h28S0l%<&LgY~=s&`or-t;Ef_`2t(Z}#y%d`KG X4%{EacUg(L4)d-il7H4`-ahyjPv(@( literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..f2a156bbad2c9f74d89fb212882fe45358062084 GIT binary patch literal 1392 zcmbVKeN2>f9DhWc12UntxdUIG+n)F56lQUU3iU~$SxY=<&dd$CgVW>nxI5&Pu#iTNp*pTl9gan`iHn!}Zd z$fgx79G(qLcFlHiFj_+Q$Io(Db@`6DcZ$P-p)cL<&T?o-9{Zx?DIU|yIzt;*@wnR7 zyH?o9V{Gx6x93}V7;hgue#OHhp|oS(Kr4>}uatA|9p}+-;f;#&0FT=A=5v`pgmsGb zy5UbA;~izGQA-4v8lTS%CJIQ1F!v0f7&bmJrBnxiwKB!9UWT{@Gp$`fiuK`2z_$xvsyoFRXha>$?|6B{=6A zxGtf9anvn%OvXs?xsR?cm+^Ua#+`v=8TzypxublHD(22;|9%ypyjgqSendrdky)QMq+3%$ zio8HV+r67An1`QTLlkJ}Ez^)GC2t3bmuu)RBypni5*<@Sc#0%W>-h6X{E@m|x5mTy z-*s6M|2vQP0P#iZGagcBw}##dQm=~ed;ZPS|9PuP9`WUOk-TCJ%|z!Xb!a@fPK&cm z8phOUSVj2mTJ4=!sUfqAAoWA~ogzs6_)D}rkUqV{2Sa?ZB%ks=T9?k1=F>gUzUbVD n-beNf;*a)4=S=T_@(kVQBlkk@!M~IAXVZ}0g_qvXKfeD0nlg7- literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..938639ad495d44a2022629df4079ecdbfcf4fb7d GIT binary patch literal 1168 zcmbWy|4-C)90%|Z-9o;c@VWck=X0L}k`LN;K~!*v6_EFAhHI@uGfc!S?tp`sAaw{* zd5kXg5Ri4k8j8eWh^~YoNJp7<&RfH)H65GrLpZ14Sh;np0ByK+_kO?o2YUVT*z@&z zz2BeDySr$oW&7?Zu8I55SZQyla2WFxV?osm#!SUnRqxpEuQ z@Q&?WdpJL3%2YPxre`Wn<^NXPS<}D~mzqbyftY27iO1HS<>;~!9;35mP1{;{EG${v z`9nM`dA{YRgFFuJIx6ASST6D;cIiFHGq{E5V#m?7)I$W<& z^=}I4@cd}4+9-*r|FQH5p+LmV#6YL2Ttvb%_)p=*`>0#cr=fd}D z8N+=6Wy~bw*3@|RsS+85;pcX?$Z#gbjW-X;n18z=ttKcV<)F>9GbH0myZeK&hF}NoX^Gi&T~i5x8C#B5;Ze5jbxvb<9oW4pCcK-hQ0s-cP6-J=FOg z>huw+%=US9-)uYWzslz4*nF&w_Wzq_9izE~Y3-!h%Fgw$@A=t0hW*bX%TwKSKg4od zFU?uZz-gMDK5E_1#MbErV(7_LqPIf*G8eAJ%?4s+U<1)~I+OUTluMl0l25dlUm||) zdXc!|$RXZ*JcD?#JdG%KNJOud-S3GaneSU7-&JydrwVt7ocIg1`v$SKdYT%zLi-h8 ZQNOuJtz)h-S1zRQrFWAfxVX@+c*$2W!s%amb( z!LlOR|JI76hOpjk{(Lwlt5v}YKHNT~F%mr=DVmwi>e{*$)mCGoU@fQmL;i1i@IoJRMp32PSB{kZ9Ay<7sBty z+`t}%5Rn0&MwNOY8V~G^ms^DxEs8MGb|Ln3H9qxn3UT69#oNzQLVQ@~rF+eYAlorz zbgD%-eM&#rX%xY6HF~U}ScDDZExL+k5mLNsQcn$w&>ihFbo84D^Cr)O)`*dM-E%>d z7*#zQQ+S3L-hLgP6^Wq=w7*+*ON`o#l?lGD#26|0ZgP7wi12J@JcvQz+oO0*;OOQwB#o&dGv=O5ezHRn`o?LoA5;oVcj*tj!Hrod+$aoab6)| fb^)O^o6R#>YFM)W!`rvWqgm(nxu5k2mdW@DHoq;^ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..351e2e1adb2df7fd30cae95a7bc29739c79d5dc5 GIT binary patch literal 1168 zcmbWzYe-XJ90u@}2AN{#>})$*1g#4#MWo9bT{eAGsuehAQ_S^2*W9wyw3(L-VS!P0 zp+dSCYFa6h#d2U-R4coE$aPaA63R^TlF*cJMQY8x=X~*F@0TCX^SIk`N zZCHf7RQ|tfUTWi7_r_2Pu8|sbgpz_c=v2JaNFhx(et)i=!uhN|_s@C?Q;v8||4Rxg z_eR~@Q3};`{e#CWjn2r5S2r~@)cF&d8Z(UpXNGmh%V~6X8XlH7XfR_judQ7)N>oiz zDSv1<4V4LTi-lNlakgvC79kQ_Jg*n!2yyp!YBW_Lgh!&)PqYe=va{JW@=1u(#h2fF z2xRd5+^H{5!x=<=9M`w#8Cbo2rn*7~)8m}2VlXFF-CNqmAg8)Mao-?=YxgR48AC+~ z`8)A;n^J_hh2MKsMiH9QleR1DBJ`HVnwbU>wzW0A3uqVN@aM{}KSo6uS{h*JVa1Tg zjGEguVjMkU?6_|h!*xa5*H|vb@_}YUr9+Igz}k!>U1B`b26Yzv5o5~Y8)&fv8P|O; z*djso3!Nn@M}okRR^Km@Kpoc5zu>L}S99hk2Y;5J`}m~A8^|Ko_jd-uS(J<NGa8Dl}lR~L74NkE#WE&EG4{K!TxX_x}ZI&UprQzU< zav22v6~h_JshuI;E4iM}+quj;vtP&UFXQBMGM9Pzdpo$E&ok%X?+dua@ALEXnV*M$ zKHu}t*OB+w(}_JroF|B(SBX_lzxKMPexZFsocus+{^B>iY{;*D(BqeKjuCAnV=viH zkM8mJg7xo-7B|uTgy^|V%ySTR^~4Qz#A9cPk4_S)G9v86mE3m-Y$W%T5Iy_3bKJh1 L%YtIk3kvWLAGw^(!RKNHhcd0tnHn<`9HyprB**SiaM-*+Hg?hjpgNCI^`k6`4w21VioY}z z9m@92m(urDbeQ_nL?oq9(P1;l;;D)bm-6G;&+Sxn__*o|1M@vahw>nw)22*H4pVy{ z9?4QuasXL3-%H8iGBeMPD|t!|AMF-yP>e7A* ziT_o0U;u*z2;C44k(SUP3yA&yWP64?y`1$x!iF2;Bgqq3(jIhtUl%bD-)D hq(JrOLFqUs4fC%bs`!E=2)_XqZcuX^VD^PN007Qr)mQ)k literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..622641d3735918c3545188b843b53569c198bcd6 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=EhozM&6kpK_-MCqBWJRVgWlHDONv*^IAm*on|}AR zjKlJU3f=BDvJOwgz3Vo%$T}$Yl@>~$m37d+tHRbOD(8?B?EmvstenHjla+5mmdQCh zwO?|7-#a-6)y(AK@&eu@rxCJoyiiWD7s@9{x+0P~`IlSD`=qJ5H$${;Im`A`JB?ndQHIA(e z$_{HTG4t$DQFb`ZJCpUThqA*<55512xylagEr)-EO;mPJ-5>F(d#kd8%dfYu58PCC zNHT4H`t`4}0|Q>5f&=at^Hvf5*?Zl6N>Ht`^MNEbs8YH^43bw7i2{)8096I29b0Xo{xG>nS)KPFa-@ z5~SepXuf?^XPJTn!|f}<`(`OP$cbh7e%`0xU>o?~P2;hGLv+s+hgfz+heyV5xF%>T zIxyrnvK;kSbdX;q_U~u0qJ!G`p zrw%(NWrtXgSwV$r$__Qn`aa9NlpSX6JK}mfPuXGT&q#ZL$;uAbOx|0#ZdZ2rn%`nn zbz9j%c(tU?`v1xf3}B!FrJW#jLm-rI0i|K`xcCfE0FyU?>T`$EaS&Rd2to%`LFf(D z5SpVALOT>dXa+wB4R?nxR2*hL%snu17$2R6xx)#nA104(4g(ZG?PY+egP9Lg4^!vl L0AZnvBh&)`6%oD6 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_1_30.0_30.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..1beb0c0c521dead52bc94b2010b42eba2fb41ff8 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=ZkN7UbJ(REj_=yh%N8Kzz+(8gpyOK?kmmszp@T{AB)JIbd_`X6=^SE z+$ZN?b|I5_?ln1wVz(*Z*yQCMz}nK~9rkhO)m>XJ@9?{EMxnzGc?X%AM59mz1qZ9` z-?Y126dWQyb*t{rP;e;MRh0kIqu}uGO2tdHjS3Dj0(_67uPQiLdoR8-;irN_RGY=M zqq2$)q&VAN$>B1aRqldhC5KOrK##X8ISACIByg=!a+t2NN6YpCP+feW zO3@c32L>>RhSH%Bx*-9|hlxj^i9^*fBtg~1L1=?=D8B|mujqi#9bFLmKqG|yPz<3P zk|8vM6O;~z(tc1HW=|NZctaE_p8@JV1`nt>j1EHMJ3;v{b7B62sfU>ZlZW~XZaz#s OOdiIE>4&*H$N>Pmoy!ye literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_3_31.0_31.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..41199666f95d0f7eefba789bb6497f5c0c465edc GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=xB9!)`MISWw3a=UstlHLNRtuZdpujpVeup@M&Bn= z4i7j|ziiWyc95;_f38p}?Vx?muBL6Tv_rZ}X8s3O8HXjiCMQMt$v8YT*cWB{w~Ih^ dSD$BTe^YW`peay+nh&GVEwdmXkFI{`@Bz`Ss{#N3 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..233c1bca2cfd2635061f8e85d153cea9b591d74c GIT binary patch literal 1392 zcmbV~{ZmwB6vvlPX4f2&kQb*0?!?}AY-od!9nB*V3W?w(1VZ2r?7AVT140z5L#s6k z2rOU=1}-uPhOp#7Xef{dBcnquqK(;%E<}P1*2a)Z5O(1?`~%%zKKFB;^L<|KbIZ5I zM#UsJ$#P_QY??MJHIr3S?0Vfg)}LZ^`!Ww?YWAk=%S_WQ)WbCySz4){rPu7&O3tbL zso)UapE^kW-)F^#WsaulRZ8go0tx|(crH6F_nQ(Rg@t3J=va`M z4$Z3bS$L{A9_4+K1&8r#%inD*#OO1w+6JWD@Mo*7V=TbVW4b~o4r(__FRyT5zNr88 zogfZoYC`6HqB&UHzMg}zlDN8Gj2uK{vwiK=9KatzUS%CpZpcObv5kYOtsX^@6C9NG z`Q2xi@$gsEw9MIuhev+S@7sfUkamBjYda5{j3d`7_wW!h>sXWX1rJsBE9jyqDDe__P4Sz3DDDE(vgN!>93Q??^en$h^aU3ZSZvAK0Z3LGak^ z`?jA51^)zxuGt`hF)O^{Nt_5H@m?1O_lt0EkXE!7h;S=1FtMm!1XaNDL%X|05WjJ^ zh20gQuy}OJcS;1=!t<<

!?}5r1YPEXBIMg!q2bI*N6T#mldOuW52>sK)!5ME?Qv2J9clx&iy3wAOIZcovWRI~p=ozL&(|&g?D^-l_viV1-p})S zo{uMe%jS%23lyaa2bX8ChH{4h9;X|Ni(n2CJ{$$>^S9P(SdMtzn))b<)_E#ZRd)v!dOfwpxYj z&E0F+G!@2{o;|owuY%_G;nUX~D#V%E7W6f#Q2&~pIdWQs>Wh0z?LHNpsg36|e+blx z`Wx!MRTytGr-UtMaXH3W|5H4RxR8vlp_f^3j_gI=JQn-4ahzih3+H4?#p^9B%CcU$ zkkG|qJaNVBvWqN6Iwj0bvxslLr}sSw)GZC~J{ieDSrfU~{VWGp@y|leW)5XDe>#%4 zbC|r~dv|#yhmnmFbH5+u;On1R|IH^Hgti{TN0$P1G3R>f{2U^iz6~{o@Tk~zLcJk| zhxyjWdz2a;qZ97dyRY)_WqNK+6z~`vZcY8Pibrgx)!2BPN2E~MYw8KqJ(2a@OQSq2 z!3J*dC{UDCE_zJB@bruCUtcNUi|q6}eMtg78-FY9XqJGe{#8XgcL<2kB==`k3$R2l znOfx)Ph`U}?}_Mr(EUMspNOvVvv=KNfx7IbmD)KG;s1Vw zgy8c>F%t9%RnxaqB)oa5G4aY)37>oPZ=AA72#(Q#0}?*m=e%z`AtAgdBX;9}goQt5 z+hQjr8@746@+rW>?7y9a>>4O7tN#f+ESuX zNtj0Its>gEpRnd2A=60pA;OkALO;zb-%IqIlh8%)rJ(1*P2y(i-${L*_K#W9(Rs)}@IV8&cE6YVrS;>=Rw<$48?$#2gA=u~orl$io<$Bs8j3kAfib+`QC6j1SALi9|JfZnEvmETVa;3w@TMji{u zo-ercX_5*9>wVGZ4Jtf%{p!lveJX4}m)un0QlViWw$$I7k9jS4(oo$OBFiN6C|Qq&GNUs;9g<*snTCSv)~@yU3X)66eU! zcCypMbU1%tddFs&xx@c3pZ`(zlEh!)7BzGI;S{E9^IE3ljSS}L0t9pn?J+RJqm8WJ zW_p=9GNWgnElOwpzUdj}s^1cst}%?+XI^ICcUT@WB^%~Q<1f^I=QcTZi~2wN z$k}hnf4?F1lpSA8P=1s49A|0n7!7*rD>ipbeMx&Q*C{7^DeoL23+R7IbOV&<+~iOF dBtJ-A4({1TD1SCe<_GT!4eAcgr9n-f<3I3>NaX+k literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..3ed9bd20c19c7ff8486447b1bf69a6593a9e885b GIT binary patch literal 1168 zcmbWzZAepL6bJBI8f1puyL-2L7eVWVmLXzgD{8BMMP-3=wnSWzuDNCT+Gb{ku^=fU z$yzTOYWAX77Fu9wSeh6SxvW%>q+F)WOh_ZN$gH{N_9gI3&zB$Pf6sI7;c;lA!gVoI zs0`|`GTv-6S(U35O0{K`GDxAcq*~Lh#+2ApYrJ_P-)u~>nLW8J!I)6TOFk<6831$~eZCJiVg2`}Kl7;EUY9)x?d8c9Uodl;dFTd>c zW#QQd&z7(Velw!0(Xp_M_8PBbu$WlqOc9G|G3uV|CKk!XWsxcUEUrIr>^1~&nE89` z)wWO$8|QrPQ5iT?#_iayv~%dm-e6+OIc#gHeC^Z1;b?c^hcCk%J}vOkyLc%S>xWG( z8YzzF7~1MhQZ!r*>#fL@Vv+lfzOYJ)Sl`n4oDM0Tg!#1}_$kG>*|X3*8RBnxey~M` z;-^~k+GH7gXV!Y2NCtIadEe|h8LlPIit_K4q3h%?^QbS64W8F=FX53jxZ`7+j>r3u zM^VigJmlJ2mg*uNk%^ZM7B%s>U*+RI)z4$7Wq33*KtMFJbI;yT0jGnvW=0tVj9Blw zH`xUQ=a+t8S}x#xyI;cm76HzQ_OAj$RmT2tUXCPv#E$`u9BmhC6S_=t_}7#ldYUT- zr^I@ti}Zc#@JdZ{dbPXAJSz1*$pfp2+zp~oK&&`RJaLRjA0i^1NF@^U ztzw-*R2(3>_7m-5U*q3`D@CXVz5n zBQ8I(%Fk{{QWh~BVVFWXn`!eS(V_#)kptF;U?nf=-dD}$`!Px_)l25mm$&DQ_U8<8)m3v7 zele&smM&i~UW~CvhI?l$79+mC`^h+m7*~HL&J(%C=$7dW{S9IyB-MJmUWu_U=h)L1 zLKcDB;NesjkuQ4<^#&I9z7ETYY!*Y;*ANpI5`3H(WPHO(p^WXZ zHfg2Um2YmnZk57&QrB^&P>M;NwZ_sKDUyZ9Q}UlnaZeZQ+x$z4L0jNL<7G%W7dT+C z4CVLrwz&=&grN#+X80%g|OdVCxfdm>+nZ&Z!)7yH3?aG0h{#L0@p{geEzfhsM9k5v{iP2RQ{c8khh4q*b8xa6@XFRe_Lt&(`~e z3JCa>M2(@Ypz8n0t7$e-X?B@uUh_}?@Aq`xl|lNhJmSR?Y8|g@;12Jtf>z!)!ndUF z_{bZz^BZq*_Wx_Yn7)ztb%o@Z%S3lAG3zY;00Zq#{r~^~ literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..5a18912340ebcc480a7f719bf906f48baee1829c GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=q=nZ^-b=_h*7gPvJS~7^{4%5l66>MAJv(5TGrw2)|Q$J!g3C;Sxf}YV&ojutK(P}ERl0a z`PlKD^R1l2!t~9ricRGm?%f4~T6qWQ5RQxP$K)M!QY9Znuq!xh<|$m$t*zj2(VcDC z0e=OD_f50se=SyU;M->~Q)`BTgU-*Rlj8R%ICz^x_e^=9;E)M&Ad8~I2QiO;KN^Y- z{6Tj;4Sf|IbbE`O(+U+Gd`__2&Yr61ki|UL?7~h(hfX^q1J-+r4$CT!Yg#cWIp`_M zf5}l(a`1`S@^+z@l0)`%&*#_jlpH!Q-Fv`2S;=8JZ^;}&HH=HLhA&u%C? zDE5^WO8-@MU;u**D4heL52Qor1}L8)3Bp%Mh0qRZ5c)tOgl>TH8KCkE(NOUyD4hVI z;qp**0o4%k2i*{Q+6oBmu?tK$_#B4t&5uH8!EF$F&oT&op&vpAltXBT0w|pip<(WW txt}2$Di3u}Lo9^f0OcQm`3vekxPGXAVE%GQhUiO3g6fCyVg65b008)d+1~&F literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..6ac7c5f3a4e52ba753d33b040076d022a4212817 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMVVe#DR6;d(|3TZL|e91Bnad+I9D^|-m%nmC2_VBZe z!}SxhUwYffI*8aGyR)@L)**1~hx77hWgYsor4M(C$~nxbIu-stR?gw(hc8}{%j6tH z)8*|Bzmszay6b7EYcB85A6%j`y<;m zWKH)}S8`C9{(nN9w~~YNr72yT^OYPDd9_+zOjdGe@Yr7~yFba*z58Ak zv@<9>-2PdYwMRwSA!*??llLCV4h?s*^;B||9p;NOYD7*{cGw#q@(;Q= KIv>p#3b+6rkfkIa8xU)?xDk+1N=JWF0<;c?A5CkaN)OEpkpvlyk7Yqj=-=N;!w} zAfMBwpX3}s+U8ryJAAZTxRJA2-a&8c=_SRdx6ItaZNmYV%Q(ZN7#rSJt7B?tdh zJ6={zC5Nj#)2^HQDmi>{*S?rjsN?{&?bO1lN)CqmLXTYA2~_v<)n4vf0WrrR8A4BJfzTn-AT-AY2wk=d zLZ93Np(VFMXuib|TA~9&Z>WaQ4ABs}Apy#Vxz7*EhuII~!)T~`7);RA!T9b_aYr;e+3PE@OWMJtVY@>UlZ-yUcBn_)_htV5BU_0*qRWF6K|N$p7fE9>xvYeMx|S2+i*#$9>l zeR2+I-=8Edye8+cIF~<^TVCGb!DCC0(sX%;w?;4T+*&X1puJM~g3Awihb{c`6T=l0 z94>j8MEAHTIDBk98FDZ~!GZr^oZq(|1qa@5^`Rl(u%y$9Tre*)D> zma(3YRdfKF{{N4oqJ!Rq1wRba6dim|n|?~`Qgp~>JNXHl|}L)TTFY1iA8999Y}>gQRbHRwZT#jQ=PkWp3jzYxU_R?eBcu) z2Y!PGLA!ON9ekE?xv7>)J4Aimd8=!$w8OOQCuhH~$~atp$agT#PsTwY!g9-rX)+GJ z=aQEj-IsCbcIlfnM_tz8_^utjYz49oEQXI83U20 z-zz7|Ih=eX_+I#yoC9m5&7)c+c?YNSX;+_T$vf1$PCOB~S>B;{ibL%7-|`Nrt)?pk zloTAA51d-)>ZahZ=y&|=sw@SE17=^RtnX8BxL4TK_hgfT!{0UX9g^1-99lxkgM5Ai z)%ElEG|DSFfV6FMR&=<}YHt5JUD4s6!x;;O9z_S4nna_}4T=ud+rMddT~TxZdg|Mr zABqkSWg1nq>lnUXTl+8B(D%0~El_gV8W? NLNu}JiB*Sb9{>ory8i$G literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..b51211001eaf4c0366cb61ba14568205bd058b4c GIT binary patch literal 1392 zcmbV~`%{!<6vvl_5-}zk#Ta#LvE6+yiwUGH8p3x>S4}`LbOfghvb(_8z_OqcqAj)z z7rCr}+~N`np#+6v5-2%LBtx`1Txx=H1Zk2i1Zqq%5PF&CY=1z{FQ56IbH3-i&vV|w z;Jra1;SRDRvSXZ1pBQE0Hpw|ZgD>YP=M3?tBvWMEJMku+ej%=nd@oTi#S>#9je1G* zKAv*TM!{2lT>gKL^IHW|4G&xu*t=wYwogcg<3qmoa; zo>?V|XAge6Zn+8%@4PbZ?4`m)#1{YGcB*i9AjEn-N(F73$EA;ts}SJh_4J7n6{=rw z;KMJfP;7lJ<<;+0$X~qLw)9sOCMTpbC;6hEz~;_jd(h3OdLIq}UAHb<0y$^`{#bO- zz@bFZE^an+$gk{4T~W>{;2$rfZn{9cP6I`@J^aP z^k%gH;l9f?uQtioe|u!ffPl1J_kHe-3wZyV8B5nQB8D#5>TBd8`qupX_{1g=-cF6H zBEm$7X;F!vTDI#sS?3c+J5h?r6Z@6()L_%LnM#B%1PeS^nh@N%QCKjt9 zx<$X}|B@OWd505LZdPN(B1`A=J~dLt!|o0k)iCL!d@p9J(f`K!139&7^mJ}%ioK@B z*M6b%+CeqeES$g8kS!c*7NcuEW8-PY+5*N>qCA`FR4d~&#a;85?jXO-o~Jk{{%#?w zb0Y0Tx|Hf$iL*5Si(*#4gXTDqwv@4WCUN>BrghbfIThriy!i~%zSL(w%}*_7@mti_ zSW154vP!1is~Al+j1A`)d+Qi2R5wCC9rayB^JGLb-AhN>{vOZLy$313p7O>b)_>go z9>fs({?Z(lx9{mcAN4clvV1e?cJfc1V(}^3dkpnCPjsaE4%(j|Y5RV5P@Rlu*R|9? Rlh{i0r|G{5p?>CE{0nMDmu~<7 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..9cf4ffdb8343c4e6a1cefe50030696f63be5cf93 GIT binary patch literal 1392 zcmbVKdrVVz6uw}Xk>G2h4fwjc`@Vz`AK0neJ~L?uidN7$(2Z7GN@uaPC=44)%@kdb zn279wI%}PYuR$@}42D2sl&K)#W1Wv>fhfUcTL!3eVT!xt{%#ZfbH9JSeCM3+oO8c( zt5>YaH0DH6#gvD)Sc^8g`GqvUIA6~v(R{wsz13~roab~~tRr!Q*->Ow;zb2!msR1y zoFsa|TVfJjM*rUzJOA3E71t*+NH%2n>tqIO%Ljv%X$*FKBTlyEG4M{;+m@Cx*!H=h zaaJ{hut)dHvoj1j9<#}JTNT~izm4B_GvKmgj_n^}Fr$6a6K6aNZ^HxKvSb#;(j&W& z<Yi;@(jkSaj~W@oTq-MQc<~N^=bhuCF2ct9lkQO`+q(S6EEB)A2O>zM^YBlKAFx z7S08AjyN5M&S~ZQ`cgQw)>QRe%;3;6?$F$Tg~QCpj`z#F9CU@A6S-e-kCnrrxgE_v`{fSC6Ls@Tq{t_kv$k9~Ka7YW~f2PQb*#zPRPr72VXY zKN5cz5Ov^8@U<8b=F+m8Ju^h)3|6u&dJ&C3uTQVd647AXR9oT@aq>#(AFC@w#MWnw zPw|TwS%2(#MK@O3`S7NQ+zNg8(w`z$y)X#JMoSnugLjsMQy+4N*DaE8G(7Jw{Td0; zO);;>J0%Rwi?WWCdkmM~d*HN1Y zCwZzsJx&5he}lLBm4PD-dC)~q2s@1N%Kdm)8=V? u@ygtYA69k$6ylSQ+*|A8BmYCBUaKQ__K|(HIv4bu{u?51aQHX!L*V{Xfx8L$0QTOjOF>uv|doSN( z5b&Pb{d<6ccDntC>cwKDEy*Z2q8DTGwf8`}7&FUmzuD~)BePADy5*V}=Z5DMuId+K z?((wHr6CgNw^#$AY6+UE9;Q;;B^YXKFMOIK!M10*vA(ksl+F&DX!A(mi?2+(F(N^5 ze1k}e%I3kbpLJ6Fb+>cks6h&~c-;Z3U5ezdR7Ky_OYv{E^GSS%6qL*UHrg*maGe#b z48M(c7jZE%%vc-io0%fR#$7Aly*MF5L(S>*p(Yvnua*^e-IHO{#512KAVV?N_wM3i z7LWJpGivoL<`=HARiv{>JRMe@>tb=UxAMLD8jJDQ1#@@yvoOXyvV9%G!DZ~K{!+~$ zP`mEKqU{{Ct*X#3aygv&=(N8*%b{~Y$tkagL!@c+!-EkHnfCjke~aYkz7<>2qLX9J zz)GjvAV=fo|g@2QUOy`h$Z4pr^=oj8O?W8_XK#UURx{s5bEc82t{YQm;+{eg$LN)QnUx=DN zc^zq8ByS!fS^b(fqA?_nnmlw3!`qXk;8jK};oWpe#oPR!npb;1oOfhK81F1j&WjCm zcs<-yUV15+?;iB=|4_Muyq*<3yp9cbi7)RE<8JX%jaP{+e-L|{h|$eN(RpHmP>;Vr P@~Z}-LGT~JMRoWDM~Y8` literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..0a558b0e409839ade1bb1ac7bf59def5ee2b39c0 GIT binary patch literal 1168 zcmbWzTS!xJ90%}INr=@v+u7MUQ^^Unb#bP)LNe>yGPR=Gi<-tXTN{PiYD+UCJA_mV zlFEv*Ns;J7c<*9DWzI{fqYE_+vqA{6ki@V+meA_I^RlPt|MKB?`=9gsS8h+=X2_aF z6;sDFd(C!}O|wR&S!+qqM5{CwtL?BY??A5Aw%7b8pORN#H~aGTeR&7XzIaJ|v}*OL zrO~S6s{cJ9XI?ZfhlIui6LvjTM?(`ATpy85qoU|g_yU1O@5S8c=~^1vp=Z~>4A3x7 z-LLmd(r_oJB6>L~f-)r9)+8wks*X5snWU&`GdEN?q?q^XdBlk(DfG%m+I)``w~gxR zU0x|hOXZEJQ8I*Go!zlARR&=sKW0&(4DHid>*-1vBG+{_QtdKi?rP~6{~$xhjj$E( zgBbjL7>vGU402}Kn%WHvE-&2uq_&vB%$~j#SDXxVLK{xH7&yCC&9*THuSX@FITAS% z)g`ezbaL1>S~etR%Q1Y~x3D0GtoBhSS0~5OFY35pw;U~VS^dX#5H$b6o0v)k@(oeRk?ji96o#hH`=~%jYe}~^h=cxx#q)U?huh4{N+0X-tu0xo5u`qACi6NVKR=S%;A-AmiA{(Bq`y0{ih#IN+ga%y&Z5ULH#|8 z{E~>G0%Ki3UF-`~oD)s>$2swyz`4MAu`VjkiHdnqF)#jq8c0U0Zzr)}BB~A(4duk~ zYsBFiV(1;>!v{pAi`d#v40jXV1H|esV)A36?jG@L9r3)An0A>Me3obsh;%9Orj01< fC&Egka{TV}*Ny(zzZWIyuT$dw;=Aho{pt7(%nlfP literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..2246284e78cf9f1b7cbd797cd85b70df2c416132 GIT binary patch literal 1168 zcmbWzYe-XJ90u@}5|Xvfc6N5oRPqSrN;faHWMtOUD(ylw0u>E2TN{Czx}}+A9YQic zB$eH$MK|n2m^UgDDz90ll~FS(y9hxVks20+MXmFm(}#WR{qo~^_W$#qcU2pb*IU!3 zD2fz&_1o<(n^V7-*DrCH^#)$=$aC&;X6?+(b8ff)?Gv+dTy}5o+L4uS_vU#E41C<8 z`3Am}|KBtH@YDK8C@GB6LFZyj6!ftHH6iH~DhmsOX9^U$j%ONvR8ug%e0Xl8hk||L zR*h$zLa&(*>0(vzPf;2h6I94KyW4%)roxpb`}N8S6#{=g2{}-wf<<@NnC(&FT1NQ! z&66q&m1t^{!qf;lGqq)5k{ZHbcGR3)HJX2NP*>k=W3OtkXCyo}pjU&2X^drJTmyF9{)P`M1M7~Q z_PzuLO*Nj_HXDP{?hecK3I>0ld%liAWn^$ig@?hnys`x)lMIYUyf=htapKwQ#*`#2 zdcSxVa<%ZEar;G7l@{67u$7_BT3pGUl^pm^i|LKUos<47EKePtj}a`c(S0iitSp9N z?j?5?u~<{6zkkEcLO9O!UuKEn_gzkJG_j@+fsQK?m=@|KOcXhxoy;fu0H- z6ylj9X_hoeZt!un&zzin_bt+#+{<~nPp^=Ue6O74J-L^&1!ThaUb*+3llM1Cd$Q8I z1PAHOWyJbZ#80)NLU|i8`mt!M-vIgDIz;;UBcfKnaZzd=k-sn|=B;C|Fpe%3z literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_14_43.9_44.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..458768c4cd2bc8460b1c97e10c66299e7946db72 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMVqpIj@uOws~@;|hm3`vx6Sev$C&%Tv14zKRqTCed* z#z8HZb@3!CS%>74`qTb2$vPBB+}BDvE$gtZk5lf9u$;qd7860U7&!;^>Nu7KOXM6< zK6ZTPd@JX$Fn#l@VpDmCdv}4LR^H)_PH&O(F?ok67jJJ0V^?t4%u~3gTU){5qC4BN z1O5sQ@0(`N|5~izz_-s}rq&Dv2c4fsC&ljps#_o%JL!Rf!zG}$<1C5}AH+NY{%9yV z@CV)XH1t(;&;=TsR;cLUbAsJ=_EbfOEatgp7j`N-d|dT~f%zU#-LuYL=1fWsdW!O2 za@3R@d}6k|UFfCckUib=`L#SHht5m)9&k@qa#+q=a?4>mP~FzkONwtRIrx4^n786T zP@VR->35Zt9lFxGCklBeJ1k$Q(Cwb1>~QSP)|Q$H$_`J&z3Vn^QFh4LzsTds4WPPT z=1!7-l^qyB;6Mt5Zb*R83>Hv+8iYQO2%#OI@(!60{(@`>%@7Brb0GAAA_)DX5kl{n z1fkg$K-=!857-2kOnCOYYwTs#CZ+SADrvHX{#w}`Ky@F)JOb`0IjCx{acpH! zc5qH}wBDtn?2xqZn#p?)Wrv14*?KCu$`13z88sp&Dm&~Anx@#dRoTJi*W1?zZUWVr zHb4FPSJ{DqB%p$(9-R*}3?>evJ)rucA+$pRln)bkgz{nPVKf7g0Hz*Bn?TLOr5&aY MU7nCQA$f#(08>4%=l}o! literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..6b12a85e39b2b8cca756a46f6b16c7e8f77408b2 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV*V}Td#N=cgngTuNHl)co95`M);ng}BhrhP-nnS+J zI9P2tQMS)s)}c)6bEZaztV2uXqJO;?WE~E^KlAasgq*{_)bCFc6XhJN?M1xx|9IXX z7Np=%Xo?~P2(|8UC$JUSawB+s^gkgle85b zW-{$JKJKsRu+26^_fN5+!_|tHYKAiu9X@ZaQ%KvR=ujPf?bVD2Ky}lypPXe;a@c;6 z;U1HwlEYP=Y1hqtl^njfYhTPMRB`~?c52~NB?rTOp+~Om1gcA2+sAoN$>G`prw%(N zWrr`fuQwK}DLV*@=T@)qQg$#5Vk*6xr|b~W3v}sZWrw^IIvMWUl^wq3w-{C32C7>v zsk8pSvI7GcSU_nNC=C&1V1V&qv#~MgV8W|I5_|SHwDXS literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_1_30.0_30.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..461168c0f6be323227f88af56c379059852fb6ae GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=UD=#J7qCk?e0ym8hATkI!8juBe#s0ehk|n*m+n1~ za;THFNO#eccGx{RDQaDzw8MAKUSEk_(hepK+Z~#iWE=`X8ogv3*5&Z1hfS7oc>Tys z>cDLoho6Se)~TwrfvgQah6W$~wH^noxb#Rn9@HaaW#s zpPWP5_a})9ugN(SyG{AVCNJ->Vb8vo1?ln*Z;f8wxwT&2L3^d}1(zT44qN!=Cx$C1 zI9&2FiSBVxaQN7IGUQ-}f@5^`Rl(u%y$9Tre*)D> zma(3YRdnDF<^KQ2QPDwf!h#=$X^IY8%zqq8=~8sKT-3W~<~l`(k872-ox7yyAn$ugK4(#~lEWv*^J!Pxl^g_WQxdq=C^_iw_!((` zLCL}Ib6;@D7bOPHRwZT#jQ=PkWp3jzYxU_R?eBcu) zhX)*~U$*H;JIL1eKUXM~c8L1A^H$ehX@_aqPtJZ}m2tTIkndoepNxY*gyohK(_|cc z&m}K6x-a7pEh}s@LtWNk`ea*urUF@qE1VfhIXh$>1RExaUSp7R@cXuh!@*O|p(p40 z@0Anf98NwGd@p=U&f%)z!RAUOc?Y2tuge~1$vgPViDmh2mUrl#;t;$2x4c7YtLX{> zB?X7(1E&_cx+yp;`W-*JDoepZbMf}nwS5W>?)QA+A8k@_NR@mPA%0!Kp(Ug|$mcgu zT|bXcqr9R6NZU4NMTh&W=Jv1C6&-+@IOTd29a>%}GY4-_bXcUk^H2K~MF*g#zU}#; z=2!ztHP&yw%JLEuUfdUB4kOrkAptJ>)Rzaf~hCBcO%TBhn literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_23_85.8_86.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..3dc3fb415f01d36e2f45193b57e89a84da99ba67 GIT binary patch literal 1392 zcmbV}ZBUd|6vvl|L1AoWt#~m?pX7OeRuCrQWfnZsXh4GDjFy;+tGl>>%Cd_{A+Tr= zQ?RTkX1eHtJB=n|Ax69A7^s^xO+q3_GYN$3;1DLE6{}`F%su;|K6bzS=KnwEfA2l_ z9$2+DBQwiSQLHHCv^vvPBbP{V>YR8^MR7R=#v-F;XLf;6tDE&-(`+~CWZ$IM7<97c zV^maJf}oRkDOUL_58kEvBRL>k6ISC+Rer(wlk;mx(1XhI6c<`}+shJhjH*=Sog1O3rm``#I4;FZvZ zPu4tUAku1|i4I}Gva2xs>7^`G|5~wQB8`ReZI-XEZe?L8J$tmJjD-RBj+f0Jv2ZPU zPxZz&7NY2kQ}N%iz&5@8DA*(C_No^C_JoCsM~Q}OVH^|}rCmB5!@)q-^PcK-4tlQh zaoQXXqMY8WWo8c8=((*g9N}Qmry)hSG^)L0%k_qh!bZ}6}v`SKY>E)St!{-7Az%foJ4ON7hDgCV$W*P#v`dLLFE zF6@+2oow3Mc5q0 zm2O%iLf3OMO$j?iaMcA&h17_!z;yGO>1Gk;PkOXHUx^T?d(hF^FGAky?jPU3CxYg3 zpQH`;agd{XP4MR@VNzuhT-bzJ}0=`CiNq zV*SBEQa4u-W;PIBzU0=`0nAvb55c^ XgZH;%egyx0GxoiQb1cRFsr~Q||0tAH literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_24_86.8_87.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..21c5e6cce72c374a322ee267337acfc849684211 GIT binary patch literal 1392 zcmbVKZA_JA7=Ce69O8jyezW7j-tQMvu#}+m0zVKZa-{IA1|E)Z5b^|i4)QtVwL~#j zDF_o?b#S6(B&!&$au0?(4em`+A{C^sf~$~iRT|NY_NS`KxC!?$vqIh=I(3hVE2@Qdq= z4j$HcExm^g(|L?68|v#_z{4uF_&2WRvHnQ=#-k}b>UN(fF51qcmO0m!aFEBbyhbVP z3=ePX!8KD`d5pFl`{MCm8t-Dxr7NR6EQ@wc`DUho*xCd3l7#}sAUQ_B@yS^o*d)Mv zaQX1;9Rfx-za9JRkbtM%wyHbd39$SU^3&<70?f-IrhWE6K-7iUG{-m*$E!?xqXI;@ zXU*?q7l~lTj#bIT`vDzM6~&z8LqP;zJC2m_}Uv9@8oZv zD7_*og`Phqj+gMv_x!kSqlEtA=65cIN_aS;Ef6Omy8El@RIVPIzV_@+LMSGv=%~a;ItSecME7~Uo$$$g)X(RBW$X9UUwZGMeg4Zw;t%bwCXqgyi5~G; nec^o>qQ{WAsPD8t-HXnllKJR=aFchUy0nh|2a42ZcOL!)vwV9d literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_7_83.8_84.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..c91e8f317008a55249c06e1f28d6a1ca471d4546 GIT binary patch literal 1168 zcmbWy|4$Ql9LMo90!D50?s~mmWr^K1J1|XD2D&+%uZ7yF%@no_TSdN9tEj`W7BRER zK$D4?EOUy+Y8ckyWC{v`f{C$a(y=RU9zdjjvo&V@Wi>vAowjXaz;yE}{a@@RPcZOD3_M{*`NCwq{` z{Jc?1+E^_D^`+;ebS(zj^M6QMriJ!~xi4Cwg;!{O?-!pIXJ;R=T?=Y4r82qq;zKPy z*!QHbStFqPZowj7hJZi+USj{;CcyqyM{i}7fUolX_Z$HMPkj>?e;5`pvnys_5EXFX zU&oI#MIEji^7>P=b;v5buvp{Jq0D&{Kr zL+fx-7zwl6xhNiqty&4Hg!xsj-G9=6& z*Ze48lW@$+7uHuv7${|2H311ZE$e^&BrL%jUjBGhRKn1t%Y{ot1E!cxyXIvZP*X15 zpW!f|yDlXv)*8ShCg>p>x03&LWHUAECTFQV>r-k*ZB$Sjw~)EpNVb|RSDUG!Zv2wW z^pp47$U`B;>goN8k+i7dnb32^;_>6(W#SXr$}2u#Qx)CzX^P(!rYTA*Wkt-U-6TY+R_Q?9qM^S IBel?gmodLf!TVQ;E_yq>xzAw@r)y?s>*f4_w) zg;DXppVRGu#ks3o7`QDf98#+pY>CNna*t)uQ1mr}H8JR~f1CTWj6vMk%Hi%N250B^ zI=}5@FdA>me8#a@YBZm$3ua-v|9!Yz$Kq96yR+5ILbG5^R!%jG0|?AZZeh`S%svu7 z!h$V1HFKT280j5@SwZ1q+;Hg3^WG;07oi>Htzty!LuNVFi&0m3HM_q}jGiZj`5&iA z5bgYH^yMN6^1Zuf-PKC)DD0ivwKNG-xvL5;6iJYH)%Ws=2NE=WvALvoN#HOecfQU= zilp^@1)J1Tlq7w;92zTyQ}vqJJ|-!aHwP-_mP=8|j9;i(iuNUz;=x`i!VN>SKXWo1 zIn}9X36`Pbwbt@jCxcsWi2bHnhU0z}Oi8s24I9t77qrOWdH$E>@Q4g?HQn|kcR3yo zZeh2F%P}eo^9bK3$FA6_(*agFZ0SWM3+m;VddE>L{UC>?wa-K3$iY4@?##DE99lJN zOW$ib;7E=5c^Zd_@gfe@^%iy60}k@Bq0+)G4pDQuYL2?_sEyy?X;Aa%$qx0~5zAxq z{faA*CLZ~1=V~?OJbrkHycRd}P@%_<`_999Y-`zc-W5&uu)4lrSNL{Rd41BkBFW*R z{|mD#M1TDPg}UcI`gGCcIhtvIvb0b4T>&x?Lo}rb*+{%&A-=H@2P%mNZV{s!hyjl# zG!-|J+$d;#O!B;Y#7nn{hprQ!+KGu)q9~8(Vz>% literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_84.8_85.2.npy new file mode 100644 index 0000000000000000000000000000000000000000..319ba4819628fb06c2a4733901c865946a3722eb GIT binary patch literal 1168 zcmbWye@u*V90%}+G*jex?(VtgX~=c53um)jX{UIjWQg-4KeAM=GZJx8qi`m+PUSeo zbf$|Ue>k?pZ8ASwQ_PRG3CsDF{3sGu%8%Uldw=k!&p)rd-`~%(eIDz)xLDoteoQ8l ztx7Ru=#46^LKU$(T%}g1R;L>`8dt@y@@5;ZVMbHZqM6S9m%2O+UM^TdJYeoUB1>l4%$((vv)fWk?(JH}w!;~T3P6?_jPvv}VmY}`1sNnek zDdK#8_1+&VML}@ekSjVVZbm-|IFl)b+8kAQ)FwsBsgUD)uS-$?zQix9RSK^`=8<|o z8B$|A3m0i*C`)~Qd}_Q5K91Q#CzxcI))1~3ULivz+jmfd46gB((yk5}VvOBG-wHf- z?ti0bjO5YsP-nTN=Mm5`#eP1I$DYvBY?*^c&BEfq!bToJhksdi^zcZiYO|*X%5kG> z3AZ9fj$S@m8M9uFRqlUWp9b>nH<`tP9@_lz&;}3;HR+ynzVCH zJk<%n&ML{BOabn7n*fK?qA9;FK>oA)L{Y1N`NLYPcKM08khmbos1ebgGc|N&yoklu zPM@4-5>e1xd_h|w;){|QJ+4878ttLNXA#!irR4)ff7IKft2-n85z=yY^eeqTQoW9a z-OKX_^VdwLIh-0qUHDJ$d5@(%L&wukr@be~(M;DEPhLa%IukL%N^GtqF1GDZ-(R-72kgTI7Z6TSVDzg60rnNNF|1RA?vMG&t&Pd=iM`L7WF4AA%7c7P%Q_r5wa|5&u$;p`hcgxmF>(&p+rMddEs=95 z*Hx7N@(ch=@lpH2~SoMWrvXa9_ZHITJ+kxsXPv4PoTgd^aYt!8S zKy{vnR$o$9c9`4}zLecV*=th1WL9zzs4`n^ zr>^9nxApXrVs9k}-wz4%R^%%=WNUw$es{8xLswe&M4=r(b$pMbUGFG4=zCU#Rxv0$ z__px+uUAoa$l1Th;Kl9Ky|_X zKVSV-c3=Pl6(|kiF)$F~!_>iOboHc)!}P;w3kQe^aS*y81eIoRgvvuyF)+Z?!}P;w Pm^?0;TI$fvQE>nOPh_t} literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_17_45.9_46.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..3e5f6684b43a0237696c64c5f0dc77f7b77ddfcd GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=Nb&6#8RTRfruIHOl9eXoaG9BB$CY(54gytXtL?ta zIQV`@n76`S)}bq{d!kT>ti!aeR%#U&WF4+(r%FDOkaG}R)X(FSDCgiOvFrcVm2wW< zeNR5gf0A=J&cgq!(@NffrP}i5=O%dvp;Iq%BTvgas4wW;@Q_o%!R@x(Dlt6;hZM0b zi@k#s9GU|?=QflnI4tbBH*M=I1&95|izmF=2UM4TI!gAjfE~vSkd7=$YC=S9sXYQGKt=!=pe)UKzG6ept>#QKMt`dIUIa{ z=Hqt_C5QW3Nw0N$l^p)1et(i!sN^66vT&-BgY_N78>e?FIe^3Co|40ZeSC9_nUo#= z{aidXLrvL1*3`0pu9vcdb-}rgOL@u;QLB@i*e5GHlt24XZL?k3VVYuJY2j_4x|2`s zm;6_DU;qOrDD45IEugdtlxBben7kuY99848KA%f%13vPI}UM}ekZ6rjE3olg%6B| IiCZ`T0FGqIuK)l5 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_1_30.0_30.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..9d7c850612c5cc8220b7e2b06999b2086e98a648 GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giN=v&$DMbhAr2aLJt!{^~E~;5OwOTl@?uhh{FtUnd?& zIZTYa(5I&S~KIsA#AU3IEm$w6wiLCOEsN)DFSj^>(NP;v+d zx;pcVk^=(>JV=Gm3=vS;4?-_UL=|sHfbbiVq2e%oaZo-w9SRXYkOY;7(hWHfzDFa3 zUeF7nWoAR@B~zi|EfD%ZHI$zVp%n@sG(!@EhPjIYY9E6ys(3>hgzo^Q8KNP4n0^MB Zzrvy7&~Sj83kw&hJ`8cFzhU+OX#ff;)Ybq1 literal 0 HcmV?d00001 diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_3_31.0_31.3.npy new file mode 100644 index 0000000000000000000000000000000000000000..193435f7294fe1e5eb407a7a1bac592fed0ad55a GIT binary patch literal 816 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+i=qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7ItnJnnmP)#3giMV{mJLn{^gQ#$l?6CAU#;hVP(DYl#8>a9G-slZMS|R zipcL(hj+XK}@B4r5#o+ulah9RmS0&?D7{LeliX~UAH$)lW|Dk z`g2a^zKla&PnzeQ&60OWidr|(e6zg6f(tiV7XFrZ$Xm>~hgC_z zq4(ajtyXRd4yz?~*5_v_I2avlu3Xfo;1KvnqWJnI1&4g|bvZoOf$EB!(;R;*IILNF zBfd;t(c#n!pasr~4lk9NgCC?TI^>^@k`?Yzbm(LIAm*__(P52at3d4)MTgThQe2yU z0M%_@&-`3Q$$=dd5ROU?YI?W61*9rDxMb#kXzf&TI4y8|*N(MH4zIjpw!FQl Date: Sun, 13 Oct 2024 16:36:24 +0200 Subject: [PATCH 6/6] Update docs/source/markdown/Installation.md Co-authored-by: Michael Osthege --- docs/source/markdown/Installation.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/docs/source/markdown/Installation.md b/docs/source/markdown/Installation.md index 162bf72..4c928fb 100644 --- a/docs/source/markdown/Installation.md +++ b/docs/source/markdown/Installation.md @@ -11,7 +11,8 @@ If you have already installed Miniconda, you can install Mamba on top of it but The newest conda version should also work, just replace `mamba` with `conda` in step 2.) ``` -2. Create a new Python environment in the command line using the provided environment.yml file in the repo. You have to download environment.yml first and navigate to its location within the command line interface. Then execute the following command: +2. Create a new Python environment in the command line using the provided [`environment.yml`](https://github.com/JuBiotech/peak-performance/blob/main/environment.yml) file from the repo. + Download `environment.yml` first, then navigate to its location on the command line interface and run the following command: ``` mamba env create -f environment.yml ```