diff --git a/.gitignore b/.gitignore index 03a0001..38096fc 100644 --- a/.gitignore +++ b/.gitignore @@ -605,3 +605,4 @@ idata_summary_*.xlsx idata_* *Sandbox*.ipynb !/docs/source/notebooks/*.png +!/docs/source/notebooks/paper raw data/**/*.npy diff --git a/docs/source/markdown/Installation.md b/docs/source/markdown/Installation.md index 0477d10..4c928fb 100644 --- a/docs/source/markdown/Installation.md +++ b/docs/source/markdown/Installation.md @@ -11,20 +11,8 @@ If you have already installed Miniconda, you can install Mamba on top of it but The newest conda version should also work, just replace `mamba` with `conda` in step 2.) ``` -2. Create a new Python environment (replace "name_of_environment" with your desired name) in the command line via +2. Create a new Python environment in the command line using the provided [`environment.yml`](https://github.com/JuBiotech/peak-performance/blob/main/environment.yml) file from the repo. + Download `environment.yml` first, then navigate to its location on the command line interface and run the following command: ``` -mamba create -c conda-forge -n name_of_environment pymc nutpie arviz jupyter matplotlib openpyxl "python=3.10" -``` -3. Install PeakPerformance: -- __Recommended__: Clone the PeakPerformance repository, then open the command line, navigate to your local clone, activate the Python environment created in the previous step, and install PeakPerformance via -``` -pip install -e . -``` -- __Alternative a__: Activate the Python environment created in the previous step and install PeakPerformance via PyPI using -``` -pip install peak-performance -``` -- __Alternative b__: Download the latest Python wheel, then open the command line, navigate to the directory containing the wheel, activate the Python environment created above, and install PeakPerformance via -``` -pip install name_of_wheel.whl +mamba env create -f environment.yml ``` diff --git a/docs/source/notebooks/Create_results_in_figure_2.ipynb b/docs/source/notebooks/Create_results_in_figure_2.ipynb new file mode 100644 index 0000000..8d3292f --- /dev/null +++ b/docs/source/notebooks/Create_results_in_figure_2.ipynb @@ -0,0 +1,1483 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Create results and diagnostic plots" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import arviz as az\n", + "from pathlib import Path\n", + "from peak_performance import pipeline as pl, models, plots\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exemplary result with a single peak" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "path_result = Path(\"./paper raw data\")\n", + "path = Path(\"./paper raw data/exemplary results raw data/A1t1R1Part2_110_109.9_110.1.npy\")\n", + "timeseries = np.load(path)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc5klEQVR4nO3de3zT1f0/8Ncn917TG72Xcr/IHVQuooIil4mIeJtMROe8TNExdW7OXdj2m0z39bLBxBvzho65ecGJoiA3kYuA3CnlUugFer8kvSZp8vn9kXw+TdqkTUpuTV/Px6OP0eST9MSs7avv8z7nCKIoiiAiIiLqYRShHgARERFRdzDEEBERUY/EEENEREQ9EkMMERER9UgMMURERNQjMcQQERFRj8QQQ0RERD0SQwwRERH1SKpQDyBQbDYbLly4gLi4OAiCEOrhEBERkRdEUUR9fT0yMzOhUHRea4nYEHPhwgXk5OSEehhERETUDcXFxcjOzu70mogNMXFxcQDs/xHi4+NDPBoiIiLyhtFoRE5Ojvx7vDMRG2KkKaT4+HiGGCIioh7Gm1YQNvYSERFRj8QQQ0RERD0SQwwRERH1SAwxRERE1CMxxBAREVGPxBBDREREPRJDDBEREfVIDDFERETUIzHEEBERUY/EEENEREQ9EkMMERER9UgMMURERNQjMcQQkUwURbyz6xz2F9aGeihERF1iiCEi2dHzRvxu3TH8+qMjoR4KEVGXGGKISFbVYAIAlNe3hHgkRERdY4ghIlmDqRUAYGy2wGYTQzwaIqLOMcQQkUwKMTYRaDC3hng0RESdY4ghIllDS1twMTRZQjgSIqKuMcQQkaze5BRimhliiCi8McQQkcy5EmNsYYghovDGEENEsgZTW3AxshJDRGGOIYYoQn1zqhLbTlb69JgGTicRUQ/CEEMUgZrNVvzk7X348Vt7UWH0fs+XBpNV/jdDDBGFO4YYoghUbmyBqdUGq03EVh+qMQ1OfTAMMUQU7hhiiCJQuVP1ZVu+DyGG00lE1IMwxBBFoDKnEPPNqUq0Wm1ePc5ln5hmbnZHROGNIYYoAlUYTfK/jS2tOFBc59XjuE8MEfUkDDFEEai8XTPv1vyKLh8jiiKnk4ioR2GIIYpA5fX2SsyIzHgAwFYv+mKazFaITmc+cp8YIgp3DDFEEUiqxNw6IRsAcOyCscul1s5VGICVGCIKfwwxRBFICiyXZOoxOlsPAF0utXYXYkTn0gwRUZhhiCGKMKIootzR2JsWr8W0IX0AdL3UWlqZlBSjAQBYbSIazdbOHkJEFFI+hZjly5fjsssuQ1xcHFJTUzF//nzk5+e7XCOKIpYtW4bMzExERUVh2rRpOHbsmMs1JpMJjzzyCFJSUhATE4N58+ahpKTE5Zra2losWrQIer0eer0eixYtQl1dXfdeJVEvUm9qRbPFHj5S43S4emgqgK6XWkuVmJRYDTRK+48GTikRUTjzKcRs27YNDz/8MHbv3o2NGzeitbUVM2fORGNjo3zNc889hxdeeAErV67E3r17kZ6ejuuuuw719fXyNUuXLsXHH3+MtWvXYseOHWhoaMDcuXNhtbb91bdw4UIcPHgQGzZswIYNG3Dw4EEsWrTIDy+ZKLJJU0nxOhWiNEqMzUlAQrS6y6XW9Y5KTJxOjfgoNQDA0MQQQ0ThS+XLxRs2bHD5/M0330Rqair279+Pq666CqIo4qWXXsLTTz+NBQsWAADefvttpKWl4f3338cDDzwAg8GA1atX491338WMGTMAAGvWrEFOTg42bdqEWbNmIS8vDxs2bMDu3bsxceJEAMDrr7+OyZMnIz8/H0OHDvXHayfqEZ7bcAJfHS/Hhw9OgT5a3eX1ZQZpKkkHAFAqBFw5uA/+d+gCtuZX4LJ+SW4fJ1ViYrUq6KNUqGowsRJDRGHtonpiDAYDACApyf5D8ezZsygrK8PMmTPla7RaLa6++mrs3LkTALB//35YLBaXazIzMzFy5Ej5ml27dkGv18sBBgAmTZoEvV4vX0PUG4iiiDW7C3G6ogEHS+q8eoy0MkkKMQDkvpjOllpL5ybF6lTQS5UYhhgiCmM+VWKciaKIxx57DFOnTsXIkSMBAGVlZQCAtLQ0l2vT0tJQWFgoX6PRaJCYmNjhGunxZWVlSE1N7fA1U1NT5WvaM5lMMJmcdik1Grv5yojCx/m6Zhgd0zze7ttSXm8PManxWvm2qxwh5tgFIyrqW5Aap+vwOKkSE6dVockRYrhXDBGFs25XYpYsWYLDhw/jX//6V4f7BEFw+VwUxQ63tdf+GnfXd/Y8y5cvl5uA9Xo9cnJyvHkZRGHt+IW2MG5s8S5QVBhdp5MAoE+cFqOy7EutPa1Sko4ciNGyEkNEPUO3QswjjzyCTz/9FFu2bEF2drZ8e3p6OgB0qJZUVFTI1Zn09HSYzWbU1tZ2ek15eXmHr1tZWdmhyiN56qmnYDAY5I/i4uLuvDSisJJX2tYQb/TyQEZ5OilO63L71Y5qzK6CarePa3TpiWGIIaLw51OIEUURS5YswUcffYTNmzejf//+Lvf3798f6enp2Lhxo3yb2WzGtm3bMGXKFADAhAkToFarXa4pLS3F0aNH5WsmT54Mg8GA7777Tr5mz549MBgM8jXtabVaxMfHu3wQ9XTHSw3yv72txEghJl3vOmXULyUGAFBZb+rwGKBtn5g49sQQUQ/hU0/Mww8/jPfffx/r1q1DXFycXHHR6/WIioqCIAhYunQpnnnmGQwePBiDBw/GM888g+joaCxcuFC+9t5778Xjjz+O5ORkJCUl4YknnsCoUaPk1UrDhw/H7Nmzcd999+HVV18FANx///2YO3cuVyZRr3K81Gk6ydueGMd0Umq8a4hJirEHkzoPy6adVydJGGKIKJz5FGJWrVoFAJg2bZrL7W+++SbuvvtuAMCTTz6J5uZmPPTQQ6itrcXEiRPx1VdfIS4uTr7+xRdfhEqlwm233Ybm5mZce+21eOutt6BUKuVr3nvvPTz66KPyKqZ58+Zh5cqV3XmNRD2SodmC4ppml8+7IooiKuo7rk4CgMRo+068NY1mt4+V9omJ1amgVAhef00iolDxKcR4c46KIAhYtmwZli1b5vEanU6HFStWYMWKFR6vSUpKwpo1a3wZHlFEOVHqusJOWqXUmdomCyxW+/dpn1jXnhgpxNQ2uQ8xzpUY7thLRD0Bz04iClN5jhCjUdm/Tb2ZTioz2KswyTEa+XGSRMeZSE1mK1osHc9EkpdYO/XEcIk1EYUzhhiiMCX1w4zvmwDAu8betj1iOu4DE+80TeSuL0Zq7I3RquSdgd1VYkRRxD1vfoc739gDm42nXBNR6DDEEIUpKcRM7J8MwLsl1hXybr3aDvcJgoBERzhx1xdT72GJdftp5KoGM7bkV2LH6Sqcq27s8DxERMHCEEMUhixWG06WNQAAJg1whBhvKjHSRnduduQFPPfFmFttMLfaT7iO06rlENNqE9Fkdp16Kqltkv99srweREShwhBDFIbOVDbAbLUhTqvCJZn2PY/MrTa3vSzOyjupxABtfTHtQ4y00R0AxGiViFIroVa6X6F0vq5txdSJMoYYIgodhhiiMCQ19Q7PiEecVgVHK0uXjbae9oiRSNNJte2mk6Sm3ii1EiqlAoIgeNzw7nxtW4jJZ4ghohBiiCEKQ9KZSZdkxkOhEBAvrRbqYkpJ2iMm3UOISYqR9opxfR7nPWIk8Z5CTB1DDBGFB4YYojB0XK7E2DeJjNdJgaLz5t626STfemKcT7CWeKrElDhVYs5VN3Y5xUVEFCgMMURhRhTFtkpMhv3k6fgoe7jorBJjtYnyuUieemKSPPTENJjsz+tcifFmOskmAqfKG7p4RUREgcEQQxRmyo0m1DZZoFQIGJwWC6CtEtNZT0xVgwk2EVAIQHKs+xCT4OHoAWk6KUbTMcQ4f01RFOXpJCko5XOFEhGFCEMMUZiRTq4e1CcWOrX9PDFvQow0ldQnTitvateep0Mg5SMHuqjEGJtb5WunD00FAOSXuR6PQEQULAwxRGFGmkqS+mEA5+kkzz0x8h4xHvphAM+HQDZ62RNT7NgjJjlGgzE5CQC4zJqIQochhijMSE290v4wgG+VmFQPG90BnTT2ulmd5C7ESFNJ2YlRGJpuD1lcoUREocIQQxRm2jf1Ak79KZ009nZ25IDE0yGQzkcOSNwtsZaaerMSozAkzR5iKupNHfadISIKBoYYojDSYGpFYY19ysZ1OkmqxFzcdJKnQyB9rcRkJUQhVqtCTlIUAE4pEVFoMMQQhZH8MiNE0b5ZnfMKI2+WWEsnWHdWibEfAtmxL8bbfWKkc5OyEuzhZWhavDxuIqJgY4ghCiNSRcO5CgM4b3bXWU9M50cOSOSjB5o6hpgYNyHG6LYnJhoAMEzqi+FeMUQUAgwxRGGkusEeLNL1US63x7sJFO1JPTGejhyQuDsEUj52wEMlRhRFAK49MQCcmntZiSGi4FN1fQkRBYsUUqTpI4m8OsnDEmtTqxXVjumhznpiACBJWqHkNJ3U2Mk+MRariGaLFaII1Dr6aNqHmJPlDRBFEYLgfn8aIqJAYCWGKIxI00VSaJE4T+1IVRFn0nEDaqUgTxd5kujY8M75EMi2npi2x0ZrlFA5moANzRZ5KilOp5LH1z8lBmqlgAZTq8uZSkREwcAQQxRGpMZdafpIIlVmWm32qkh7cj9MnK7Laoi7vWLcrU4SBMFlSkmeSkpom+pSKxUY2Md+NAL3iyGiYGOIIQoj0hJqfbsQE6Vuq4q4W2btzR4xkvaHQNpsIhrMHXtinMdhaLKgpF1Tr6StuZchhoiCiyGGKIzIlRida5gQBMHt5nOScjnEdN4PA3Q8BLLJ0e8C2KeKnMW7qcRkJ7o2HQ9Nl5ZZM8QQUXAxxBCFEU/TSUBbsHG3V0x5fdcb3UmkQyClSow0laRUCNCqXH8kOE8ntd8jRjKMxw8QUYgwxBCFEUOT+8ZeoPNl1uUGx7lJXkwnyT0xjsbeBpP9f2O1qg79NC49MXWuy6sl0gqlM5UNMLfauvz6RET+whBDFCZsNlE+w6h9T4zzbe4qMRcM9oCRofemEuPaE+Nuj5gOX7OT6aQMvQ5xOhVabSIKqrjpHREFD0MMUZhoMLd67E0BnE+y7tjYW+qoxGS22yTPHaknRjoEstFk9fg1pRBT2WBChWPKqv10kiAIGJrGKSUiCj6GGKIwIU0TaVUK6NTKDvfL5ye1m04SRbEtxCR0HWLaHwLpPJ3UnhRi8krt4USnVsiVHGfSlBIPgiSiYGKIIQoTUoXFXVMv4Pn8pOpGM8ytNgiCd4297Q+BrHezR4xECjEnHMcKZCVEud2HZlCqfa+Yc1WNXX59IiJ/YYghChNtu/W6Pw0k3kNPzAVHw21KrBYalXff0s6HQEq79bqrxEhfs8Vib9jNardHjESqztQ1eT7biYjI3xhiiMKEFE7cNfUCTkus2/XEXKjzfipJIh0CWdNobtutt5PpJEn7pl6J1GfT2SnbRET+xhBDFCbaDn/0EGI8VGJKHSuTMr1YmSSRDoGs66IS0z7EtG/qbX8dQwwRBRNDDFGYkE6odrdHDNBZiLFXYjK8WJkkcT4Est7NCdYSfbSXlRjH2OqczmMiIgo0hhiiMNFWifHQE+NhibW0CV1mgveVGOdDIH2ZTvJUiUlwhJ1GsxUWKze8I6LgYIghChNtjb3uKzF6R7hpP2VTKocY7ysxzhveNToqMe72iYnRKOXl2EDHwx8lcU5j5pQSEQULQwxRmOi6sdd+e32LBTabKN/eNp3keyWmptHcNp2k7fh1BUGQx6NWCkiNc3+sgVIhyI3HXKFERMHCEEMUJrrcJ8Zxu00EGs32a1utNvkEa99WJzktse5knxigLVRl6KOgUHTcI0bStkKJfTFEFBwMMURhQj7B2sN0klalgEapcFxrDx4V9SbYRHuVpE9s14c/SpwPgWxbndRxl2CgLTx56oeRSH0xnE4iomBhiCEKE1019gqC0OEka2mju7R4XadVkvace2IaOplOAtoqMe1Pr/Z0HaeTiChYGGKIwoSxi8ZeoOP5SRd8OPjRmfMhkNKyaE/TSdLuvp6WV0sYYogo2Nz/1CKioJOmiDw19gIdz0+SViZl+LC82v489kMgrTYRUo+wuyXWAHDH5X1R12TB/LFZnT6nNJ1Ux+kkIgoShhiiMNBqtcnTOp4ae53vkwKPL6dXO5MOgaxqMMm3eQoxkwYkY9KA5C6fMyHKXt1pf8o2EVGgcDqJKAxIAQZwv1+LpO38JHtQkDe682F5tSQppi0sRbfbD6Y79Ny1l4iCjCGGKAxI00PRGiXUSs/flu2PHpDOTfLlyAGJ1BcDeK7C+ELP6SQiCjKGGKIwIO8R00lTL9BW7ZCuL3WcYO1rTwzQdggk4Lmp1xcJbOwloiBjiCEKA13t1iuRz09qsaDFYkV1o33qpqs9XNxJjPFzJabd8m8iokBjiCEKA13tESOJdzo/qczR1BulVnYZftxJdDqh2h8hRpqe4nQSEQULQwxRGOhqt15J20nWFnmju4wEHQTB96bcJD9XYpx37BVFsYuriYguHkMMURiQT7DuajrJaYl1dze6kyT6uSdGqgZZbaLLaisiokBhiCEKA22NvV1MJzktsZY2usvsRlMv0HYIJADE+aESo1MroVXZf6SwuZeIgoEhhigMeN3Y67TEWqrEdGd5NeD/SgzAQyCJKLgYYojCgNHL6SQp5DSYWlFS2wSg+5UY154Y3xuD3ZF27WUlhoiCgSGGKAxIxwh01dgr7eYrisCp8gYAF1GJcQkxym49R3t6VmKIKIgYYojCgMHLJdZalRI6tf3btszYvXOTJHFaFVSOowb8NZ0kHz3QzKMHiCjwGGKIwoC300lAx2pNd6eTBEGQ93bx33QSd+0louBhiCEKA97uEwO4Bh19lBrRmu5XUfom2as4Gd04QNIdNvYSUTD5p4ZMRBdFWmLtzc67zsuwuzuVJHnhtrHIL6/HiMz4i3oeiTR+AysxRBQEDDFEIWZutaHZYgXgXSXGOehkXmQFpV9KDPqlxFzUczjTy0cPsCeGiAKP00lEISZNJQHeNdg6Tyd15/TqQGJPDBEFE0MMUYhJTb1xOhWUiq7PQHKu1nR3eXWgsCeGiIKJIYYoxLzdI0bivAw76yJ7YvxN7olhiCGiIGCIIQoxX5ZXA+0rMeE2ncQde4koeBhiiEJM3ujOyw3nnMPOxa5O8jdpx95mixWmVmuIR0NEkY4hhijE5D1ivKzESFM2ggCkxYdXJSZOq4LU1sMpJSIKNIYYohDzZY8YoG06qU+sFhpVeH0LKxSCHMa4VwwRBRr3iSEKMV926wWA0Tl6DM+Ix7XDUgM5rG5LiFKjrsmCOlZiiCjAGGKIQszo5eGPknidGl/87MpADumi6KM1QHUTm3uJKODCqxZN1Au1Nfb65xDGUOMyayIKFoYYohCT94nxsicm3LXt2sujB4gosBhiiEJMmk7ytrE33HHXXiIKFp9DzPbt23HDDTcgMzMTgiDgk08+cbn/7rvvhiAILh+TJk1yucZkMuGRRx5BSkoKYmJiMG/ePJSUlLhcU1tbi0WLFkGv10Ov12PRokWoq6vz+QUShbu2xt7IaFFL4HQSEQWJzyGmsbERY8aMwcqVKz1eM3v2bJSWlsofn3/+ucv9S5cuxccff4y1a9dix44daGhowNy5c2G1tm2OtXDhQhw8eBAbNmzAhg0bcPDgQSxatMjX4RKFPWmJdaRMJ8XzEEgiChKf//SbM2cO5syZ0+k1Wq0W6enpbu8zGAxYvXo13n33XcyYMQMAsGbNGuTk5GDTpk2YNWsW8vLysGHDBuzevRsTJ04EALz++uuYPHky8vPzMXToUF+HTRSWRFH0+diBcJcQ7Th6gJUYIgqwgPTEbN26FampqRgyZAjuu+8+VFRUyPft378fFosFM2fOlG/LzMzEyJEjsXPnTgDArl27oNfr5QADAJMmTYJer5evac9kMsFoNLp8EIU7U6sNZqsNQAROJ7Gxl4gCzO8hZs6cOXjvvfewefNmPP/889i7dy+uueYamEwmAEBZWRk0Gg0SExNdHpeWloaysjL5mtTUjht5paamyte0t3z5crl/Rq/XIycnx8+vjMj/pCqMQgBitRESYtjYS0RB4vefmrfffrv875EjR+LSSy9Fbm4u1q9fjwULFnh8nCiKEARB/tz5356ucfbUU0/hsccekz83Go0MMhT2nM9N8vT/7Z5GWmXF6SQiCrSAL7HOyMhAbm4uTp06BQBIT0+H2WxGbW2ty3UVFRVIS0uTrykvL+/wXJWVlfI17Wm1WsTHx7t8EIU7g9TUGyEb3QFtJ1kbmi2w2cQQj4aIIlnAQ0x1dTWKi4uRkZEBAJgwYQLUajU2btwoX1NaWoqjR49iypQpAIDJkyfDYDDgu+++k6/Zs2cPDAaDfA1RJPD1yIGeQKrEiCJQ79jIj4goEHz+ydnQ0IDTp0/Ln589exYHDx5EUlISkpKSsGzZMtx8883IyMjAuXPn8Otf/xopKSm46aabAAB6vR733nsvHn/8cSQnJyMpKQlPPPEERo0aJa9WGj58OGbPno377rsPr776KgDg/vvvx9y5c7kyiSKKr4c/9gRalRJRaiWaLVYYmi1yZYaIyN98DjH79u3D9OnT5c+lPpTFixdj1apVOHLkCN555x3U1dUhIyMD06dPx7///W/ExcXJj3nxxRehUqlw2223obm5Gddeey3eeustKJVK+Zr33nsPjz76qLyKad68eZ3uTUPUE0Xabr2ShGg1mg1W1DWb0RfRoR4OEUUon0PMtGnTIIqe57m//PLLLp9Dp9NhxYoVWLFihcdrkpKSsGbNGl+HR9SjyOcmRVAlBrCHslJDCze8I6KA4tlJRCFkiMCeGIDLrIkoOBhiiEJIbuyNwEoMwGXWRBRYDDFEISQ19kZa82tClP3oAe7aS0SBxBBDFELGCNwnBmibTmJPDBEFEkMMUQi17dgbWT0xevbEEFEQMMQQhZCBPTFERN3GEEMUQm079kZWiGnriWGIIaLAYYghChFRFOV9YiJxszsAqGtmYy8RBQ5DDFGINJqtsDoOSIzTRVhPTBR7Yogo8BhiiEJE+gWvUSoQpVZ2cXXPIvfEcDqJiAKIIYYoRKR+kfgoNQRBCPFo/EuaTjK12tBisYZ4NEQUqRhiiELEIB/+GFlTSQAQq1VBqbAHM04pEVGgMMQQhYghQk+wBgBBEDilREQBxxBDFCLGCA4xAJDgeF3VjaYQj4SIIhVDDFGIRHIlBgByk6MBAAWVjSEeCRFFKoYYohCR9lCJ1BAzND0eAJBfVh/ikRBRpGKIIQqRSK/EDE2PBcAQQ0SBwxBDFCIGxwnW+mhNiEcSGEPT7JWYE2VGiKIY4tEQUSRiiCEKkUivxAxMjYFSIcDY0ooyY0uoh0NEEYghhihEIj3EaFVKDEiJAQCc4JQSEQUAQwxRiET6EmsAGJoeB4B9MUQUGAwxRCES6ZUYABjmCDEnGWKIKAAYYohCQBTFXhFipGXWnE4iokBgiCEKgQZTK6w2+4qdiA4xafZKzOnKBrRabSEeDRFFGoYYohCQqjAapQI6deR+G2YnRiFao4S51YZz1dy5l4j8K3J/ehKFMXkqKVoNQRBCPJrAUSgEDHFUYzilRET+xhBDFAK9oR9GMowrlIgoQBhiiEKgNyyvlkjLrFmJISJ/Y4ghCoHeVImRQszJcoYYIvIvhhiiEOhVIcbRE1NU04Qmc2uIR0NEkYQhhigEelOISY7VIiVWC1EETpY3hHo4RBRBGGKIQqCuyR5i4ntBiAGcm3uNIR4JEUUShhiiEOhNlRiAzb1EFBgMMUQhIIWYhF4WYrjMmoj8iSGGKAR60xJrgHvFEFFgMMQQhYDzjr29weDUOAgCUN1oRlWDKdTDIaIIwRBDFAK9rScmSqNEblI0AFZjiMh/GGKIgsxmE3tdiAHY3EtE/scQQxRkDeZW2ET7v3tXiIkHwGXWROQ/DDFEQWZw7BGjUSmgUytDPJrgkZp7t5+swv7C2hCPhogiAUMMUZD1xqkkAJgyMBmpcVqUGVtw86qdePyDQ6isZ5MvEXUfQwxRkBl72R4xkoRoDT7/2ZW47dJsAMCH35fgmv/bitU7zkIUxRCPjoh6IoYYoiDrrZUYAEiJ1eK5W8bg44emYFSWHvWmVvzps+NYd/BCqIdGRD0QQwxRkPXmECMZ1zcRnzx8BW6ZYK/KfHeuJsQjIqKeiCGGKMgYYuyUCgFTBiYDAM5U8HRrIvIdQwxRkEkhprecYN2ZgX1iAQBnKhtDPBIi6okYYoiCrI6VGNmAPjEAgKoGkxzuiIi8xRBDFGScTmoTp1MjLV4LACio5JQSEfmGIYYoyHrbCdZd4ZQSEXUXQwxRkEmVmIRecoJ1V9pCDCsxROQbhhiiION0kquBjr4YrlAiIl8xxBAFGUOMq4GprMQQUfcwxBAFkc0msiemHWk6qbC6CRarLcSjIaKehCGGKIgazK2wOY4J4j4xdunxOkRrlGi1iSiqaQr1cIioB2GIIQoiQ5O9CqNVKaBTK0M8mvCgUAjyfjHsiyEiXzDEEAUR+2Hc4zJrIuoOhhiiIGKIcY/LrImoOxhiiIKIe8S4xxBDRN3BEEMURKzEuDcwta0nRhRFl/uKqpvww9d2YUt+RSiGRkRhjCGGKIh4grV7/ZJjIAiAsaUVVQ1ml/tWbTuN3QU1eG93UYhGR0ThiiGGKIhYiXFPp1YiJzEagOuUkqnVis+PlAEAapvMbh9LRL0XQwxREDHEeCYfP+AUYrafrJL/m9U2MsQQkSuGGKIgkvaJYYjpSG7urWhbZr3u4Hn53zWsxBBROwwxREHESoxn7c9QajC1YlNeuXy/odmCVh5LQEROGGKIgohLrD0bkOI6nfTVsTK0WGzol2zvlRHFtv9+REQAQwxRULES45lUiTlf14xmsxXrDl4AANw0LhvxOhUANvcSkSuGGKIgYojxLDlGA32UGqII7C+sxY7TVQCAeWMzkRSjAQDUNrESQ0RtGGKIgsRmE2Fs4T4xngiCIK9Q+vvXp2C1iRiTrUf/lBgkOkJMDVcoEZEThhiiIKk3tULajJaVGPekFUrfnasBANw4NgsAkBTtqMQwxBCRE59DzPbt23HDDTcgMzMTgiDgk08+cblfFEUsW7YMmZmZiIqKwrRp03Ds2DGXa0wmEx555BGkpKQgJiYG8+bNQ0lJics1tbW1WLRoEfR6PfR6PRYtWoS6ujqfXyBRuDA6ppJ0agW0KmWIRxOepL4YAFAIwNzRGQDQVolhTwwROfE5xDQ2NmLMmDFYuXKl2/ufe+45vPDCC1i5ciX27t2L9PR0XHfddaivr5evWbp0KT7++GOsXbsWO3bsQENDA+bOnQur1Spfs3DhQhw8eBAbNmzAhg0bcPDgQSxatKgbL5EoPNRxj5guSZUYAJgyMAWp8ToAaOuJYSWGiJyofH3AnDlzMGfOHLf3iaKIl156CU8//TQWLFgAAHj77beRlpaG999/Hw888AAMBgNWr16Nd999FzNmzAAArFmzBjk5Odi0aRNmzZqFvLw8bNiwAbt378bEiRMBAK+//jomT56M/Px8DB06tLuvlyhk2NTbNaknBrA39EoSo6WeGDb2ElEbv/bEnD17FmVlZZg5c6Z8m1arxdVXX42dO3cCAPbv3w+LxeJyTWZmJkaOHClfs2vXLuj1ejnAAMCkSZOg1+vla4h6GnmPmChNiEcSvvomRSMrIQopsRrMGpEu354UYw9+XGJNRM58rsR0pqzMflBbWlqay+1paWkoLCyUr9FoNEhMTOxwjfT4srIypKamdnj+1NRU+Zr2TCYTTCaT/LnRaOz+CyEKAJ5g3TWVUoFPl1wBm+hasWqrxDDEEFGbgKxOEgTB5XNRFDvc1l77a9xd39nzLF++XG4C1uv1yMnJ6cbIiQKH00neSY7Vok+c1uW2tn1iGGKIqI1fQ0x6ur38275aUlFRIVdn0tPTYTabUVtb2+k15eXlaK+ysrJDlUfy1FNPwWAwyB/FxcUX/XqI/Ikhpvu4TwwRuePXENO/f3+kp6dj48aN8m1msxnbtm3DlClTAAATJkyAWq12uaa0tBRHjx6Vr5k8eTIMBgO+++47+Zo9e/bAYDDI17Sn1WoRHx/v8kEUThhiuk/aJ6a+pRUWHgJJRA4+98Q0NDTg9OnT8udnz57FwYMHkZSUhL59+2Lp0qV45plnMHjwYAwePBjPPPMMoqOjsXDhQgCAXq/Hvffei8cffxzJyclISkrCE088gVGjRsmrlYYPH47Zs2fjvvvuw6uvvgoAuP/++zF37lyuTKIeq7Le3rOVFMvGXl/FR6mhEACbaJ9SSo3ThXpIRBQGfA4x+/btw/Tp0+XPH3vsMQDA4sWL8dZbb+HJJ59Ec3MzHnroIdTW1mLixIn46quvEBcXJz/mxRdfhEqlwm233Ybm5mZce+21eOutt6BUtm0A9t577+HRRx+VVzHNmzfP4940RD1BSW0TACA7MSrEI+l5lAoBCdEa1DSaUdtoYYghIgCAIIrSRuiRxWg0Qq/Xw2AwcGqJQk4URYz8/ZdoNFux6bGrMchpZ1ryzrXPb8WZykb8675JmDwwOdTDIaIA8eX3N89OIgqC2iYLGs32HalZiekerlAiovYYYoiCoLjGPpWUFq+FTs1zk7qDe8UQUXsMMURBUOQIMTmJ0SEeSc/F85OIqD2GGKIgKHY09eYkMcR0F0+yJqL2GGKIgqC4phkAkMN+mG6T9ophJYaIJAwxREFQwkrMRWurxPAkayKyY4ghCgKpsZchpvvkk6xZiSEiB4YYogCz2kScr3NMJzHEdBtXJxFRewwxRAFWZmyBxSpCrRSQHs+dZruL+8QQUXsMMUQBJk0lZSZEQakQQjyankvqiWkyW9FisYZ4NEQUDhhiiAJMCjF9OZV0UeK0KqgcIZDVGCICGGKIAq641t4Pk82N7i6KIAhtK5TYF0NEYIghCri2lUncI+Zite0Vw2XWRMQQQxRwxTxywG8SHcusuWsvEQEMMUQBxyMH/CeRu/YSkROGGKIAarFYUW40AWBjrz8kcpk1ETlhiCEKIGmTuxiNEonR6hCPpufj+UlE5IwhhiiAipyOGxAE7hFzsXh+EhE5Y4ghCqASR4jh8mr/4PlJROSMIYYogKQ9Yri82j94fhIROWOIIQog7tbrXzw/iYicMcQQBZC8vJrTSX7hXIkRRTHEoyGiUGOIIQqgomruEeNPUiXG1GpDMw+BJOr1GGKIAsTQbIGxpRUAkJ3Inhh/iNYooVHZf2yxL4aIGGKIAkTqh0mO0SBGqwrxaCKDIAg8P4mIZAwxRAFS4uiHyeZUkl+17RXDSgxRb8cQQxQgRVyZFBDcK4aIJAwxRAFSXOPYI4b9MH7FvWKISMIQQxQgPL06MLhXDBFJGGKIAkRq7OUeMf7FSgwRSRhiiALAZhNRwiMHAoKVGCKSMMQQBUBlgwmmVhsUApCZwBDjT/LqJFZiiHo9hhiiAJCmkjL0UVAr+W3mT9wnhogk/OlKFABcXh04iY4l1l3tEyOKIhpNrcEYEhGFCEMMUQAUOs5Myk1miPE3uSfGwyGQoihi84lyzH95J0Yt+xJf55UHe4hEFCTcC50oAOSVSazE+J20OqnVJqLe1Ip4nb0yY7OJ2JhXjhWbT+HoeaN8/Y7TVbh2eFpIxkpEgcUQQxQA0nQSKzH+p1MrEa1RoslsxZ6CGlQ1mHCouA7fna1BQVUjAPtBkcMz4rG/sFauihFR5GGIIQqAQvbEBFRitAZN5mbc984+l9tjtSosnpKLe6cOQF6pET96Yw/OOYINEUUehhgiP2s2W1FZbwIA5CbFhHg0kWlc3wScr2tGnFaF0Tl6jM5OwJjsBEwemAx9lH16qV+K/b99UU0TWq02qLhKjCjiMMQQ+Zk0lRSvU0EfrQ7xaCLTS7ePxVM/GI6MeB0UCsHtNRnxOmhVCphabThf14zcZAZKokjDP02I/KytH4a/NANFpVQgKyHKY4ABAIVCkHuSznJKiSgiMcQQ+Vlhtf0XJvthQq+fI0iyL4YoMjHEEPmZtLy6L1cmhVx/R1/MOa5QIopIDDFEfsaVSeFDau7ldBJRZGKIIfIzuSeGISbk5OmkaoYYokjEEEPkR1abiJKaZgDcrTccSNNJJbXNsFhtIR4NEfkbQwyRH5UbW2C22qBSCMhMiAr1cHq9tHgtdGoFrDZR7lUiosjBEEPkR9IW99mJUVB2svyXgkMQBE4pEUUwhhgiP2pbmcQ9YsKFFGLOVrESQxRpGGKI/KiwRtojhlNJ4UJaoVTISgxRxGGIIfKjIkdTL89MCh/9U7hrL1GkYogh8qMix1/7XJkUPtgTQxS5GGKI/Kjt3CSGmHAhLbM+X9sMcyuXWRNFEoYYIj8xtlhQ22QBwEpMOOkTp0WMRgmb2BYyiSgyMMQQ+UmRY3l1SqwGsVpViEdDEkEQ5BPFeRAkUWRhiCHyE+mvfFZhwk/bQZAMMUSRhCGGyE94ZlL46scVSkQRiSGGyE+k3Xp5enX44QolosjEEEPkI5tNxNHzBrS2O1CQu/WGL3k6ibv2EkUUhhgiH31xtAxzV+zAo2sPQBRF+fa23XpZiQk30q69FwzNaLFYQzwaIvIXhhgiHx0+XwcA+PxIGb44WgYAsFhtuFDXAoB7xISj5Bj7ijGRy6yJIgpDDJGPyg0t8r9/t+4o6prMuFDXDKtNhFalQJ9YbQhHR+4IgsDmXqIIxBBD5KMyoz3EKBUCqhrM+NNnefJf932ToqFQCKEcHnkgNffyIEiiyMEQQ+SjMkcl5omZQyEIwIffl2DN7kIA7IcJZ1Jz79kumnsLqxux6Xh5MIZERBeJIYbIB6IoypWYOSPTcc+U/gCAL4/Zf+n1ZT9M2Orn5a69j39wCD95Zx++PFYWjGER0UVgiCHygbG5FS0W+9LqdL0OT8waguzEKPl+VmLCVz8vdu0VRRHHS40AgLe+PReMYRHRRWCIIfJBqbEZAJAQrYZOrUS0RoW/LBgt388QE76k6aRSQwuaze6XWVc2mNDkuG9XQTVOltcHbXxE5DuGGCIfSP0w6fE6+bapg1Pwi1lDceXgFEwZmBKqoVEXEqPV0EepAXiuxkiHeEre3VUY8HERUfcxxBD5QA4xep3L7Q9PH4R3752IKI0yFMMiLwiC4NTc6z7EnHOEmIRoe9j56PsS1LdYgjNAIvIZQwyRD6SmXudKDPUcA7oIMUWOCs2ckekYlBqLRrMVH31/PmjjIyLf+D3ELFu2DIIguHykp6fL94uiiGXLliEzMxNRUVGYNm0ajh075vIcJpMJjzzyCFJSUhATE4N58+ahpKTE30Ml8lm50X0lhnoGqRJTUNl5JaZfcgzumpwLAHhn1zmX4yWIKHwEpBIzYsQIlJaWyh9HjhyR73vuuefwwgsvYOXKldi7dy/S09Nx3XXXob6+rYFu6dKl+Pjjj7F27Vrs2LEDDQ0NmDt3LqxWnnlCoVXqpieGeo7+faRKTIPb+wsdmxbmJkdjwfhsxGpVOFPZiJ1nqoM2RiLyXkBCjEqlQnp6uvzRp08fAPYqzEsvvYSnn34aCxYswMiRI/H222+jqakJ77//PgDAYDBg9erVeP755zFjxgyMGzcOa9aswZEjR7Bp06ZADJfIa1JPTBorMT1SVz0x0m6+uckxiNWqsGB8FgDg7Z3ngjI+IvJNQELMqVOnkJmZif79++OHP/whCgoKAABnz55FWVkZZs6cKV+r1Wpx9dVXY+fOnQCA/fv3w2KxuFyTmZmJkSNHyte4YzKZYDQaXT6I/E2aTspgiOmRpA3vapssqG00u9xnaLKgrsnexCstlZemlDblleN8XXMQR0pE3vB7iJk4cSLeeecdfPnll3j99ddRVlaGKVOmoLq6GmVl9h0w09LSXB6TlpYm31dWVgaNRoPExESP17izfPly6PV6+SMnJ8fPr4x6uxaLFbWOX3KcTuqZYrQq+b07226ZdWGN/fM+cVrEaFUAgEGpcZgyMBk2kcuticKR30PMnDlzcPPNN2PUqFGYMWMG1q9fDwB4++235WsEwfWAPFEUO9zWXlfXPPXUUzAYDPJHcXHxRbwKoo6kKoxOrZD3G6GeZ4DUF9OuubfQ0dSb227Dwrsm9wMAvLr9DP7+9SnYbGzyJQoXAV9iHRMTg1GjRuHUqVPyKqX2FZWKigq5OpOeng6z2Yza2lqP17ij1WoRHx/v8kHkT85NvV2FbgpfnvpinPthnM28JA0/mtgXogi8sPEkfvz23g5TUUQUGgEPMSaTCXl5ecjIyED//v2Rnp6OjRs3yvebzWZs27YNU6ZMAQBMmDABarXa5ZrS0lIcPXpUvoYoFKRKTBqnkno0zyGmbWWSM4VCwJ9vGoX/u3UMtCoFtuZXYu6KHThUXBeU8RKRZ34PMU888QS2bduGs2fPYs+ePbjllltgNBqxePFiCIKApUuX4plnnsHHH3+Mo0eP4u6770Z0dDQWLlwIANDr9bj33nvx+OOP4+uvv8aBAwdw5513ytNTRKEirUxiU2/PJk0nFXgZYiS3TMjGJw9fgX7J0Thf14xbX9mFgwwyRCGl8vcTlpSU4I477kBVVRX69OmDSZMmYffu3cjNtXf5P/nkk2hubsZDDz2E2tpaTJw4EV999RXi4uLk53jxxRehUqlw2223obm5Gddeey3eeustKJXc0p1Cp5TLqyNC/5RYAMC5qkbYbCIUCvvUoNTY2346ydnwjHh8+shU3Pf2Puw5W4PPj5RibE5CwMdMRO75PcSsXbu20/sFQcCyZcuwbNkyj9fodDqsWLECK1as8PPoiLqvnEcORITsxCioFAKaLVaU17cgQx+FZrMV5UYTAKCfh0qMJF6nxvWjM7DnbI3HnX+JKDh4dhKRl0o5nRQR1EqFvA+MtEKpyLFTb7xOhYRoTZfPIfXVeDoNm4iCgyGGyEts7I0c8hlKjr4YKYz0S/E8leTu8YXVjbByyTVRyDDEEHnBahNRUW+fbsjQR4V4NHSx2q9QKnI09fZN6nwqSZKpj4JGpYDFKuJ8LXfyJQoVhhgiL1Q1mGC1iVAIQEps19MNFN7aDoJsV4nppKnXmUIhyL0z7Xf+JaLgYYgh8oK0vLpPnBYqJb9teroOlRhHT0zfLpp63T5HpfsTsYko8PjTmMgLZdLKJE4lRYQBjmXWRTVNsFhtPldigLb+GU8nYhNR4DHEEHmhTD5yQBvikZA/pMVrEaVWwmoTUVDZKPe1eNrozp0BUohx9NMQUfAxxBA5sdlEGFssHW4v4x4xEUUQBHk66JtTlbCJ9oM9U+O8D6nSpnlnqzidRBQqDDFETl7ZfgZj/vAVNp8od7ldrsRwOiliSMcPbDtZCQDITYrx6WDPfin2qs352maYWq3+HyARdYkhhsjJF0fKIIrAm9+ec7m9LcRwOilSSNNBewpqAPg2lQQAfWK1iNWqYBOB4hpOKRGFAkMMkUOLxYq8UiMA4NvTVaiob5HvaztygJWYSCEtszZbbQB8DzHOU1I8foAoNBhiiByOlxrR6th91SYC/ztUCgAQRVE+ciCdRw5EDKmnRdLZwY+ecIUSUWgxxBA5HCquAwColfa+iHUHzwMAjC2taLbYex7Y2Bs5+rcLLb5WYgCeoUQUagwxRA6HSwwAgIWX94VSIeBwiQFnKhvkqSR9lBpRGmUoh0h+pI9WIzmmbfdlX/aIkQzgdBJRSDHEEDlIlZhrhqfhqsEpAIB1B863TSWxChNxpEqKSiF063RyTicRhRZDDBEAQ5NFPtF4dJYe88dlAQA+OXgBZQb7Rmhp7IeJOFKIyUmK7tZxEtKUVEW9CY2m1m6NYfvJShwoqu3WY4l6O1WoB0AUDg6frwNg74tIjNHgukvSEK1RoqimCV8cLQMAZLASE3GkFUrenl7dnjQlVd1oxtmqRozM0vv0+E8OnMfSfx8EAIzvm4D7rxqI6y5Jg1Lh/X41RL0ZKzFEaOuHGZOdAACI1qgwa0Q6AGBrvn0zNFZiIs+8MZm4cnAK7rmiX7efo7tTSufrmvHbdUcBAIIAfF9UhwfX7MeMF7bhvT2FEEWx22Mi6i0YYogAHHT0w4zJSZBvu3Fspss13emZoPCWnRiNd++diGlDU7v9HPIKJR9CjM0m4vEPDqK+pRXj+iZg56+uwcPTByJep8LZqkY8/fFRvLOrsNtjIuotGGKo1xNFsS3EZLdNB0wdlIKU2LbVK2zsJXf6d6MS889vz2J3QQ2iNUq8eNtYZOij8ItZw7DrqWtx95R+AICPD5wPxHCJIgpDDPV6ZcYWVNaboFQIGJHZFmJUSgXmjm6rxqQxxJAb8q69XoaY/LJ6PLchHwDw27mXyNNRABCjVeGn0wYCsFcHpeMuiMg9hhjq9aSl1UPT4jrsAyOtUgI4nUTu+VKJMbVa8bO1B2C22nDtsFT88LKcDtekxeswrm8CAGDj8TK/jpUo0nB1EvV6h6SmXqd+GMmYbD0euHoA1AoFEp02RiOSSJvkGZotqG00y/8/abFY8cG+YpyrakJdkxl1zRaU1DbhZHkDkmI0+MvNoz2emj1rRDoOFNXhy2PlWDS5X7BeClGPwxBDvd4hN/0wEkEQ8NSc4UEeEfUkURolMvQ6lBpaUFDViAkxGoiiiMf/cwjrD5d2uF4hAH9ZMAp94jyfiD5rRDr+8sUJ7C6ohqHJAn20OpAvgajHYoihXs1mE9uWV7upxBB5o39KDEoNLThb1YgJuYl4bXsB1h8uhVop4J4r+iM5RoOEaDX0URoMTY+Tp6A6e76haXHIL6/H1yfKsWB8dpBeCVHPwhBDvVpBVQMaTK2IUisxODW26wcQudE/JQY7z1TjXFUjdpyqwrMbTgAAfnfDCCyalNut55w1Ig355fXYcLSMIYbIAzb29hJWm4gXNp7EzjNVoR5KWDlUbK/CjMrSd2vbeSKgrbl3V0E1HvnX97CJwK0TsnHnxL7dfs6Zjs0Wt5+qRLPZ2uX1uwuq8bdNp9BqtXX7axL1NPyp3Ut8e7oKf//6FJZ9eizUQwkrh0rqAACj3fTDEHlLCjH7C2tR22TB6Gw9/jR/pMfGXW+MyIxHVkIUWiw2bDtZ2em1NY1m3PfOPry46STWH+nYh0MUqRhieonTFQ0AgHPVTbDZuJ255JCbnXqJfOXc45IUo8GqOydAp1Z28oiuCYKA2SPt1ZivjnW+1PqFjfmob7EfQLnlRMVFfV2inoQhppeQ9rAwt9pQUW8K8WjCg6nViuOlRgDAWIYYugg5SdFIiFZDqRCwcuE4ZCVE+eV5pfO7NuWVw+Jhmii/rB7v7ymSP992shJW/qFCvQRDTC/hvBFXUU1TCEcSPo5fMMJiFZEUo0F2on9+6VDvpFYq8J8HJuPTJVdgysAUvz3vhNxEJMdoYGxpxZ6Cmg73i6KIP312HDYRuO6SNMTpVKhtssjHaPhLUXUTNhwtYxWXwg5DTC/hHGKKGWIAALsdvxTG9028qN4FIgAYnBbncmyFPygVAq67JA0AsOFYx16XzScqsON0FTRKBX57/SW4akgfAMDWfP9NKbVabVj85nd4cM1+PL8x32/PS+QPDDG9QIvFiguGZvlzVmLsdhVUAwCuGJQc4pEQeSZNKX1xpAz7zrVVY8ytNvx5fR4A4MdT+6NvcjSucZzGvdmPfTH/O3xB/iPoH1vO4KPvS/z23EQXiyGmFyisboLoVAVmJcb+C2DvWfsvBH+W/4n8bcqgZGTqdahuNOOWV3Zh4eu7sbugGu/uLkRBVSNSYjV4eLr90Mirh/aBIADHLhhRbrz4wyOtNhErNp8GAHkfpV99eMQlTBGFEkNML9D+YDpWYuxLq5stViTHaDAkjZvcUfjSqpT4z0+n4I7Lc6BWCth5pho/fG03/rz+OADgiZlDEaezH0uQEqvF6OwEAP6ZUlp/pBQFlY1IiFbjw4emYNaINJitNjzw7n7+MURhgSGmF5BCzADHMlCGGGDnaftU0qSByeyHobCXlRCF5QtGY+svpmPRpFxolArYRGB4RjxuvdT1JGx/TSnZbCJWfH0KAHDvFf0Rr1PjxdvHYkRmPKobzfjJ2/tQ32K5qK9BdLEYYnqBs1X2PWKkpr+KehNaLF3vABrJpJ2LpwxkPwz1HFkJUfjT/JHY/uR0LLvhEqxefCmUCtcQPn2Y/ft8x6kqmFs73723usGERav3YMHL36Ko2vWPmw3HynCqogFxOhUWX9EPABCtUeGNxZciNU6L/PJ6PP7BIYgiVyxR6DDE9AJSJWZc3wTEae3HZZXU9t5qTLPZigNFdQDYD0M9U7peh7uv6I9MN/vRjMzUIyVWi0azFXs76V0pqW3Cra/swjenqvB9UR1u/McOfOfoE7PZRPzdUYX5saMKI8nQR+GNxZdCo1Tgq+Pl2JTHzfUodBhieoGzVfbAMiAlFjlJ0QB695TS/sJamK02ZOh16JccHerhEPmVQiFg+lB7NcbT7r35ZfW4edVOFFQ1IishCqOy9KhtsuBHb+zGf/YVY2NeOU6U1SNWq8KPr+jf4fGjsxPwkyvtt//xs2O9vrJLocMQE+GMLRZUNdh36O2XEo2+Uoip7r0hRppKmsx+GIpQ04c5+mLcNPfuO1eDW1/ZiXKjCUPSYvHhT6fggwcm4/pRGbBYRfziv4fx5H8PAwDuntIP+mh1h+cAgCXXDEKGXofimma8uq0gcC/GoaupMV+eh1NgkYMhJsKdc0wl9YnTIk6nRt9kqRLT3NnDLtreczVY8v73KDNc/DJPf5P2h5k8gP0wFJmmDk6BSiGgoLIRhdX2nwE1jWa8vPU0fvTGHhhbWjEhNxEfPDAZ6XodojRKrLhjHB69ZhAAwNBsQbRGiXundqzCSKI1Kjx9/XAAwMtbTwd0tdI7u85h2G+/wNrvirq+uBOV9SZMWv41rv/7Dq6uihAMMRFO6ofpn2xfmZTj2F4/0NNJL206ic8Ol+KlTScD+nV8Vd9iweESAwB7JYYoEsXr1Li0XyIA4J87zuLxDw5h0vKv8dyGfJhabbhmWCrW3DsRCdEa+TEKhYDHZg7FS7ePRU5SFJ76wXAkxmg8fQkAwPWjMjBlYDJMrTb86bPjAXktLRYrXtp0CjYR+N26Yzji+P7tjv8duoCaRjOOlxpx08vfYn9hrR9HGl5arTZUN5hQXNMU0WdpqUI9AAosOcQ4lldLPTGB/CvEahNxqNj+g2bdwQv49fXDXRoDQ2nvuRpYbSJyk6ORnch+GIpc1wxLxe6CGry9q1C+bVSWHndNzsVN47KgUrr/G3b+uCzMH5fl1dcQBAF/mDcCc/72Db46Xo6t+RWY5lji7S//2V+CmkYzAMBsteHh97/HZ49O7dbPlM8OXwAAxGpVqGow447Xd+O5m0d7/XrD3f/77Dg2HCuDocmCelOrfPvN47Px/G1jQjiywGElJsLJIaaPPcRIPTHFtU0Bmxc+VVGPBsc3ULPFik8OnA/I1+kOaX8YLq2mSDd7RAZ0agU0SgVuGpeFjx+agk+XXIFbL83xGGC6Y3BaHO6e0g8A8If/HYeptfMm37NVjdhfWOvy4Wna2WoT8cY39n6bx64bgqyEKBTVNOGX/z3s88+v83XN+L6oDoIA/O+RqZh5SRrMrTYs/fdBPP9Vfo8/3DKv1Ig3dpxFSW2zS4ABgA+/L5F7ASMNKzERTuqJ6eeYTspKjIIgAE1mK6obzUiJ1fr9a0rLl5UKAVabiDW7C7FoUm5YNNHuPOPoh+HSaopwfZOjsfWJ6dCqFF1OC12sn80YjE8O2s9YeurDI3j2ltFQtwtKNpuIZz7Pwxs7znZ4vEohYOXC8Zg9Mt3l9i+PlaGwugmJ0Wr85Mr+uGpIH9z6yk58cbQM7+wqxGJHePLGekcV5vJ+SeifEoNX7pyA577MxyvbzmDF5tP48lgZllwzGNePyuiw905P8N4ee8Xt2mGpePr64UiI1iBep8If/ncc7+4uxLJPj2H9o1d2eF96ush6NeRCFEUUSLv1OioxWpUSGfE6AIHrizlQZJ9nXnh5X0SplThZ3oB9YTD3XOuYCwfY1Eu9Q7peF/AAAwBxOjWeuWkklAoBHx04jwfe3Y9mc1tFxmK14fH/HJIDTN+kaOQm2z/S43VotYn4xX8PuayaFEURr247AwC4a3I/RGtUGJuTgKfm2JuJ/7w+DweL61DbaMbZqkYcKKrFt6er0GR2rUJIPjtsPwV87phMAPYeoF/NGYb/u3UM4rQqnCxvwKP/OoDrXtyGj74vQavVP6uhgqHB1IqPv7dXvO+d2h8D+sQiKUYDlVKBx2cOQVKMBifLG/CO09RiZ1qtNhwpMXRZ7QqHVa4MMRGsutGM+pZWCELbNBIQ+L4YqRJz9ZA+mOf4gbFmt3ffPIG027EqaXBqLPrE+b8CRdSbzRyRjtfvmgCdWoHNJyrwozd2o67JjCZzK+57Zx8+PnAeSoWA528dg+1PTse2X9g/vvnldIzvm4D6llYs+df38nTU7oIaHCoxQKtS4K7JufLXueeKfvIZTvP/8S3G/Wkjpv/fVtz08k786I09ePi97zv88i2sbsThEgMUAjCnXbXnlgnZ2PGra/DYdUOgj1KjoLIRj31wCDe/sqvLqbFwse7geTSarRiQEtNhwUJCtAZPzhoKAHhp40lU1He9YvSVbWdww8odeHnrGY/XHCquw1V/3YKH3tsf0qk4hpgIJk0lZSVEQadWyrfnBHCvGEOzBacq7MccjO2bgB9N6gsA+OJIGaod+9WEijSVxH4YosC4Zlga3vvJROij1Pi+qA63vrILC1/fg635ldCpFXjjrktx84Rsl8eolQqsWDgeCdFqHC4xYPnnJwAAr263/wK97dIcJDtNewuCgOduGSOfBQfYG3WzEqKgUgjYkl+Jr46Xu3wNqQozZWCK2yl0fZQaj147GDt+OR1Pzh6KWK0Kh4rrsDW/0j//YQJIFEWs2W1fer5wYl+30/a3XZqDMdl61Jta8ZcvTnT5nJ8esk+9vbrtjNzf2N6KzfYdnaPUKihCOP3GEBPBCtqtTJL0DeCuvYeK6+SvIZ2oOzpbD7PVhv/uL/H71/OW1SZii2PjLy6tJgqcCblJ+M+Dk5Eer8OpigYcLK6DPkqN934ySd6Er72shCi84Fg989bOc3hp00lsza+EQoC8M7AzfZQaG5ZehX2/mYFTf56Do3+YhW9/dQ3uv2oAAOCP/zvusouwPJU0OqPTscfp1Hho2iD88DL7oZrSL/NwdqC4DnmlRmhVCtzSLiBKFAoBf7hxJAQB+Oj789jXxXEUJ8vtf4gaW1rxnpsq+tHzBmzKq4BCAB6ePtA/L6SbGGICZH9hLY6e7/5+Bv7Qfnm1xHmFkr9JU0nj+ybIt/1oor0a8/53RS5lx6oGEz47fEHejCuQNhwtQ0ltMxKi1fJBmEQUGEPS4vDhQ1MwIjMe/ZKj8Z8HJ2NCbmKnj7lmWBoeuNoeQl7aZP8rf86oDOQmx7i9XqNSICVW69KoKu0ifL6uGascUyFnKhuQV2qESiF0aBz2ZN5Y+zT413nlaPRQiQg2TzsNv+eowswdnemy7097Y3MScLvjxPPfrTvmce+YLY7qk05t/+/6+jdnOxwrIVVh5o3JxIA+sT6+Ev9iiAmArfkVuOWVnbjt1V0whvCo+nMeQkxbT4z/d+09UGxv4B3Xt+0H1g1jMhGnU6GwugnfnK7C90W1+Pm/D2LK8s1Y8v4BTPu/rbjnze+w5URFQOZWRVHEK+0aBIkosLISovDZI1Ox+fFpGJIW59Vjnpg51CXsPOCorHgrWqPCb66/BACwatsZFFU34bND9irM1MEpnf6SdzYqS49+ydFosdiwsd3UVCjklRox5S9fY/ZL3+BUeb18e12TWd77Rpq678wvZg1FvE6F46VGrD9S6vYa6byth6YNQlZCFKoaTPiPUxU9r9SIL4+VQxDsoTHUGGL8rKi6CT9bexCiaF/G/HWe998AFqsNH+wtxjenKv3yy1yqxPTzUIm5YGj223kkgH0JpVSJGedUiYnWqHDzeHuZ86dr9mPByzvx8YHzMFttyE2Ohija0/89b+3F9Oe34o1vCnz+66fFYnVZDeFsV0E1jpy3NwgudmoQJKLAEgTBp34JtVKBFXeMw9C0ONw6IRujsxN8/po/GJWOKQOTYW614Y+fHZd/yc8dnen1cwiCIC9KCPWUUmW9CT95ex+qGszIL6/Hjf/4FusO2lci/Xd/CUytNlySEY9xOQldPldyrFbe0+eDvcUd7m+xWOX9ZGaOaKuMvbrtDCyO1VorN58GYN+teVCqd+E0kBhi/KjJ3Ir7390HQ7MFGkeJc/3hMq8ea2i24J439+LJDw9j0ervMOOFbXjz27PdruTYbKIcYga0CzEpsRpEqZUQRfsGUP5ytroRhmYLtCoFhqXHu9wnTSk1ma3QqBS4eXw21j18Bbb9Yjq2PjENP5naH/GOas3/W5+Hqc9uxj+2nEa9F69/5+kqTFr+Na55fisuuHk9r223b5bVvkGQiMJPZkIUvvz5Vfjrrd3bYVbaRVilELAprxynKhqgUSowc0SaT88jTSltP1mJWseOwcHWYrHigXf34XxdM/qnxOCKQcloMlvxs7UH8ft1R/H+HvtU0o8muW/odedWx5TSjtNVHVao7iqoRovFhgy9DkPT4nDbpTlIidWgpLYZ/zt0ASfL6/H5UXsF55FrBvvxlXYfQ4yfiKKIX314BCfK6pESq8Frd00AAGw/VdnlL+JzVY246eVvseN0FaLUSsRpVSioasQf/ncck575Gr9bd9Tno+7LjC0wtdqgVgrISohyuU8QhIA090pVmFFZemhUrv/XGpwWh7/fMQ6/m3sJdj91LZ6/bQzGOP5y6JcSg9/MvQR7fj0DyxeMQr/kaNQ2WfDXL/NxxV8246VNJ1HX5P6HyPt7inDXP79DXZMFpYYWPLhmv8t/q7xSY6cNgkQUeQanxeGeK/rJn181pI/PxxQMSo3D8Ix4tNpEfHHUuz9G/UkURfzyw8P4vsjeGL168aV458cTsWS6fQrn7V2FKKhqRIxGiRvHen9sQk5SNK4YZF/c8J92iy2kqaTpw1IhCAJ0aiV+7DgE9OWtZ/D3r09BFO3L1Iemh74KAzDE+M3qHWfx6aELUCkE/GPheFw9pA8G9ImBudWGr/MqPD5ud0E15r/8LQoqG5Gh1+G/P52M3b++Fv9v/kgMSYtFk9mKd3YV4m9fn/JpPFIVJicp2u0W4zlJ/j8IUtrkbryHBr55YzLx46n9keRh860ojRJ3XN4Xmx67Gi/dPhYD+8TA2NKKlzadwqTlX+NXHx7GsQv2ZmmrTcSfPjuOX398BK02EbNHpMtLNH+37qjcAPe6owrTWYMgEUWeR68dLO8HJVVVfHWj43HS9E0wrdx8GusO2n+nrPrReAzoEwulQsATs4bin3dfCn2UPZQtGJ+NWK1vfX63Oaox/91XLDf4iqKIzY4Qc43T+Vd3TspFnE6F0xUN8iqvcOiFkTDE+MGuM9VY7lh7//T1wzFxQDIEQcD1o+zL+Tw1UH1y4DwWrd6DuiYLxmTrse7hKzAiU48YrQp3TsrFl0uvwrM3jwJg3yzO03r9mkYznt1wAltOVMi/vAs8TCVJpObekm6EmJpGM046NZdJ5H4YL+ZmO6NSKjB/XBa++vnVWLlwHIZnxKPFYsPavcW4/u87cMuqnVj8z++w2rH752PXDcGqO8djxR3joBCAD/aV4L09RThf1yzPZ/vaIEhEPVucTo01907EMzeNwtxRnS+t9uQGR1/Md+dqPJ7vJLHaRLy+vQDv7i7stHJeWN2IvFKjx91wm81WvPFNAZ7feBIA8McbR2LKINdjUq4Zlob1j07Fn+aPxK9/MNyXlwQAmDUiHfE6FS4YWvDtaXsPzJnKBpTUNkOjUmDKoLZtKOJ1aiye3E/+/LpL0jAiU+/z1wwULtO4SBfqmrHk/e9htYm4aVyW3DQFAD8YlYEVm09j20n7lFKcUznzfF0zfvnhYVisIq4fnYHnbx3jsiEdYJ/2uXVCDl7dXoCCykas/a4IP7my4y/jpz8+gi+OlmEVzmBUlh6PXDMIBZX2df7tVyZJujud1GKx4pZVO1FQ1Yi/3zFObn5rNLXiRJl9S3/nlUkXQ6kQMHd0Jq4flYG952rxzq5z2HC0TD7CQKtS4PnbxsgNe1cO7oNfzBqGZzecwB/+dwxfHitDq03E5AHJ3WoQJKKebWh63EVNe2QlROHS3ETsK6zFZ4cvuP35K/n33mL8+fM8AMDfNp3CA1cNwI8m9UW0RoVWqw2b8irw7u5z+NZxCG1ucjTmjcnEjWMzMSg1DoXVjXh3VyE+2FcMY4v9D9YfX9EfCye6X3WUnRiNRZO6t1BBp1Zi/rgsvLOrEP/eV4yrhvTBlhP2pdWTBiR3WMF5zxX98M9vz6LJbMWjYdILI2GIuQgtFiseXLMf1Y1mXJIRj2duGuXSXDUsPQ4DUmJQUNWIzScqXOYtn/3iBEytNlzePwkrfjjOYwe/QiHggasG4JcfHsHqHWdx1+R+Lv0muwuq8cXRMigE+7lIR84bcP+7+yE9XfuVSZLuhpg3vimQqzxP/OcQchKjMK5vIg6XGGATgQy9Dul6nU/P2RVBEHB5/yRc3j8J5cYWvL+nCIdK6rB0xhCMbVf1efDqAThyvg6fHynDN6fsf2FIHfZERL6aNzYT+wpr8ekhzyGmttGM5760V+PjdCpUNZjw58/zsGrbGfxgVDo251XggqOSoxDse9wUVjdhxebTWLH5NPomRaO4tglScaZvUjTuntLPpwMufXXbpTl4Z1chNh4rR22jWZ5Kmj604z5aybFarL1/EupbWjEqO3yqMACnk7pNFEX8bt1RHC4xICFajVcXTUCUpmMl5QfSlNLhtiml/YU1+PTQBQgC8Lu5l3S5BHH+uCz0idOi1NCC/zkt95P6QgD7dtM7fjkdD00biBiNEtIK7QEp7jci6ut09IC3R9qfr2vGyi2nHc9r7/e57539OF/XLO8PM95PVRhP0uJ1+Pl1Q/DWPZd3CDBA25bkg1Ptr3tYehyu5uZ2RNRNP3Ccan24xCD3Grb3f1/lo67JgmHpcdj79Aw8d/No9E2KRk2jGWt2F+GCoQWJ0Wr8dNpAbH9yOvb/5jr87Ydjce2wVKgUAopq7AFm2tA+ePPuy7D1iWn48dT+AT1Ne2SWHiMy42G22vDu7kLsdeziO32o+12VR2cn4Ip201rhgJWYbnpvTxE+2FcChQCsuGOc3GPS3g9GZWDlltPYerISDaZWRKuV+ONn9pLjrROyMTKr61SrVSnx4yv649kNJ/Dq9jNYMD4LgiDgw/0lOHbBiDidCj+fMQTJsVo8OXsY7r9qAN7eWYiqBhMu6+c+VGQn2sdbb2qFodni1SZQf15/HC0WGyb2T8Lquy/DLat24kRZPX7y9j4kxdinypz3hwmVWK0Kqxdfhr99fQp3+rD0kIiovZRYLaYMTMY3p6qwdm+RfIq25Oh5A97/zr7U+Q/zRkCnVuK2y3KwYHwWPj10Ad+ersaUgcm4fnSGS8vAjWOzcOPYLNQ2mvHduRoMTYvzWDkPlNsuzcHvPz2GlZtPo9UmYkBKTNDHcLEYYrphf2Et/vC/YwCAX8wahisHe/5Lf3hGHPqnxOBsVSO+ziuHTRRxqLgOMRolnnCcLOqNhRP74h9bTuNkeQO25lfi0n6JeO7LfADAz64d7LL/SUK0Bj+b0fm8ZZRGiT5xWlTWm1BU09RliNlxqgqfHymDUiHgDzeOQKxWhTcWX4r5//gWeaVG+bpwCDEA0Dc5Gs/f1r19JoiInN0yIRvfnKrCq9sKoBAE/GLmUCgUAmw20bEa0r6SaeKAtoZYlVKBBeOzsWC8+/OMJIkxGswa4d1xCP42f2wW/vx5nrzpqaezrcIZQ4yPKowt+Oma/bBYRfxgVDoe7KLfwj6llI5/bDmDD78/j5Nl9lU9D18zCKlx3veO6KPUWDixL17bXoBXtp3B+HOJqGowoX9KDO5y6hz3Rd+kaFTWm/DQe9+7LNEb2CcWD149UJ77NLfa8PtPjwIA7pqcK29kl50YjdfuuhQ/fG03zI49acKpa52IyB/mjcnE6YoGrNh8Gqu2nkFBZQNevH0s1h8uxfdF9j9Ku7NKKNT00WrMHpEur+K8pgeGGPbE+GhjXjkq6k0YkhaLv94yxqupCqkvZvvJSpQZW5CdGIUfX+H7xmv3XNEPaqWAPWdr5P1Pnv7B8A4by3lL6ikpqW3GibJ6+WP9kVLcsHIHfvzWXhwoqsVbO8/iTGUjUmI1WDpjiMtzjO+biL/eMhqCYO9qb7/CioiopxMEAY/PHIoXbx8DjVKBL4+V49ZXduHZDfZm3kevHYy0eP8uaAgW6cTuOK0Kl3poPwhnrMT46EcTc6GPUsv7uXjjkgz7Sa7nqu0rgX79g+Hd+mWfoY/CjWOz8N/9JWi1iZg6KAXXDu9+cv7VnGGYPTLd5fwki9WGTw9ewCcHz2PziQpsPlEhN5f9cvYweYMlZzeOzcK4nEQkxXp3uBoRUU9007hs9E2Kxv3v7MexC/Zp9IF9YnBPN/4oDReTBybj2ZtHITsxGlpVz/sjVBC9XZrSwxiNRuj1ehgMBsTHx3f9gAB7/qt8rNh8Gpf3S8K/H5jU7WbTk+X1mPnidigE4POfXdnhjCJ/OVfViH9sOY2PDpyH1SZiXN8EfPjgFJ8OcyMiikTFNU247519KKhsxFv3XNZhMzq6OL78/maICZJmsxVr9xZh7uhMeSvs7tp8ohwqhQJXBWHpcHFNE746Xo4bxmT41MNDRBTJbDYRtU1mHiobAAwxCL8QQ0RERF3z5fc3G3uJiIioR2KIISIioh6JIYaIiIh6pLAPMS+//DL69+8PnU6HCRMm4Jtvvgn1kIiIiCgMhHWI+fe//42lS5fi6aefxoEDB3DllVdizpw5KCoqCvXQiIiIKMTCenXSxIkTMX78eKxatUq+bfjw4Zg/fz6WL1/e6WO5OomIiKjniYjVSWazGfv378fMmTNdbp85cyZ27tzZ4XqTyQSj0ejyQURERJErbENMVVUVrFYr0tLSXG5PS0tDWVlZh+uXL18OvV4vf+Tk5ARrqERERBQCYRtiJO235xdF0e2W/U899RQMBoP8UVxcHKwhEhERUQiE7QGQKSkpUCqVHaouFRUVHaozAKDVaqHVcvtnIiKi3iJsKzEajQYTJkzAxo0bXW7fuHEjpkyZEqJRERERUbgI20oMADz22GNYtGgRLr30UkyePBmvvfYaioqK8OCDD4Z6aERERBRiYR1ibr/9dlRXV+OPf/wjSktLMXLkSHz++efIzc0N9dCIiIgoxMJ6n5iLYTAYkJCQgOLiYu4TQ0RE1EMYjUbk5OSgrq4Oer2+02vDuhJzMerr6wGAS62JiIh6oPr6+i5DTMRWYmw2Gy5cuIC4uDi3S7KpLe2yWhU++J6EH74n4YfvSXjy1/siiiLq6+uRmZkJhaLz9UcRW4lRKBTIzs4O9TB6hPj4eP4gCDN8T8IP35Pww/ckPPnjfemqAiMJ2yXWRERERJ1hiCEiIqIeiSGmF9Nqtfj973/PnY7DCN+T8MP3JPzwPQlPoXhfIraxl4iIiCIbKzFERETUIzHEEBERUY/EEENEREQ9EkMMERER9UgMMRFu+fLluOyyyxAXF4fU1FTMnz8f+fn5LtfcfffdEATB5WPSpEkhGnHk8+Y9AYC8vDzMmzcPer0ecXFxmDRpEoqKikIw4sjnzXvS/ntE+vjrX/8aolFHPm/el4aGBixZsgTZ2dmIiorC8OHDsWrVqhCNOPJ5856Ul5fj7rvvRmZmJqKjozF79mycOnUqIONhiIlw27Ztw8MPP4zdu3dj48aNaG1txcyZM9HY2Ohy3ezZs1FaWip/fP755yEaceTz5j05c+YMpk6dimHDhmHr1q04dOgQfvvb30Kn04Vw5JHLm/fE+fujtLQU//znPyEIAm6++eYQjjyyefO+/PznP8eGDRuwZs0a5OXl4ec//zkeeeQRrFu3LoQjj1xdvSeiKGL+/PkoKCjAunXrcODAAeTm5mLGjBkdfu/4hUi9SkVFhQhA3LZtm3zb4sWLxRtvvDF0g+rl3L0nt99+u3jnnXeGcFS9m7v3pL0bb7xRvOaaa4I4KnL3vowYMUL84x//6HLd+PHjxd/85jfBHl6v1P49yc/PFwGIR48ela9pbW0Vk5KSxNdff93vX5+VmF7GYDAAAJKSklxu37p1K1JTUzFkyBDcd999qKioCMXweqX274nNZsP69esxZMgQzJo1C6mpqZg4cSI++eSTEI6yd/H0fSIpLy/H+vXrce+99wZzWL2eu/dl6tSp+PTTT3H+/HmIoogtW7bg5MmTmDVrVqiG2au0f09MJhMAuFSNlUolNBoNduzY4f8B+D0WUdiy2WziDTfcIE6dOtXl9rVr14qfffaZeOTIEfHTTz8Vx4wZI44YMUJsaWkJ0Uh7D3fvSWlpqQhAjI6OFl944QXxwIED4vLly0VBEMStW7eGcLS9g6fvE2fPPvusmJiYKDY3NwdxZL2bp/fFZDKJd911lwhAVKlUokajEd95550QjbJ3cfeemM1mMTc3V7z11lvFmpoa0WQyicuXLxcBiDNnzvT7GBhiepGHHnpIzM3NFYuLizu97sKFC6JarRY//PDDII2s93L3npw/f14EIN5xxx0u195www3iD3/4w2APsdfx5vtk6NCh4pIlS4I4KvL0vvz1r38VhwwZIn766afioUOHxBUrVoixsbHixo0bQzTS3sPTe7Jv3z5xzJgxIgBRqVSKs2bNEufMmSPOmTPH72NgiOkllixZImZnZ4sFBQVeXT9o0CDxL3/5S4BH1bt5ek9MJpOoUqnEP/3pTy63P/nkk+KUKVOCOcRex5vvk+3bt4sAxIMHDwZxZL2bp/elqalJVKvV4meffeZy+7333ivOmjUrmEPsdbz5XqmrqxMrKipEURTFyy+/XHzooYf8Pg72xEQ4URSxZMkSfPTRR9i8eTP69+/f5WOqq6tRXFyMjIyMIIyw9+nqPdFoNLjssss6LFs8efIkcnNzgznUXsOX75PVq1djwoQJGDNmTBBH2Dt19b5YLBZYLBYoFK6/ypRKJWw2WzCH2mv48r2i1+vRp08fnDp1Cvv27cONN94YkAFRBPvpT38q6vV6cevWrWJpaan80dTUJIqiKNbX14uPP/64uHPnTvHs2bPili1bxMmTJ4tZWVmi0WgM8egjU1fviSiK4kcffSSq1WrxtddeE0+dOiWuWLFCVCqV4jfffBPCkUcub94TURRFg8EgRkdHi6tWrQrRSHsXb96Xq6++WhwxYoS4ZcsWsaCgQHzzzTdFnU4nvvzyyyEceeTy5j354IMPxC1btohnzpwRP/nkEzE3N1dcsGBBQMbDEBPhALj9ePPNN0VRtJdjZ86cKfbp00dUq9Vi3759xcWLF4tFRUWhHXgE6+o9kaxevVocNGiQqNPpxDFjxoiffPJJaAbcC3j7nrz66qtiVFSUWFdXF5qB9jLevC+lpaXi3XffLWZmZoo6nU4cOnSo+Pzzz4s2my10A49g3rwnf/vb38Ts7Gz5d8pvfvMb0WQyBWQ8gmNQRERERD0Ke2KIiIioR2KIISIioh6JIYaIiIh6JIYYIiIi6pEYYoiIiKhHYoghIiKiHokhhoiIiHokhhgiIiLqkRhiiIiIqEdiiCEiIqIeiSGGiIiIeiSGGCIiIuqR/j/t34C200qXQAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(timeseries[0], timeseries[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\joche\\miniconda3\\envs\\pp_env\\lib\\site-packages\\pymc\\data.py:287: FutureWarning: ConstantData is deprecated. All Data variables are now mutable. Use Data instead.\n", + " warnings.warn(\n", + "Sampling: [L, alpha, area, baseline_intercept, baseline_slope, mean, noise, std]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "

Sampler Progress

\n", + "

Total Chains: 4

\n", + "

Active Chains: 0

\n", + "

\n", + " Finished Chains:\n", + " 4\n", + "

\n", + "

Sampling for now

\n", + "

\n", + " Estimated Time to Completion:\n", + " now\n", + "

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ProgressDrawsDivergencesStep SizeGradients/Draw
\n", + " \n", + " \n", + " 800000.623
\n", + " \n", + " \n", + " 800000.623
\n", + " \n", + " \n", + " 800000.607
\n", + " \n", + " \n", + " 800000.637
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [L]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65de9276e99248e8a1dedd3f35be1c50", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
baseline_intercept-43.9787.255-57.960-30.5080.0790.0568511.06241.01.0
baseline_slope6.6570.5135.7577.6750.0060.0046862.05687.01.0
noise_log__4.6380.0724.5094.7780.0010.0019353.05750.01.0
mean25.9490.01325.92425.9720.0000.0002928.03445.01.0
std_log__-0.6430.041-0.722-0.5700.0010.0012733.03353.01.0
alpha2.9630.3962.2103.6740.0070.0053023.03830.01.0
area_log__7.3210.0257.2747.3680.0000.0005421.05390.01.0
noise103.6547.52590.303118.2700.0780.0569353.05750.01.0
std0.5260.0210.4860.5650.0000.0002733.03353.01.0
area1512.65637.4241442.8531584.4550.5080.3605421.05390.01.0
std_skew0.3450.0100.3270.3650.0000.0003575.04874.01.0
mean_skew26.3460.01226.32226.3680.0000.0004179.05737.01.0
delta0.9450.0140.9190.9680.0000.0003023.03830.01.0
mue_z0.7540.0110.7330.7720.0000.0003023.03830.01.0
sigma_z0.6570.0120.6350.6800.0000.0003023.03830.01.0
mode_offset0.4800.0230.4390.5230.0000.0003023.03830.01.0
mode_skew26.2010.01526.17126.2280.0000.0003411.03972.01.0
height1880.50838.7561811.1391958.1030.4040.2869193.07168.01.0
sn18.2371.36615.60620.6920.0140.0109724.06250.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", + "baseline_intercept -43.978 7.255 -57.960 -30.508 0.079 0.056 \n", + "baseline_slope 6.657 0.513 5.757 7.675 0.006 0.004 \n", + "noise_log__ 4.638 0.072 4.509 4.778 0.001 0.001 \n", + "mean 25.949 0.013 25.924 25.972 0.000 0.000 \n", + "std_log__ -0.643 0.041 -0.722 -0.570 0.001 0.001 \n", + "alpha 2.963 0.396 2.210 3.674 0.007 0.005 \n", + "area_log__ 7.321 0.025 7.274 7.368 0.000 0.000 \n", + "noise 103.654 7.525 90.303 118.270 0.078 0.056 \n", + "std 0.526 0.021 0.486 0.565 0.000 0.000 \n", + "area 1512.656 37.424 1442.853 1584.455 0.508 0.360 \n", + "std_skew 0.345 0.010 0.327 0.365 0.000 0.000 \n", + "mean_skew 26.346 0.012 26.322 26.368 0.000 0.000 \n", + "delta 0.945 0.014 0.919 0.968 0.000 0.000 \n", + "mue_z 0.754 0.011 0.733 0.772 0.000 0.000 \n", + "sigma_z 0.657 0.012 0.635 0.680 0.000 0.000 \n", + "mode_offset 0.480 0.023 0.439 0.523 0.000 0.000 \n", + "mode_skew 26.201 0.015 26.171 26.228 0.000 0.000 \n", + "height 1880.508 38.756 1811.139 1958.103 0.404 0.286 \n", + "sn 18.237 1.366 15.606 20.692 0.014 0.010 \n", + "\n", + " ess_bulk ess_tail r_hat \n", + "baseline_intercept 8511.0 6241.0 1.0 \n", + "baseline_slope 6862.0 5687.0 1.0 \n", + "noise_log__ 9353.0 5750.0 1.0 \n", + "mean 2928.0 3445.0 1.0 \n", + "std_log__ 2733.0 3353.0 1.0 \n", + "alpha 3023.0 3830.0 1.0 \n", + "area_log__ 5421.0 5390.0 1.0 \n", + "noise 9353.0 5750.0 1.0 \n", + "std 2733.0 3353.0 1.0 \n", + "area 5421.0 5390.0 1.0 \n", + "std_skew 3575.0 4874.0 1.0 \n", + "mean_skew 4179.0 5737.0 1.0 \n", + "delta 3023.0 3830.0 1.0 \n", + "mue_z 3023.0 3830.0 1.0 \n", + "sigma_z 3023.0 3830.0 1.0 \n", + "mode_offset 3023.0 3830.0 1.0 \n", + "mode_skew 3411.0 3972.0 1.0 \n", + "height 9193.0 7168.0 1.0 \n", + "sn 9724.0 6250.0 1.0 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pmodel = models.define_model_skew(\n", + " time=timeseries[0],\n", + " intensity=timeseries[1]\n", + ")\n", + "idata = pl.sampling(pmodel, tune=6000, draws=2000)\n", + "idata = pl.posterior_predictive_sampling(pmodel, idata)\n", + "summary = az.summary(idata, var_names=[\"~y\", \"~baseline\", \"offset\"])\n", + "summary" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\joche\\AppData\\Local\\Temp\\ipykernel_5868\\1943866237.py:9: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " plt.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHWCAYAAAAciQ/OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqHklEQVR4nOzdd5iV5Z3/8fdTTy/TCwww9Kqi2BAVomJMxJpo1DWSsok/TUJi28TEgg2zGlMWyyarsSRZk9XENYlrrGDEghUBRXobprfTy1N+fxwYHGkDzMgMfF/XNdfMeep9Dpw5n7mr4rquixBCCCGEGJDUA10AIYQQQgix7yTMCSGEEEIMYBLmhBBCCCEGMAlzQgghhBADmIQ5IYQQQogBTMKcEEIIIcQAJmFOCCGEEGIAkzAnhBBCCDGA6Qe6AD3hOA5btmwhFAqhKMqBLo4QQgghRJ9xXZd4PE51dTWquud6twER5rZs2UJNTc2BLoYQQgghxGdm06ZNDB48eI/HDYgwFwqFgMKTCofDB7g0QgghhBB9JxaLUVNT05V/9mRAhLltTavhcFjCnBBCCCEOCT3tWiYDIIQQQgghBjAJc0IIIYQQA5iEOSGEEEKIAWxA9JnrKdu2yefzB7oYQogeMgwDTdMOdDGEEGJAOyjCnOu6NDQ00NHRcaCLIoTYS9FolMrKSplDUggh9tFBEea2Bbny8nL8fr98KAgxALiuSyqVoqmpCYCqqqoDXCIhhBiYBnyYs227K8iVlJQc6OIIIfaCz+cDoKmpifLycmlyFUKIfTDgB0Bs6yPn9/sPcEmEEPti23tX+rsKIcS+GfBhbhtpWhViYJL3rhBC7J+DJswJIYQQQhyKJMwNQIqi8PDDDx/oYvS6m2++mWHDhh3oYgghhBADyl6HuVdeeYVZs2ZRXV2Noig89dRTezxn4cKFHHXUUXi9XoYPH84DDzywL2U96CWTSW666SbGjx+P1+slEokwY8YMnn766QNdNCGEEEL0U3sd5pLJJIcffjjz58/v0fHr1q3jC1/4AieeeCLvvfce119/Pd/73vd48skn97qwB7N4PM60adN45JFH+MlPfsKKFStYtGgRU6dO5bzzzuPWW2890EUkm80e6CIIIYQQ4lP2emqSM844gzPOOKPHxz/wwAMMGTKEX/ziFwCMGzeOt99+m7vvvpvzzz9/b29/0PrJT37CRx99xPLlyxkxYkTX9ttvvx2fz8eNN97ImWeeyeTJkwHo6OjgK1/5Cn/729/w+Xx8+9vf5pZbbkFVC/n8f//3f7n55pv5+OOPMU2T0aNH85//+Z9d569du5brrruOF198Edd1Ofroo7n77rs5/PDDAViwYAEzZszg73//O//+7//Om2++yfXXX89DDz3EpZdeyi233NJVRtd1GTFiBJdccklX6PzTn/7EvHnz+Oijj6isrOTcc8/ltttuIxAIAIVg+P3vf58//OEPqKrKRRddRCQS6fsXWgghDhDXdYEdB/3YjoumFrY5jovjuriuSzpjYbs2luPg2A4ewyCezaOrUNcaJxoKsqm5DVdR0Nw861syVEW8rK5voCOeIJtzSFuQ6gDdB9kcJOOQyUJrHlygGXCAJDAU6ACMrdvCwHogANiAufW4kVv3a0CRDlkLLKC2AlwD7FyeYYMMAuEgmkPhbE1hbEUVpdEIdY0tGB4vRWEPpu4h6DNwLRe/AU4+ieFkUO08JlkM1yKXz+M6Dt5hR+OoOkrhRcR1HNSNr6FjgeuC64Dr4Lo2yrbHbN9OZAjUHN39H6V9A2x+q+f/iCM+B/7inh//GenzeeZef/11Zs6c2W3b6aefzoMPPkg+n8cwjB3OyWaz3WqBYrHYXt1z22SkB8reTlzsui6/+93vuPjii7sFuW2uvvpq7rjjDh577LGuMDZ37lx+/OMfc8stt/Dqq69y5ZVXUlZWxpw5c2hsbOTLX/4yt9xyCxdccAG5XI733nsPXS/8czc1NXHCCSdw9tlns3DhQjweD/Pnz2f69OmsWLGCioqKrnvPmTOHn/70p0yePBlVVbEsi0ceeYS5c+d2PcdXXnmFdevWcdlllwHw2GOP8b3vfY9f/vKXnHDCCdTV1fGd73yHhoYG/vu//xuAH/7wh/zP//wPDz/8MOPHj+c3v/kN9957L8XF/e9NIoQQ+2Ndc4L6zgyGpjKmKkTYW/jc60zleenjRrI5m9MmVOI3NJ5eUscba1ppjmVY05KgLZkn63w25dzwqcdtW78nt37PbP3+8ScPsgrfXNdl8Tsfklz+MqkVrzL54qsZVeGngnaqlDbecMYxz+3+uXy59jTf0v+GlzxecqiKu9NybUsJR2T+kw5C3fa95/kWRUqi27Zdffq+aJzMI5XXY+gKrgO243Bc8iX+X9u/7+KMHW360jOkSg9jcJGPgKf/TNXb5yVpaGjoFg4AKioqsCyLlpaWnc76Pm/ePObOnbvP90ylUgSDwX0+f38lEomuGqieaG5upq2tjYkTJ+50v8/nY+TIkXz88fa30MyZM7nmmmsAGD16NB9++CF33303c+bMoa6ujnw+z8UXX8yQIUMAGDt2bNe5999/P4MGDerWd/FXv/oVzzzzDI899ljXdQF+9KMfcd5553U9vuyyy7j11ltZuHAh06dPB+CRRx5h2rRpjBw5EoAbb7yRW2+9la9+9asAjBgxgvnz53PyySfzH//xH/h8Pu6//35+/vOfc+655wJw9913s2DBAlpaWnr8ugkhRH9l2Q4d6TwdqRwrG+Nk8y6VYS+dqXxXmItlcqxuTJC1HPQVTXSmc/xjaT0rG+Mkcg7WzrNNvxAixRnam+hta/lo6XLeWLaBxs7tlTBfXD2PuTXersd357/Me/aobtfQsSn+VBDbHZUdXxBnl9FtR4mMxbsbO/BoKpqqoCoKI9i77kPZvE3OcrCc/vWP85nEyk/XUu2qqnmbH/3oR1x11VVdj2OxGDU1NX1XwANsT6/HJ4/ZZurUqd0eT5s2jZ/97GfEYjEOP/xwZs6cyYQJEzjllFOYMWMG5513XtdruHjxYpYsWbJD4E2n06xatarbtmOPPbbb4+HDhzNt2jQeffRRpk+fTiqV4oknnuDnP/85UAim69ev59prr+WHP/zhDuVftWoVgUCAbDa70+fQkwE1QgjRH7muSyxj0ZHKEc9YuC7Yrks27+IzVQYVeVFwWVrXyZaOFG+sbWF5XQzbdnhvQwurmhLEsv0rJPjIUKs08KE7rGubneyg46N/8PJHv+ftLdurDUMmfGm8wb8cZnDy0O6ruVQqbXxaBnOX93VchXShoRUHFXcXoW2TW06nG8BFwUHFQdka8JRP/KyCotBqVDIo6CXk1QmaOiG/zrB8DVuaJ6JrCrqqoiigKQqapqCioKoKisLWKypUlJaglgXw6P1rMpA+D3OVlZU0NDR029bU1ISu67tcfsvj8eDxePb5nn6/n0Si52m/t+3tahRlZWUUFxezdOnSne7PZDKsXbuW0047rWvb7oKfpmk8++yzvPXWW7zwwgs88cQT/PCHP+RPf/oTs2bNwnEcpk+fzv3337/DueFwuNvjndUwXnbZZfzgBz9g/vz5PPnkk9i2zQUXXACA4xTe2Pfcc0+38m4zaNAgVq5cucfnIIQQA0U6Z9OayNKcyJLJO1iOQ9ZyyOVt4tk8jZ1ZMnmbZRs7WNuaoCGWoTWRpTWRJZUv9D/rL1QcjlBWc5r2Dsery5mgbMBGZXz8XuKr3yG5/GXS694F12EzoKvw+ZE6/zLJYNYYHb9R+L1uuwoNbpQGt5gGt5jlnwiD2zxtT+UtZwwZTNJ4yLgmGQpfOXR23WC6raxwKbcS8ZkUBzwUBwyKAh4qwl4GRb2UhX1EfAYhr07A1PmiqXGWpqKrClrX12Q05RtoqtKjz6TQHo84MPo8zB1//PH89a9/7bbtueeeY8qUKTvtL9cbFEXZq2bOA01VVS655BJ+/etfc8MNN1BbW9tt/z333EM6nebSSy/t2rZo0SK+973vdXs8aNCgrjCmKArHHHMMxxxzDNdffz2f//zn+a//+i9mzZrFlClTeOihh6iurt6nZdAuuOACvve97/HnP/+ZRx55hPPOO49QqPBfvKKigpqaGj7++GP+3//7fzs9f+TIkZimyaJFizjssMO6tr/22mt7XRYhhDiQ2pKFZtSGWAbXAU1VMDWFuo40yaxNIpunPZWjrj3NupYEiayN47ik8s5OGg0PDC9ZpqnLOE19h89p71KmxMjZLm9ttpm3zualdRYbNl+CY9td55hVY/jyJB+nTSgm7a/kI7eYl91iGrLFNLhFNBPFZvdrLTdRRJNb1KMy+jQI+nSiPpOwz2DCoAiHDyqiMuqhJGBSHDAJeQ28hnZIVhTsdZhLJBKsXr266/G6det4//33KS4uZsiQIfzoRz+irq6ORx99FIDLL7+c+fPnc9VVV/Gv//qvvP766zz44INdHeFFwa233sqCBQs45ZRTuOOOOzj++ONJJBI8/vjjXX0Itw1+gEIgvueee5g1axaLFi3i3nvv5fbbbwcKoejFF1/k9NNPp7KyklWrVvHBBx90DVD4zne+w4MPPsjZZ5/NjTfeSE1NDZs3b+bZZ5/l9NNP58QTT9xtWUOhEOeeey533303S5cu5bnnnuu2//bbb+frX/86JSUlnHvuuRiGwYoVK/jb3/7Gb37zGwKBAJdffjk33XQTVVVVjBs3jgcffJAVK1bIAAghxIDSFM/Q0JnB1FXKIx5CPp2GzixeQ8PUVPK2Tc6yyVs2qqrgui6ZfhDkIiQ4XXuL09R3maYuxXSzLGl0eHitxUvrLf65wSb5qeWS9WglgfEzCEyYjlE8iFeBV6FrEERv0wCfqVIUMCnyFQLbsLIAJ48q5fiRZXiN3YfFQ8leh7m3336bGTNmdD3e1rftsssu4+GHH6a+vp6NGzd27a+treWZZ57hBz/4Affeey/V1dX86le/kmlJPiUSifDaa6/x7//+79x8882sW7cOj8fDkUceyZNPPsnZZ5/d7fgbb7yRRYsWccMNN+Dz+ZgzZw5z5szputbrr7/OvffeS3t7O5WVlVx00UXcfPPNQKH27PXXX+fHP/4x559/Pp2dnVRWVjJt2jSqq6t7VN7Zs2dz2mmnUVNT0+3/A8Cll15KOBzmzjvvZN68eWiaxogRIzjnnHO6jrnzzjvJZDJdAfPCCy/kyiuvlJAvhBgwOtN5NrelcV2oing5oiZKXXsalSytyQx17WnWt6Zo7EzR2JEl3Y/aU8cqG/haxwO8uM7m/nUWC9ZbtGe6H+P3eYkMHUdu6PF4hhyOXlTd57VeUa9KedhDbUmAkRVhRpcHGVISIJbO4zV1RpWHKA7uuq/doUpxP92zvh+KxWJEIhE6Ozt36NOVyWRYt24dtbW1eL3eXVxBCNFfyXtYDDTxTJ7GWIaVjQlWbOmkM53H1BUa4zk2taUK/eHiGTJWYX62A0nH4ghlNW+7Y3Edm+RHr5Be+zbZDR9gJ9u7HeszNSqG1JIdMhWGHo1RNhRF6buO/gEDKqM+RpT4mVRTzFFDihhZGSLqMzE/McCgOZ6loTODx1AZVR48JJpRd5d7dqb/TJIihBBC9GOZvM3Kxjhrm5NsakuxqS1BQyxHOm+Rt1w60znaUzniafuAh7ghSiMXaS/xJe0ViolxfPJulv31IdIrX+86xtA1Rg0uxhw6mZYhp6JWjsFVtd2MMd0/CoUBE0V+g0mDIgwvD1Ls9zCyPERJ0OSImiiq2j2otSayNMYKVYZlQc8hEeT2hYQ5IYQQYhdsx6UjlaM9mWN9W4qmeJrVjUnakllaEjk8hkrOVnAUB8e2yWYOXJBTcDhZ/YDLtH8wQ1vStT2WdWl74kbSG+pB0wkffQ6+YUfiGTSWpG6ShD0MVdifMhXoGnh0ldriIMcMj1IVCVAW8jCs1E/Qa1Aa9HQLcrbjsqUjTUeq0HEv7NOJ+vtm0OTBQMKcEEII8QmF+eLytCZydKTyWI7D5rY0Kxpi1HWksWybhs4s2bxFSzJLKmuT6qNBAD0RJMX52j+5TPsHw9VPTQWWdPj879OsqY+jmD7Kz7sB79DDdnGl3qEApgJeU8FrqAQ8JoOiPg4bEmVcZYQhxX6qoz5CPh2PvmOMzORtNralyOYdFAUqwl7KQvs+XdmhQMKcEEKIQ1pTPEMya2M7Dm3JPE3xDPmtyy/kbJsV9XHe3dhGXXuaTN4mnXdwXA74iNRapZ6vas/xZW0hQSWzw/7H10f4zl9jtLbZqP4I5V+ei6dyZJ+URQcMA0xNwe8xcJ1Cc2pxwENV1McJI0o4cXQZxYFCDZztuFiOQzJrYdkueccpfLcdOtN5XBcMXaGmyN+vls3qr+QVEkIIcciybKdrGSrLcahrTwOgquA3NDa0pFhR38GG1iTpvE3e6j+T/P7cuI8j1DXdtjmuwi83DOenC+M0ri9MI6aFy6m48FaM4kF9Ug4V0HXwaBp+j4auKAQCOqVBLyPLg0yuiTJxcJTOjEVrMk/edtjT0MugV6emyIeu9a+VFvorCXNCCCEOWXbXcopQ5DexilwCHo3SoMnb69t48eMmPm6Ik8nZ5O3+E+QAHrFmcoRZWMmn0/Vzx8ZJ/HrhFjrWvVc4QNUITjqN6LRL0II9m5x3b6gUmlRDXhWvoRP26gS8BgoQ9pkcOSTC6MowlWEvyeyOPQkVBQxNRdcUDFXduqSWgsfQiPikf9zekDAnhBDikGXbLjnLIWvbbOlIsaYpSUcqx4dbOvioPk5byjqgAW6EUsdXtedQgButr3Xb93fnOL5sL+TXm2t54pUVJNc+X9ihqAQnnUpk6oXokYpeK4tfA59Hx2tqKC54TI2qiIfB0QAlQRMHcB1I521qiv2cNKoUv0cvBDa1sPaprild4e3TI1fFvpMwJ4QQ4pCTtWw2tqbY0Jri/U0drG6M05LMEkvlaIpn6MgcuAin4DBdXcLXtGc5SSus2Z11dX5lnUezG8ZqqyO7ZQXZuhVM39JAvvmNrSeqBCZ+jsjUr2BEK3ulLIYCHkPBa2h4DI2AoRP0GkT9OsUBL4OLvJQETfweHdt2SeZsBkf9DCv1Mapiz/Ojid4hYU4IIcRBzXFcspZD1rLJWg4dyTxrWgrzxTV0Zkhm86xvTRDPWnQmsyTye75mXwiR4svaQr6qPccwtRGAeNZlcZ3N65uzJDf+kM11HTiZePcTFZXAhBlEpl6IUdSzVXx6otAXTsXQVIJeA5+hEfWbBE0dRVMoCxlURryYukYia5HK2oyrDFMcNIn4ZZWGz5KEObFP1q9fT21tLS+//DLTp08/0MXpFQ8//DBf+9rX2LYoyoIFC5gxYwbr1q1j2LBhvXZdIUTfsB2XTN7eHtzyDlnLIWc5XaMnO9N5VjXEWdEYo7EzS2c6R1sqS3s8T/YAvUXHKBv5F+0FzlVfoa4tzYLNNq9vsnl9s82ypk+u47qp8E0z8FSOwjNoLJ7qsXgGjevVPnEq4DOgKOChyG9SHvZQGvAS8euEfIVQVxowifg9ZPI2tuNSE/UT8RsEvToVIS8RmRPuMyVhrh+YPXs2jzzyCACqqlJVVcWMGTO44447qKmp6ZV7DBs2jNmzZ3etz7q/ampqqK+vp7i4uFeu1x9NnTqV+vp6ysrKenT8rgLuhRdeyOc///k+KqUQh6Zk1iK9Lbht/Z7K2oX+b5ZNImuRzTu0JbO0JnPEs3kaO9KsbknQkcyTsx3ylkv+AP6N5XFSfLf+Rjrq1vH4Zpvvb7ZpS+9YIC1c/ongNhazvBZF692wZGoQ8eoMKwkwdWQphw2OUh314jH0roCsKQouhVG/uqaStxyK/CaaWugHVxH2UuQ3ZJWGA0DCXD9x/PHH8+c//xnHcVi+fDmXX345s2bN4t1330VV+9fQ7Gw2i8fjobJy//tkbLtWb+nN65mm2SvP0efz4fP5eqFEQgiAze0p2pPd20Kzls2mtjQ5yyaRtUFxaY5l+bghTlsqSyxj0ZbIkc5ZWM6BHZVqxVtJfPAcifef5buJ1m77vDoMqiojXTWF/KDJmNVj0YN990ezDgwt9TOpJsyZEwdRW+Ynb0Msk6cxlsNysliOi+04aKpCwNQJenRUFDy6hqpCWchDacAjAxoOoP6VEg5h24JDdXU1p512GnPnzmXJkiWsXl2YJ+jxxx9n0qRJeDweqqqqmDNnDul0uuv85cuXc/rppxONRvH7/YwdO5bHHnsMgIkTJ7Jhwwbmzp2LoigoisL69esBWLt2LV/60pcoKioiGo1y2mmnsWTJ9mVgFixYgKIoPPPMM0yfPh2fz8ddd93F+vXrURSFBQsWdB27Zs0azjnnHCKRCIFAgFNPPZX333+/a/+2c373u99x1llnEQwGufLKK3f6ejz88MMoisLChQs57LDD8Hq9HHbYYbz88ss9ut6LL77ItGnT8Pl8VFdXM3v2bJqbm7vOdV2XG264gfLycoLBIF/5yldob+++6PS2577ttdr2HC+44AJKSkrw+XxMmDCBP/3pT7S0tFBbWwvAjBkzUBSlq2l223MBSCQSBINBHnrooW73SiaTBINBHnzwwa5t9957L+PGjcPr9TJq1ChuvfVW8vkD1JlHiH6iLZnrCnIhr05ZyMPgIh+lIRO/R6OwLrzL+pYkKxtjtCYzJDM54skMsYxF7gAEOQ85ZimLqNjwD5qfmkfdA1+n89XfYyda8ft9XDRR599Or+aS2Zcw5PuPY138W4wZV+IfPbVPg5xPh2FlAUZVBDlmWAnxrM0Hm+N8VB+nrj1DeypP1nLwGRpVER+Don6ifhNDVzF1ldKQyZiKEOUhrwS5A+ygrJlzXZd0/sAtc+wztP2uZt5Wk5PL5Xjuuee4+OKLuemmm/jKV77CqlWruPzyy2lvb+fRRx8F4KKLLmL8+PEsWrQIn8/HypUrsazC+jILFy7kiCOO4MILL+Saa64BoKysjKamJk444QTOPvtsFi5ciMfjYf78+UyfPp0VK1ZQUbF9SPucOXP46U9/yuTJk1FVdYf+X9lslpkzZ1JdXc3zzz+Px+Phlltu4XOf+xwrV66ktLS069jrrruO22+/nV/84hd77Ec2Z84c7rnnHqqqqpg3bx5nnnkmq1evpqqqapfXW7BgAbNmzeKnP/0pv/3tb+ns7OTaa6/lnHPO4dVXX0VRFH71q1/xs5/9jPnz5zNt2jSeeuop5s6du9uyNDQ0MHXqVMaPH89TTz3FoEGD+Oijj8jlcpSUlLB48WKOOeYYnnzySaZOnYqm7bhMTTAY5Pzzz+eRRx7h61//etf2J554Atd1ueCCCwC49dZb+c1vfsMvf/lLjjjiCFasWMG3v/1tUqkU8+bN2205hThYpXIWWzoKf8RWRDwU+02yeYfVLQkWftzAivoE8VSeeM6iI5GlJZUlneMArZXqcpiyli/kn6dz2UIefifJipbtMdIzeAKhyV+gfPQRZIxGHndHsX0l075hABGfQsBjUhzyMLTIz6AiP6UhLz7DQFEg4NEJejTCXoOQT8draBiqiqEXphcxNBVNglu/c1CGuXTeZvyN/zhg9//wltPxm/v+0q5bt44777yTmpoaxowZw5VXXslZZ53FTTfdBMCYMWOYP38+5513HnPnzqW2tpb169dzzTXXMGHCBACGDx/edb2SkhI0TSMYDHZrNrz//vsZNGgQDzzwQNe2X/3qVzzzzDM89thjXcEP4Ec/+hHnnXde1+NP1lYB/OEPf6Curo5FixZ13eP3v/89tbW1zJ8/v1tfvW9+85t87Wvd50valXnz5nHqqacC8NBDD/Hyyy9z3333ceutt+7yet/85je54oor+O53v9u17ZFHHmHo0KG88847TJkyhbvuuovvfve7XYHquuuuY/HixTz55JO7LMu9996L67o8/fTThEIhoPvrvK1vXXFx8W6bZy+77DJOPfVU1q1b11Wb98gjj3DeeecRCoVIpVLceeed/PGPf+TMM88EoLa2lttuu40rr7ySO+64Q/qkiENK3nZo7MywsjFOQzxD3nbJrbXY0JLiw/pOmhM5YukcqYzDga67LqODs7TXOCn1Ar9buI6rluZJb123NWgqGBNOwzv5LMyyYQAkgXfdSJ+VxwDCAZ0Sn86w0iCWqxDwaIytDOEzdaJ+k5HlQYYU+wl5DQlqA9RBGeYGon/+858Eg0EcxyGdTnPMMcfwl7/8BcMwWLZsGTfccEO3408++WRc12XZsmXU1tZy7bXX8o1vfIOHHnqIk08+mbPPPpsjjzxyt/dcvHgxS5YsIRgMdtueTqdZtWpVt23HHnvsbq+1bNkyxo4d2y3EeL1ejjnmGJYuXbpX1/qkqVOndv1smiZHH300y5cv3+31Fi9ezOuvv94tpG6zatUqRo8eTV1dXbdrA0ybNm23Ye6dd97huOOO6wpy+2rGjBkMGTKExx57jBtvvJENGzawYMECnn++MOHn8uXLSaVSXHjhhd1Cm23bZDIZGhoautVMCnEwc12XDS1JXlvdyorGGPGMRd6yaYjlaImlaE3lyVnuAap9KwiS4vPaW5ytLmKqupyPmi3O+H2KzbFCy8OkcpWvT/ETHX8S92oX0Uzvr8awM9sGNQRMg6DXg6rrVPgNxlWFqQx5KQt70FWVsVUhDFk2a0A7KMOcz9D48JbTD+j999aUKVP4/e9/j6ZpVFZW7rHD/LYP+W3fb7jhBi655BKeffZZXnzxRebNm8c111zDHXfcsctrOI7D9OnTuf/++3fYFw53n+wxEAjstjy7ay79dC3Snq61J3u6nuM4XHPNNcyePXuHcysqKnAcZ6fX2Zd77wtFUbj00kt59NFHufHGG3n00UepqalhxowZAF3le/zxxxk3btwO5/d0dK0QA43juGQsm3TOJpWzaYyl2dSW4p0N7XxQ10kyY5GzbJIZi0TOJtcP1tb6sraA2/Tf4lEKdYIvrbM4748pOrMwpkTlB2eOZlX1F/m1czwpvJ9JmTTAb2oUBQ1CHoPSkMmIsiBDSwMMLfKjaypeQ0NXVaqiXglyB4GDMswpirJfzZwHgs/nY+TIkTvdN2HCBBYsWMD3v//9rm3bBh5sa1aFQpPfFVdcwRVXXMGdd97JvHnzusKcaZrYdve/XadMmcJDDz1EdXU1fr9/v8o/ceJE7rvvPhoaGrpq5zKZDIsXL+bb3/72Pl/3tdde44wzzgAK/QffeuutPTbRTpkyhWXLlu3y9QQYNGgQixYt4qyzzuratmjRoj1e94EHHiAej++0ds40C5Nkfvp13pnZs2dz22238eqrr/Loo4/y1a9+tWvU8oQJE/B6vaxZs4ZZs2bt8VpCDES245LOWcQzFm3JLFs60mxuTVHXkWFzZ5qmzjRtySztqRydB2oCuB5Y6QzuCnK/+yDH1/83Q96BETVllJ13PfO8o/p0xIUOeAzwe3SqIl6GFPkYXh5iQnUUy3HxGxrjqyOUhTwkchab2lI4DmiqwpASP0HPwPqsFDsn/4oDwI9//GPOOOMM5s6dy0UXXcTKlSv5zne+wyWXXEJtbS2JRIJ/+7d/4/zzz2f48OG0t7fz7LPPMn78+K5rDB8+nEWLFrFp0yZ8Ph/FxcV85zvf4cEHH+Tss8/mxhtvpKamhs2bN/Pss89y+umnc+KJJ/a4jBdffDG33norF1xwAXfffXfXAIhMJrPLEas9cf3113dNg3LnnXfS3t7OFVdcsdtzbrnlFmbOnMmcOXOYPXs24XCYVatW8cQTT/Dzn/+cUCjE1VdfzU9+8hPGjx/P1KlTefrpp3nhhRd2e90rr7yS//zP/+Sss87illtuYfDgwaxcuZJ0Os0555xDRUUFfr+f5557jokTJ2KaJkVFO29OGTFiBCeccALf+973WL16NZdddlnXvmAwyPXXX88NN9yApmnMnDkTy7JYunQp77zzDnfdddfev5BC9BONnRkWrWlmZUOc5VvitCez5ByXZCZPLG2RtWzyDvSf+FYYyHCm9gbjlA1cmv8Rnxyo8G6qjF997OeVVZ08uSwDgH/sNPJfvIpNeu+vgmAAxQGDgEfH79EI+gz8hkZ11MO4qig+Q6cq6qVi6+L2edtBVWFze5rOdCF0+kyNIcV+TF1q5A4WEuYGgNNPP53HHnuMefPmcfvtt1NUVMSXv/xlfvrTnwKg6zrt7e184xvfoL6+nnA4zPTp07n77ru7rnHbbbfxrW99i9GjR5PJZLpWNXj99df58Y9/zPnnn09nZyeVlZVMmzaN6uq9WxLG6/Xy3HPPcfXVV3PKKadg2zbHH388L7744n41C95zzz1897vfZdWqVYwaNYqnn356j2WbMWMGL730EnPnzuWkk07CcRyGDBnCzJkzu+agmzNnDs3NzVx99dWk02nOOOMMbrzxRq666qpdXreiooJFixZx3XXXMWvWLLLZLCNGjOgamKJpGvfddx8333wzP/vZzxg8ePAOA0U+afbs2fzrv/4r06ZN26EW8YYbbqC6upr/+I//4Nprr8Xn8zF69Gi++tWv9vCVE6J/yeZtVjTGeHNtG/UdaZbWddKRyoPrksxZdKZyZKwDO//bNioORysfc7r2FjO1txmstHTtG59fy3v1Num175Be+za5+lXMcbeXOnz0uURnfA1F6f2gZKpQ5NMIBzz4DZWI36Ai7KU86KEs5MVvGvhMFVBY35oklbPBpVszanHQpDrilUFUBxnFHQBrDMViMSKRCJ2dnTv05doWTGpra/F6P5v+CKLvyRJYhw55Dx/cbNthVXOCDzZ10BzL8tb6Vja0pnBcl4xtYVvQmbIO+ChUHxmmqcs4RX2XU7V3KVViXftaUg7/WG3zf6st/neNSiKV7XauUToU3/Cj8I06Du/g8Z++9H5RAY8GQa9GZcTHiLIQ1UVeSoOFBe5DHgMU0FUF2wVNUVAAVVFQVQWfoRH06oS2fg20LkiHqt3lnp2Rf1UhhBD7JJOzaEnkSGQs4rk8qYxFRzpPSzzHlvYkq1sS1LWniWXypHIWqVz/qHn7pDI6uM14iJPUD/ApOaDQn+/NukJ4+7/VFm/VOd2afRXTh2/YZLy1R+IbfhR6uHcGJUVNCPpMhpYFmFgVJu8UBjIMKQowrDRAxG8wuiJE1nJIZC0SGYtkzsL51Itq6ipBb2GlhqBHl+lGDgES5oQQQvRYJm8TS+fZ3J7i2WWNJLOFSdRsxyWeydOazLKxNUksY5F3XKwDPG3IJ2nY2HSfbaDD9VPduYSnt6RYXGfz1habd+ttPrVaGEbZMHzDp+AbfhSeQeNQtN77+PTqEPYalAY9BL0GpQEvDgqGquLRNXwejaZ4lrRlk7N2snarqhSC29YAJ33hDj0S5kS/NHv27J1OLSKE+Gy5rksyZxPfOkAhZxWqgT7Y3Ek8ncfCRQVsx6EjnaMhliaRtcnmHSz3wA9kqKKVk7UlnKwu4QR1Gae2/ZD19W3k6leRrV9FrmEVh6VjO5ynevx4hx6Bd/gUfMOPRA+V7uTq+08DFBRcx8VyQVHAa6iksg4Bj0JxwINlg6K6BLY2kW5bqSHg0Qh5DHzm3k+HJQ4uEuaEEEJ04zgu8axFLJ0nnrGwne2RzLYd2lJZlm3uIJ6zKA14aE+kWdkQZ0tnltQBroYzyXO0uoKT1Q84KvcOnY2bWVxn819bbL5dZ7Mp9oMdzlE1jaLySqzKw9CrxmJWjcIoHoSi9n5I8qiFAOfRoSTspbYkQGnQQ0nIR9irEfF7CPt0ivwGYZ+J36MTMDV8hoauFZbU0mVeOPEpEuaEEEIA0JHK0ZnO05HK0RzLsqUzTWcqTyybpzOdp7EzQ3Msw8bWJAnrQJd2uyFKIyerSxjV8QbNaz9kyZYs99TZfNy6Yw89BdBLhmBWjcZTNQqzahRmWS2KbvRqmQzAa0J5yEvQa1AZ8VEe8hD1mbQkc0QDBtNGljKsJIjf1PAYhSZV6d8m9oWEOSGEOMRl8jaNnRlWtyTI5m0aO7Osa0mypTONZTvEUjnqOjO0J3P9YtWFTzJjGzlz1VX8aXmO2+p3LNywqML4qgCBquHEqqawtmwGOU/fLKelAJpCYXUFTSHqMygNeQhuHUXqM3U8psaRpUWEvDoTB0WJ+Ho3RIpDk4Q5IYQ4hORth1Ru25JZFum8jWW7NHZmqI+l6UxmWdEY56P6GJ2pPOm83bVQ/IHjMlKp42R1Cf9jT6c9kSP58aukPnqFbN1H/NvWozQFpg/TOG6IB1/VcFoqjucd33Esdyv6vIQaoKmFkaR+j0ZxoDCfW8Rv4tMLjyuiXor9Jn5TZ3CRj7BXPoJF75D/SUIIcZByHJdU3iaZzRNP23RmcqSyNvGsRUcyS2M8w5b2NBvakmxqSxPP5MnkXA54dqOweP0J6nJOVt/nZO0DPOlm/rzMonXp/7Fl40bomqhXYfiQCi6dqBAcfRzv+o7lT84Ycmyt8eqDERheFQy9sIRWWdDLyLIAxUEPjgshr8HI8iCVkULzqt/U8Bl64bupyTqook9ImBNCiINMXXua1U0xNrVnyORtUlmLze0p6mMZtrSliGUtEpk8OYt+M22IgsN4ZQPT3PcZk3wLf8daNnZYfNDu8EiDzUvrbAoDadcDYFaPITDuJPxjpuGEiniYrSGpF5uBNaA4oFIc8FId9mKYGh5dw9RUVEVBUxUmDQozpiqC19BI5SxMTeWwwVFU6fsmPkMS5oQQ4iCSyFpsaE2yqjFBczxLxrLZ2JZiU2uKRDZPMuuQztkHrPbNdV2cTAKrowGrowG3cwuTYwvIdTTxUXuOf3S62LuoTRtb6aVm3BF8OOZf0SPbm057u/JNAQKmStSnUxryEvGauCrYNri6QmTrKFO/qTGiPIRH13Bd8BmFVRYkyInPmoQ5sU/Wr19PbW0tL7/8MtOnTz/QxekVn15CbMGCBcyYMaNrHdveuq4QfcF2XGKZPB/Wx1iysZ2VTQk8mkomm2NVQ4zmzhzZPV+mV7h2HivW3BXYtn3ZnfXkOxpxsqlux7/wqfM9GtQWqdREDYxoBcnoSFpqv0CieCwr6bsPLhWIeFWKg14qI15KAh5CPh2PruHfuixWediLqat4dJViv4eykIm2dcoQTVVkQIM4ICTM9QOzZ8/mkUceAUBVVaqqqpgxYwZ33HEHNTU1vXKPYcOGMXv2bG6++eZeuV5NTQ319fUUFxf3yvX6o6lTp1JfX09ZWc+W6tlVwL3wwgv5/Oc/30elFAc713WxHBfbcXG2/uw4Ls2xLKubYnxU187KphjrmhO0xvO0fAaJzXVdnHRse1DrbMTqaCC/LbTFWz7Rp23ntEARerQSPVrJKUWNnFeylqFRjUy0luX+KbziHsFSdzgOvd/HzK9CVdRkTFWEokChr1vQqzO2IsyQEn9XX7eAqeMzVXRNRdvarCoL1Iv+SMJcP3H88cfz5z//GcdxWL58OZdffjmzZs3i3XffRVX7V4fZbDaLx+OhsrKy167VW3rzeqZp9spz9Pl8+Hy+XiiROJi5rksm75DOF0aZZvI2mbzDtgrdnG3Tkczxl3c3896mDtqSWTLWZ7vCgmvliS3+M7G3nsLJxHd7rKmrDC9SGVkEw6Mqw4sUhhepvBk+hUcDs1FNb9exWWUjbyj1/MyZSIxAnyzgaijgN1VGV4QYXOJnZFkQv0fH1DQMXWV4aYBJgyN4dFlNQQw8/SslHMK2BYfq6mpOO+005s6dy5IlS1i9ejUAjz/+OJMmTcLj8VBVVcWcOXNIp9Nd5y9fvpzTTz+daDSK3+9n7NixPPbYYwBMnDiRDRs2MHfuXBSl8Jfl+vXrAVi7di1f+tKXKCoqIhqNctppp7FkyZKu6y5YsABFUXjmmWeYPn06Pp+Pu+66i/Xr16MoCgsWLOg6ds2aNZxzzjlEIhECgQCnnnoq77//ftf+bef87ne/46yzziIYDHLllVfu9PV4+OGHURSFhQsXcthhh+H1ejnssMN4+eWXe3S9F198kWnTpuHz+aiurmb27Nk0Nzd3neu6LjfccAPl5eUEg0G+8pWv0N7e3q0M2577ttdq23O84IILKCkpwefzMWHCBP70pz/R0tJCbW0tADNmzEBRlK6m2W3PBSCRSBAMBnnooYe63SuZTBIMBnnwwQe7tt17772MGzcOr9fLqFGjuPXWW8nnP7Vg5Cdsez3+8Ic/MGvWLPx+P7W1tfz5z38mFotx2WWXEQ6Hqamp4Te/+c0O9//+97/PoEGD8Pv9TJ48mSeeeKLbMT/5yU+YMGECgUCA6upq/uVf/oXGxsZuxyiKwvz58/n6179OJBKhqqqKa6+9FtvuL93s+wfXdUnnbNqSOeo60qxuirN8S4zVTYWF6duTeVI5m0TWojmRYWVjnHc3tPHwovU8v7yRus4s6c84yKU3LGHLb79Lxz8f6wpyWrAY7+BxjJ04ifNPHMPPzy7n1a/52XJVkMz1AT66ws9fL/LzyzO8zDnOw6wxBp8vb+0W5ABWuEP4P+fYQpDrZZpSaLb1mhoVET8TBkU5traE6miAqM9DwKMztNhPecgrQU4MWAd3zVw+A1am58d7I4VF7z4p0wk97eukmWD6e36/3dhWk5PL5Xjuuee4+OKLuemmm/jKV77CqlWruPzyy2lvb+fRRx8F4KKLLmL8+PEsWrQIn8/HypUrsaxCF+eFCxdyxBFHcOGFF3LNNdcAUFZWRlNTEyeccAJnn302CxcuxOPxMH/+fKZPn86KFSuoqNjewXjOnDn89Kc/ZfLkyaiqukP/r2w2y8yZM6murub555/H4/Fwyy238LnPfY6VK1dSWrp9XcPrrruO22+/nV/84hd77Ec2Z84c7rnnHqqqqpg3bx5nnnkmq1evpqqqapfXW7BgAbNmzeKnP/0pv/3tb+ns7OTaa6/lnHPO4dVXX0VRFH71q1/xs5/9jPnz5zNt2jSeeuop5s6du9uyNDQ0MHXqVMaPH89TTz3FoEGD+Oijj8jlcpSUlLB48WKOOeYYnnzySaZOnYqm7fjBEAwGOf/883nkkUf4+te/3rX9iSeewHVdLrjgAgBuvfVWfvOb3/DLX/6SI444ghUrVvDtb3+bVCrFvHnzdlvO66+/nrvuuot77rmHO++8k3/5l3/h5JNP5txzz+WGG27gkUce4fLLL2f69OmMGjUKgLPPPpt8Ps8f//hHqqureeGFF7j44osJhUKcfvrpAHg8Hu677z6GDh3Kpk2buPrqq7nooot46aWXut1/7ty53HjjjVx//fW8+eabXHbZZYwfP56vfe1ruy33wcp1XbJWYdBBKl+Y3y2Tt3f4teLiks5ZxDIWHckcDbEMzfEMa5vibGxL09CZJXcAul3aiXbaXv4vUh8uBEANRCma8Q38o6eiGh4UHP7puYJSZdv6pt0/VvKuxnvuSF61J/GqM5El7og+L7MKBEyFqrCX6iI/VVEfNUVehpQEtw5e0Ah6dAKewoAFj67hkcXpxQB2cIe5V38OC+/s+fH/tgF80e7bfj4Jsp09O//wi+Hc+3t+v11Yt24dd955JzU1NYwZM4Yrr7ySs846i5tuugmAMWPGMH/+fM477zzmzp1LbW0t69ev55prrmHChAkADB8+vOt6JSUlaJpGMBjs1mx4//33M2jQIB544IGubb/61a945plneOyxx7qCH8CPfvQjzjvvvK7Hn6ytAvjDH/5AXV0dixYt6rrH73//e2pra5k/f363vnrf/OY3e/zBPm/ePE499VQAHnroIV5++WXuu+8+br311l1e75vf/CZXXHEF3/3ud7u2PfLIIwwdOpR33nmHKVOmcNddd/Hd7363K1Bdd911LF68mCeffHKXZbn33ntxXZenn36aUCgEdH+dt/WtKy4u3m3z7GWXXcapp57KunXrumrzHnnkEc477zxCoRCpVIo777yTP/7xj5x55pkA1NbWctttt3HllVdyxx137LbfzhVXXMGXv/xloBAKH3roIWpra/nWt74FwE033cTPfvYzXnrpJUaNGsXChQt55ZVXaGho6OoD+a1vfYs33niD//iP/+gKczfccEPXPYYNG8b8+fM59thj2bJlC9XV1V37zjvvvK7XfuTIkfz2t7/l+eefP2TCXM5ySGatrc2lOw9uqZxFImvRFEuztrlQG7epLcmWjhSd6QM/z5vr2NiJdlKrXqfzn4/hZFMowPlTymmddh1rPWO3H4vKK85hnKe92rVtlTOIRc4E/ulM4g1nPEn6ppuBAXgMlUjAYFipnyHRANGASXHAZHx1hLDXwGuo+EwNv1kYferRVen3Jg46B3eYG0D++c9/EgwGcRyHdDrNMcccw1/+8hcMw2DZsmXdPkgBTj75ZFzXZdmyZdTW1nLttdfyjW98g4ceeoiTTz6Zs88+myOPPHK391y8eDFLliwhGAx2255Op1m1alW3bccee+xur7Vs2TLGjh3bLcR4vV6OOeYYli5dulfX+qSpU6d2/WyaJkcffTTLly/f7fUWL17M66+/3i2kbrNq1SpGjx5NXV1dt2sDTJs2bbdh7p133uG4447rCnL7asaMGQwZMoTHHnuMG2+8kQ0bNrBgwQKef/55oNBknkqluPDCC7t96Ni2TSaToaGhoVvN5KdNnjy56+dtx31ym67rlJWVdTWRLl68GMuyGDJkSLfr5HK5rrAJ8L//+7/8/Oc/Z9WqVcRiMRyn0LFp/fr13cLcUUcd1e06gwYNYtOmTT17cQa41kSW+s7MDuFNVcFnFCaNzeYdVjTEWN0Y4x9LG2jL5Elm7M90vrdCWGvF6mwqDF7obMLqbMKONW793ozrbC/RUVUqD5zpY0p1htvzq1lrj+12vf+zj8FB5TV7PK86k2iib5bLgsKHlqaBoWsEto4wHRT1MX5QhJDHoCLs4ahhRZSHvPgMTaYJEYcECXP9xJQpU/j973+PpmlUVlbuscP8tg/5bd9vuOEGLrnkEp599llefPFF5s2bxzXXXMMdd9yxy2s4jsP06dO5//4daxPD4XC3x4HA7vuy7K659NN/Be/pWnuyp+s5jsM111zD7Nmzdzi3oqKiK4Tsy1/nvfEXvaIoXHrppTz66KPceOONPProo9TU1DBjxgyArvI9/vjjjBs3bofz9zS61jC2T42wrbyf3LZt+7b7OI5DMBjk3Xff3eW13nzzTc477zyuvfZa7rzzToqKili/fj2f//znyeVy3c4xTXOX9zpYua5LXUehrxuAz9TwGoURkCigKgqJTJ41TXHeWtfG4vVtrKiP0Zm2+6KvP65tYcVbsGNNnwhszVifCGt7Gm2qq1AbVZlzrMnlU4yuBeBPVJfyG/vMbsc+70zheWdKHzyT7VTAo6tomoKhKvhMnZBXozrq44jBRYwoD1Id9TKmMkzAIx9t4tBycP+Pn/YDOO7/9fx4b2THbT9Yund95vaRz+dj5MiRO903YcIEFixYwPe///2ubdsGHmxrVoVCk98VV1zBFVdcwZ133sm8efO6wpxpmjt0Qp8yZQoPPfQQ1dXV+P3719dv4sSJ3HfffTQ0NHTVzmUyGRYvXsy3v/3tfb7ua6+9xhlnnAEUaoreeuutPTbXTZkyhWXLlu3y9YRCbdGiRYs466yzurYtWrRoj9d94IEHiMfjO62d2xZietLZf/bs2dx22228+uqrPProo3z1q1/tGrU8YcIEvF4va9asYdasWXu81v6aMmUK8XicRCLBEUccsdNjXn31VaLRKHfeub3bwhtvvNHnZevvXNclmbVY3ZSkM5UjbdldyzW1JzLUdWaoa0vREM/Q0JGmOZ6hI+Pu98CFwjxuLVidjd0DW6y5sC3eusewhqqjh8swImVcULySkVGXoRGFYVGVYVGV6pDSFeCyrsEb9mgWORN41Zm0n6Xfs4AOUb9B2KsT8BqEfSZRn0lpyGBYaYBR5SGqI34iPh2PqaPLlCHiEHdwhznDW/jaHzsLeJ+xH//4x5xxxhnMnTuXiy66iJUrV/Kd73yHSy65hNraWhKJBP/2b//G+eefz/Dhw2lvb+fZZ59l/PjxXdcYPnw4ixYtYtOmTfh8PoqLi/nOd77Dgw8+yNlnn82NN95ITU0Nmzdv5tlnn+X000/nxBNP7HEZL774Ym699VYuuOAC7r777q4BEJlMZpcjVnvi+uuv75oG5c4776S9vZ0rrrhit+fccsstzJw5kzlz5jB79mzC4TCrVq3iiSee4Oc//zmhUIirr76an/zkJ4wfP56pU6fy9NNP88ILn566tLsrr7yS//zP/+Sss87illtuYfDgwaxcuZJ0Os0555xDRUUFfr+f5557jokTJ2KaJkVFO29uGjFiBCeccALf+973WL16NZdddlnXvmAwyPXXX88NN9yApmnMnDkTy7JYunQp77zzDnfdddfev5C78bnPfY5TTz2VL33pS9x1110cfvjhtLe38/rrr2MYBt/+9rcZO3YsbW1tPPDAA5x++um8/fbb3Hbbbb1ajoGgMAI1y6a2FI3xDJvb0myJZUhk8nQks+Qcly1tGdpTWTKWg2Xv/ywbdqqT+HvPYLXVFUJbrKkQ1vYUCTUDPVyGHqnAGymhNgpHRhO8HjyFzsgotEARiloYpDPb+CnTte2j2B1XYalbyyJrIoucCbztjCHLvv+xuismMKbKT0XEh9cwGBT1csSQIkqCHmzHxXULU5x4DZXSoJeSoClrmwqxEwd3mDtInH766Tz22GPMmzeP22+/naKiIr785S/z05/+FCj0gWpvb+cb3/gG9fX1hMNhpk+fzt133911jdtuu41vfetbjB49mkwm07Wqweuvv86Pf/xjzj//fDo7O6msrGTatGnd+kD1hNfr5bnnnuPqq6/mlFNOwbZtjj/+eF588cUeT7q7M/fccw/f/e53WbVqFaNGjeLpp5/eY9lmzJjBSy+9xNy5cznppJNwHIchQ4Ywc+bMrjno5syZQ3NzM1dffTXpdJozzjiDG2+8kauuumqX162oqGDRokVcd911zJo1i2w2y4gRI7oGpmiaxn333cfNN9/Mz372MwYPHrzDQJFPmj17Nv/6r//KtGnTdqhFvOGGG6iuruY//uM/uPbaa/H5fIwePZqvfvWrPXzlek5RFJ5++mluueUWrrrqKurq6iguLuaII47oGgTzxS9+kZtuuom5c+fygx/8gGOPPZZf/vKXfPGLX+z18vRXruvy4ZYY61oTbGnPFEJde4pkJk9bysKyHTozOTpTFlYvjTp1cmka/3gD+aa1O+xTdBMtXI4e2fZVgb71sT9SxNGhZo7XVjBNXcZhyjsYSqHG+Nr8NP7HLu12rUXOBGqUJl51JvKaM5HXnXHECO5wz97i0xWiAZPJg6MUB0xKgiYVUS+jykJ4je0fS6oKpUEPJQETXUKcELukuANgjaFYLEYkEqGzs3OHvlzbgkltbS1e737Wwol+Q5bAOnT09/ewZTu0pXI0xjKs2BKnMZ5mU1uaDS1JYpksnek88XSeWG7P19obruvQ/Jc7SK96A9UfIXz0uYXAtjW8qf5oV9OijsXhyhqmqss5QVvOZGUVHmXnY2L/Yp/AD/Lda8sVHNzPYNpRrwZlIU9XU2ltWZCoz8Dn0Yn6DIJeHUNTMTUVr6FRHDC7mnqFOJTsLvfsjNTMCSEE4Dguecchm7NojWdZ15rgwy0Jlte1saE9Q0NHkra9mLZyf3UsfJT0qjdAMyg79yd4B+84GAbAQ463PFcQVlI73b9Np+vnDWc8r9iH7bCvN4OcDoS9CkV+g5qSICPLA0waXERlxE/Qo28dHKJ1hTZDV9BVFUOTfm9C7CsJc0KIQ5LjuGxqS7G0rp1XVrawsS1NXXuSzoxFOmeT/4wH4DrZFLnGNeQa15Dd8jGpFf8EoOSM7+EdPJZapZ6p6nKetqcSZ/uApSwma91KjlC6N8UmXQ9vO2N43RnPq85EPnSH9ck6pz4don6dcZURxlaHqQr5iAY9hD06Yb/BqPIgflOXKUKE6EMS5kS/NHv27J1OLSJEb8jkLJZtifHqqmbeWt/O5vYU7cks6bzzmYQ4J5sk17CGbMNqco2ryTWuwWqr2+G4Y084nmuPWMHx6pNUK20ANLnRHaYBed2ZwDhlE+84o1jkTOR1ZzwfuMOx+vBXfNBQKA15GBz1MboywuE1USojXvxm4Z4eQ6W2NCADFoT4DEiYE0Ic9FzXJZ23aYxleH9jO8vrYnzcGKOhM0NzLEM86/TZpL12Or61xm01uYY15BpWY3XU7/TYYDjMmMoAJ1blOHtYmpOHLtuh6XGqunyHMPeANYtfWOf3yYjTTwobUFnkp6bIx8iKMDVFPgYX+aiI+CkOmKhKYToTTVUIeaQ2TojPioQ5IcSAl7NsMnmHVM4imbGIZ/K0JDJsac+wuiHG0oZONrYl6Uz17VJZdjpGrqFQ05ZrWF0Ibp2NOz1WC5fjqRxJoHIotw1+nXOrWygLACS3HrHjr+cVTg1b3JIdtnf28sjToA4hv0FtSYApQ4upKvIxtCTA5CHF+ExZjF6I/uagCXMy6lGIgWl/37srG+OsbIjTEM/QmsjREs9Q35mlJZGhri1JvA9Xp7eTHWQ2LSOzcSnZjUvJt27c6XF6tBJPxXCGVBbTVnE0RuUoNN/2EWozzbcpU3dsjtzglPOaM4HXnAm87kyghb6b99JUCxP1Rrw6IZ9JWdjLxOowJ48pR0FhSLFfgpwQ/dSAD3PblhtKpVJ7XAJLCNH/pFKFUZifXnKsR+fmLFoTOfK2S1siy+a2FBua47SlsjTFLXK93P/NTraT2biMzKalZDcu22l404uqMCtGYlaOoLyikpnVCU4PfMw0dRlRZRlnZU/jA7f7VAOvOeMZpjbS5EZ5zRm/td/bBDa7+z5HY08pFAYxVIb9hHw6YZ9J0KMxuMjHoKgfVVGoCHuJ+Pf+30cI8dkY8GFO0zSi0ShNTU0A+P1+Gd4uxADgui6pVIqmpiai0SiatmOtj+u65G2HrOWQzTtkLJts3iFtWaQyFisbY/zz42ZWNydojGXJWC62u8e1EXqse3hbSr510w7HGGXD8A6ZhHfIJCKDR3JicDMnqkuZqi5mjLp5h+NP0d7lA2tEt22/sc/kIfsMVruDKMSrvmMAAY9KwNSI+A0mVIcYVhqmNOShPOyhNOChLOQh6NXxGjqaLJUlRL834MMc0LUW6LZAJ4To/xy3sFyTNxAipgRo2NhOWzJHZypHPGPTlio0myayFsmsRWsiS1syT0cqSyrr0Betp65jk171Jun175HZuBSrbccw9snw5qmZSMDn4TLtOU5SX2aK+sAuJ+sFyLkaZXTssH2dW9WbT6OLBvgNKA35OKY2yhE1RYytiuD3aiTSDiGvxujKPU9IKoTo3w6KMKcoClVVVZSXl5PP5w90cYQQe5DN22xoTYGqszmVY8OWNlriWdpTORzXJZa2iGXytCVzZG2btniWZNYi1wtrne5KvmUTLf/3C3JbPu623SivxVuzLbxN6NbXDSCPzRX6/xLZxaS9m91SXraPYIFzOG8440nSt91BdMCjKwS8OhG/yYgyP5OqixhTFaYiXFhhI5cvrHnqMw+KjwAhDnkH1TtZ07SdNtUIIfoPy3ZoSKRoSjnkrAyxdB7HcfGZGoZuksnb+AyVdC6Pz1BIZW3ylovj9k2Qc22L2JtP0vHaf4NtoZg+gpNOxTvkMDw1E/D6/ByprOIkbQknqX/lu/nvsv4TNWk2Gq86E/mithiAmOvjVWcSi5zCIvXr3Ur6uukUCgMYQh6dkM/A79Hw6hrDSv2MrYwwrCRARdjTNW2IpoKuqpSFPH1eLiFE3zuowpwQon9xXRfbcelM5+lI5WlPZ4mnbJriGZpiGUChKZ6kPWkRS+doTuToTOdoS+TJfAaT92YbVtP6f78k37QOAN/wKRSffiVDwgona0s4WX2QE9RlhJR01zknqR+w3u7eLPpn+0RWu4N5xZ7E++5IbPruj0oTKA8ZlEdMwn4P5SEf4ypDlEW8lAY9lIY8FPlNfIa2fd43RZE534Q4iEmYE0LstUzepjWZw7KdQo2Z6+K6hdqzvOXQnMgSz1o0dKRpjmdJZC3qO9I0J7K0xLMksnlytott02eT9W7j5NLYyQ7sZDvO1u92sgOrs4HkhwvBdVC9QY497QvMnqQwXft3Rqs7rsawzUnqBzxqn95t24vOUbzoHNUn5fcoMKjIy3EjSzmmtpjKsB+foZJzXFQFhhb7KQ15++TeQoiBQcKcEKLHXNelJZGjMZZhV9PDtSaytKfyNMczbO5IY9su9Z1pGuMZWhI5EukcGWv/mkydfBYn1YGdaMdObQ9ohe/dQ5ubz+z2WoGxJ/DeF1cxKvjsLo/JuAaLnbEsdA5joXP4fpS8ZxQg7FEoC/k5oibK5KFFTBocQflEc61XBV1TKA5IU6kQhzoJc0KIHslaNpvb06Syhbq0oFcn7NVRFQVVUVBUUBUFFxe/qZPM5Rla5KcsZPLmepdEJk9d3iK/iyDnWnns1CdD2Y61aV0BLbfzwQa7ohge9ECUooBJJlCF4y9BCxThGTQOX+1kmo3bGMWH3c5Z61Sy0Dmchc5hvO5M6POlslTAq0NJ0MPQkgBjKkOMrAhRHvJSEfbgM3V0tfBa61qh+TTsNaT5VAghYU4IsWetiSz1nRlsx8VxXYoCJl5NJZbJk8jkaY/naEymqW/P8FF9jPUtCera08QzFvlUB3ayA+dTtWefDGdOsh0nm9xzQT5B0U1UfxQtUIQW6P5dDUTRAlGGB7OcEtrI6d7lHKOuwFTSXJm7jL87x3W71iJnIkeoa3jNGb81wB3ORreiN1/CLgENoj6dQSVBJgwKc+KoUgZF/QS8Bl5Dw29o6JpaCG4S1IQQPSBhTgixS67rsr4lyYbWVKGZNJ7DxaUzlaOuI0N9R5qOdI7OTJ5EevuKC+m179D6j/nYsea9u6GqfyKUbQtmO4Y1LRBFMXecINxLlhPUZcxQ32e6toTBSssOt/ic9t4OYe4Reya/sb9Ijt5d5cAAykMapRE/Q4uDDCsNMLTUT3WkUGM5vDQogU0Isd8kzAkhdml1U4KPG+Kk8jbNsSwZy6a+M019e5qOZJamZJZExiZrb191wYq30vLXu3AyicIGVUPzRz5RY/aJUOaPogWL0PxFqMEiVE9gr1cbUHD4ivYyp6rvcoK6DK+y67kmO10/SXfHwQIJ/Ht1zz3xqOD36BQFTEqCJqVBLzXFfqYMKyLqNzE0lSHFAQlyQoheIWFOCLEDy3ZY0RBnVWOCdM5iS0eKzW1J1jYnaEtmaUtYZJ0dR6K6rkvr//0SJ5PArBxJ+ZduRvWHUZQdF5HvLS4q39D+j5Hqlp3uX+oMY4FzBAvsw/t82hCfDiUBD8NK/Awu8lMZ9VEZ9jKk2E911Le1KVXFbxaWyRJCiN4gYU6IQ9C29U5tpzAPXN5yiGVybOlIs6E1yUf1MVbUx9jUlqQ95fR4+pDEe8+QWfcuim5S+sWr0QLRXimvhxwnqMs4VX2Xv9jTeMsd223/C86RXWEu5vr4pzOJl53JLLQPp5neKcOnqRTCW9BnUhn2cOKoMoYW+6ks8jO6IoRX1/AYKh5dlbVNhRB9SsKcEIeYeCbPhtZUt6lFNrYleWt9O+tbEjTGMmxsTZDcy5Xx8m11tL/8EADRky/DKK3Zr3KW0sl07X1OVd/lZHUJPiUHQAIfb1ndw9zf7ePwkOcF50gWO+PI9+GvNp3CSN6gR2NERYjykIejhxUxvjqC6yqEfXrXsllCCPFZkDAnxCEkk7fZ2FYIcoauoKsqjuOwor6TDza1s74lRmfa3euJfF3HpuVvP8O1sniHHkboqFn7VL7hyhZmqm8zU3ubI9XVOz3mRPUD4JJu25a6w1lqDd+ne/aUoRbWPI34TEJegyK/SUXQw8TBEQYXBXBdBUWBqK9vpzARQohPkzAnxEEubzvkbYfOVJ73N7bTEMvQkcqTymZZ05JiVVOCLe3Z/VqJofP1P5GrX4niCVDyhR/sdR+5y7Wn+ZL2yi77vQEkXC8LncN4wT6KwnCLvm269CgQ9CpURfwMLQtiairFAQ+jygKUh70EvAampuI1NUJenbDPIOTRpUlVCPGZkzAnxEEik7fpSOVoSeRoTWTY2JqmJZmlLZFlS0eKLR0Z2lM5khmLdN7F6qX7ZutX0bnovwEoPu1y9HDZXl9jlFq30yC3xS3mZXsyzztH8ZozodenDtnGVKA8bDKiLMjwMj8uGu2pHH5TZ+KgCD5DRVFUysIeIl4DU1eJ+AzCPh2/Kb9GhRAHlvwWEmKAc12XpniWxs4M9Z0ZYpk8qxrjxNN5WhJZmuJZmuIZ2lN5LMfF6uUF7Dte/R24Dv6xJxIYP32nx5jkmaouY5b2Bm844/gfu/txL9qTOV/7JwDLnaE87xzFc/YUPnSH0pc1cCrgN2BoaZCigAcUhbrOPKpiYWgKhqbiNTQURSHo1RhdHiTsK0zuK4QQ/YWEOSEGsFTWYl1LkvZUjrqOFJm8w+a2NG2pLO2JHO3JHA0dSdrTdteEvr3JyaXJbFgCQOSEi7o1MepYTFOXcab2BjPVtwkrhSW4BiktO4S5V5zDuCV/Kc85U9js7n3N3t5SgZBHJejVKQ14iPo9KCp4DR1DU4j4DMpDHoaXBamOegv94yJeqYUTQvRL8ptJiH7OdV3ytks6Z5HO2yRzFqmcTV1bis3taTrTeTa1J8nlXZo6U6xvi9OZgr0cjLpPMuvfB9tCj1ZilNSgYXOc+iFnqm/wee0tipTEDucco6yglE5aiHRtS+DnIfuMPiunX4eQz6Q0aFBTFKA86iXiM9EAv6ER8htEvAY1JX6GFgfwm4UltYQQYiCQMCdEP5S1bLZ0pFnfkiKZswrNo5ZLOm/TkcryUX2Mze1pGjszxDI5srtYvL63OZkE+ba6rq/06jcBqB45jluMh/mi9ialSmyn56Zdk5edI/i7fRxxfH1aTg0Ie1WqIj7Kwj6KAttq2gLUlgQJ+gycrS+YrimUBE1KAh6ZyFcIMSBJmBOiH0lmLVoSWZrjWda1JEhlHZI5i2TGIms7W0NeinVNCRpiGVK9NYrhE1w7j9XRsDWwbcZq20K+bTP5ti04qY6dnnPq2DCX6c/vsD3rGrzsHMHf7ON40ZlMmr6ff82nq5QETcpDXqqjPoaW+jA0jWK/yeCiAH5PIch5DJXSoIeoz5BltYQQA5qEOSEOMMdxaIrn2NyeoiOVJ5HJs641SdayUVHRNZdk3qauLcn61iRbOjMkc+6eL7wbrutiJ9qwtga2fFtd4ef2OqyORnB3Xc/nC4ZxiodiFA/CKBqEWTWKDwdVAS8DkHM1XnEO42/28bzgHNnr657ujAqYukJpwGRQcYAhxV5GloWojPrIWw5eQ2NoiZ+KiBddVTF1lYCpyTQiQoiDgoQ5IT5jWcsmnbPpTOepa0+zpTNNRzJHZzpPSyJDfUeGZNYimbPI5m06Uhk60juug9oTTi69Pah1C21bcHPpXZ6nmD6Momr04sF4iis5oiTPl8vW85XSNbieAMdmb+22ykI98FvrdD5yh/CsfQwxAvtQ2p4LmlDq96BqKj5TZ2ipjxmjKxhfHaGm2EfIa5DK2axrSeK6UBw0GRTt26ZdIYQ4UCTMCfEZsGyHtlSO9mSenOXQEEuzoj5OMmfRHM8RS+VIWzYNnWniaYusZZPJ22T2cSZf18rTsej3xBb/BZxdXERR0aMVGMWD0YuqMUoGYxQPQi8ahBYsZrjawIXaAs7XXqFM6fzEiQmmq+/zvDOl2+XmWpftW2F7SAF8Bgwu8lMS9GA7YOoqtaV+Th9fRVWRF1BoiGXZ1J7u6hMX9ulUR2R5LSHEwUvCnBB9KJG1aEvkiGXyXWuhbm5PsqwuRs4upA1TU/B5VBJZi0TWIu842LaNvY8jGrINq2n9+z3kWzYCoPqjhSbR4kHoxYMwigdjFFejRytRtO6T8HrJcoa6mK/oL3OsumKn19/iFhMgs2+F2w9+A2qKAnhMHdtxKQl6qIr4OGl0GRG/SSq74wsW9OrUFPmlOVUIcVCTMCdEL7Nsh/ZUnvZUjmx+e8CwHIeGzjSrGhM4rouuKrQnc9R1ZoinC3PCpbMWOcshYxcWrNobrp2n87U/0vn6n8B1UP1RSk6/Ev/o4/d4bpgk1+h/4hxtUdd8cJ+UdXX+4RzNn+zpLHIm4NK303YoFKYT8Xt1wqZO2G8yuNjP4GIv5SEfleHC95KggaFr6Kqy9UtF1xS0bY9lehEhxCFAwpwQvSSds2lJZOlMb6+FUxSXRNaiNZ5jTVOc9a0pOtJ5EuksdZ1pWhJ58vb+TyuSa1pHy9/vId+0DgD/2BMpPu1yNH9kD2cWpPDwee2tHYLcCqeGx+0ZPGWfQAeh/SzlzumAz1SI+k2qoz6OrS3BYyhYjoKqgO3AkGI/U2qLqI74JKAJIcSnSJgTohfYjsua5kRXiPOZhUXZt3SkWF4X48P6GO2JLA7QmczwcWOi16YVsWLNNP7hhzjZJKovTPHMKwiMnbaLo12OVVaw1q2kmaLt10DnSftE/p/+VxKul6ft4/mjPYMl7gj6ajktU4Miv0l1xEt5xEdpwGBwUaBrmpAiv07Ao1Ea9FIe9jCkuG8HVQghxEAlYU6IXmA5Dq4LigIjyoL4TI269iQvftREfUcGy3EIenQ601k2tqd6Lci5rkPrMz/HySYxK0dR/qUb0QJFOxxXRgfna69wgbaA4WoD9+S/xK/s87od8wf7c6x1q/i7fRypPp4PLmAqFPlMKqJeinxeqsI+ysIGPo9GyDSwcfEbGlG/ScRvUCkDGIQQYpckzAnRC7bVyKmKQiyT4811cda3JNncnqI5niGVt2nsTNPYmd3nEao7E3/7r2Q2fIBieCiddU23IKdhc7K6hK9oL/M59T10ZXtj7gX6Aubb5+B8ou/bJreCTXZF7xXuU0q9EAp4qAoFGD8oRDRgEvV58JkapQETVVVwccnkbYr8HryGhs9UGVzkl4XthRBiNyTMCdELXBeSuTwrG+K4rsKmtgSvr22lsTNDImv1aoDbJt+yifaFDwNQNOMbGMWDABiiNHKBtoAvaa9QqbTvcJ7jKqxxqomSoI1w7xfsE7w6+A2dwcU+RpQFKQ2ahH0mNcV+FBR8pkpZ0IOLQiydJ23ZlGwNciVBk8qwV1ZnEEKIPZAwJ0QviKVzrG5K0hTPks7ZrGlO0pLIEcta5PogyAEkPlwAdh7v0MMJHnEGxygf8T39z0zTlu/0+M1uKf9jncwT9knUUdY3hfoEUwWvrlMZ8TK4KICpaySzDrabR1HSRPwmtquRzG6fvLgy4iXg1Rhc5CfiM3ZzdSGEENtImBNiP2XyNhtaU9S3p9jYnqLIb5LKWXQmc+T2d5jq7th5AMyKESiKwgh1yw5BLudqPOdM4U/2dF51JnVrVu0rpgohr05Z2EN11EdVxEfIq2NqGoaqEA4YlPg9eAwVj65iaBpeXSXk0wn7DKI+E1OXEatCCNFTEuaE2Ee249KezPLamhbe2dDOko3tJLM26VyezbF8n97bQ26HbX+2T+Qa/U+UKHFWOYN43J7OX+wTP5Om1PJgYVTq4JIgh9dEGFocoDTkxWtoePTCWqjbftZVVZpOhRCiF0mYE2Iv2Y7Lks0dfFQX49XVTaxpStEUT5PM2eT7siYOqFEauUJ9ipKG1zm3rrjbviwmN+cvo8kt4k13LH01pQhAQAefoRIN+jimtphJgyJURXwcObSIsDSPCiHEZ0rCnBB7qTGWob4jw4qmGOtaU8SzefK2jdWHQW4QzXwl9d90Ln+Fm5fkWNnqAC0A6EXVXcf91Znad4WgEA8DhkJxyEOx38PQEj9ThhUzoixIddQnQU4IIQ4ACXNC7IVM3qYpluHdjW00xzM4jkMsmSXZR4McSvP1HL3m16xe+h5z1lpdS3z5DfjcuCLeGn8tniGT+ubmn6ADIa9CdVGA0qCHirCPyUMiTB5SRHnIi9+jy/QhQghxgEiYE6KHXNflxeUNPPneZpZt7qAlae33Mly74qt7i/Jlj/L+R+t5J7t9ldaThmqcdVgxm0Z/hb/rp+Dto7ewR4GysEnEZ1IZ8TK81E9tWRhTV6mKeBldGaYs5OmTewshhNg7EuaE6KEn397Iz59fRVMi22d944rcDqIvzWXB26tYsXXbsKjCZYcbzDysnL+GvswD9snk++CtqwF+UyHkNykNmIypClMV8uI1C9OLlAY9RH0GVVGfBDkhhOhHJMwJ0QMbWhL8zzt1NMWz5N09H78vXDuP/czNLPhwNQrwL4cZfH2ywZghJdxnn8tsewY5u2/6pHm2rpMa8hlUhLyMqwoR8pqYusLQkgCVYS9eU6M85KEkKEFOCCH6EwlzQuyG7bisaoxx21+X8/7G9j4Lck4uQ/NTd7Bx3WoMFR4918cpE0q43zqbb+dOIYvZJ/etDOmMLAtSGfUzOOpjWFkQv6lRGvRQGfFRHDDRVQVNVVAUmU5ECCH6IwlzQuxEOmfxj2X1/Omtjby1vqNPQlw1LdS7UTINa2l7/j/J1X+MYng4+/wzWTu8lLnZ00j38oL3pgo+Q6M8ZHDahCqGl4XozFgU+02qol5GlQeJ+k00mQdOCCEGDAlzQuzEOxvaefDVdayoj/d6kNPySU7c9CDqmoUsXamTSCQBUL0hyr98M29Vj+GtPhgd69MVAh6D4oDO0JIAQY9BUyJL0NSoKfYxcmuQE0IIMbBImBPiU5LZPB9samddS7LXgpyVaCO9ejGe1S/SvmEFj1jbLpxFNb14hx1J9KRLMUpqeueGn6ACXkMh5NUZFPFRGfVRGfbi9+pUhr0UBzxURX2EvTJHnBBCDEQS5oSgMO1IfWeGVY0xVtTHeeq9OhL7sbCq67rkm9aSWr2Y9OrF5BpWdds/JKIwa7TOiaMi/LH6Gt7VJu7vU9hBkU9jUMRH2G8yrDTAhOowFWEv8YyF68LYqjBDS/z4TU36wwkhxAAmYU4c8rZ0pHjhwyZWNcbZ0pHiw/oY9bEd1z7tiXxHA4n3niH50T+x483d9h0zSGXWaIOzxuhMKNP4g3Mqt1sXEiPQG0+ji0eD4oCHSYOjHDUkwqiKMF5DQ9cUvIZGSdBFV1Wqo14CHvkVIIQQA538JheHvHc2dLC6KUFzIkdjLENrcu+CnOs6ZNa9R/zdv5Fe8zZsXadB0U3G1lbx/bFNnDVaozKoAvChM5Qv5b/Oe+6o3n4qGEphzdSykMmYiiCDigLoWmGRe0Mr3F/fOrjB1NVev78QQojPnoQ5cUhLZi1WN8VJWzaq4hDPWNg9HHxgZxIkl75A/L2/Y7XXd2331h5J5REnc9/oxZzhXQoU+qJZrsrPrS/xgD0Lm95d+koDTA3CPpPBJX7OOqyaiYPCmLqOrikYmoqpqRh64WefoeE35e0vhBAHA/ltLg5pq5viNMcyrGuK09CZoa4zy57GPOSa1hF/9+8kP3wZN58FQPEECE46ldDkL2AUD+Ja/XHO0Jd2nbPZLeV7ue/wrju618ru0aDYb1IeMlFVFZ+pM7kmypTaYo6uLcHQFAxVRZVpRoQQ4qAmYU4cshKZPEs3d7KiPs6Khjgpa88DHmKL/0z7yw91PTbKhhE68osExk9HNX1d239pnccJ6jIOV9fyvH0U1+S/TSfBXin3tmW3BkV91BT7CftNcGFEWYgx1SHKQl6C0hdOCCEOGfIbXxyyPm6MsbEtxZaONDm7ZyNX0+uXAOAdehiREy7GM3jCTkeCZjG5IjeHmdrb/Nb+PNA7tWMa4DVVIn6DgMcg5xRWqQh7TYqCBiV+E5/Zu024Qggh+jcJc+KQFEvnWLo5xpKNrbSmclg9nE/OzacBCE7+It6abdOJuNQqDaxzq7odW0cZv7XP6LUyRzxQGfFSFPDiNTQCHoPSgIfKqJcRZQGGl4UoC3kIe+VtLYQQhxL5rS8OGbbj0pHK0ZHK8dzyBv7+QT0r6uNYe3ENJ1cIc9ubVF1u0H/HhdrLXJz7MR+4I3q1zAYQDRQm9y0Jegn5DDyaSnHQpCLipbY0wJiKMKUhE48uNXJCCHEokjAnDgmu67K2OUEm77Bsczsvf9zExw17GeTyWex4KwCq6QfgKv1/+Ib+fwA8bP6UL+VuZq1b3StlNoCQX8PUNVwUwl6dqoiP8oiHcVVhxlWGifoNmfBXCCEOcRLmxCGhPZUnk3dQVWiIZelI5nvctLpN7M0ncdIxtFApRnkt/6r9je/pT3Xt3+yW0eKGe6W8GuD1FEao+g2dIcV+Jg8p4rAhUcZXhvHJAAchhBBbySeCOOg5jktjLAOAZTlsak/RltrzFCSflO9oIPbmEwAUfe6bXOxdxI+NP3TtX+HU8NXcD4n1wojVUr9GwGsQ8emUBr2cNKqMI4cWU1Pspyhg7vf1hRBCHFwkzImDXmsyh2W7JLN5/ve9OpZsaqcl2fMGVtd1aX/pv3CtHN6hh3H2OA+36/d37d/glHNp7od0ENqvcurA8DIvfo+HoFfn8MFRassCVEd81JYFCHmN/bq+EEKIg5OEOXHQ60wXludaWtfJmpYUrfHsXp3f8c/fkV71BqgaR512Nr8070NTCvV69W4xl+Svp5mi/SqjApiGgqFphLw6g4q8DCkOYGgqwyXICSGE2A0Jc+Kg57iFZbtaEzlSOYt4tmdzygF0vvkksdf/CED1qV/jd1WPE1AKYTDm+rgs929sdsv3u4weBcqCBlVRHxUhH1VFPiojHmrLAlSEvft9fSGEEAcvCXPikLChLUk2Z7GlPUkPl14l/v6zdCz4LQBFJ1/Gw8esYZjaCIDjKnwv/11WujX7VS5DhbBXpzri5bCaKGGfyYjyIGMqQoyvjqDJUlxCCCH2QMKcOOjFMnnq2tO8vLKZtnTPolxq9WLa/nEvAOHjvsT04w/nc+pTXfvvsb7EAueI/SpXsV/D1FRKAx5GVoQpDXoZXhZgWGmQkeUhCXJCCCF6RD3QBRCiLyWzFhtakmxqS1Dfme7ROa7r0rHwEcAlePjniZ50Ge+6o7k49xMa3Sgv2Udwr332fpXLb6jgKnhNjUFFfor8hSbWqqiPgEeXJbmEEEL0mNTMiYOW67psakuyujnBh5s7yPawfTWz/n3yLRtQDC9F02d3Tcr7pjuOL2TnYaHh7sffQaYGQa9O2KsxrCTAiIogQ0sCFPs9VEV8VEWkj5wQQoiekzAnDlrN8Swvr2jipQ8bWdOS6fF5sbeeAiB42Gmo3u7zxrUS2a8y+XSF0qDJ4CI/QY/OhMERBhcF8JkqRw2LUhzw7Nf1hRBCHHokzImDkuO4PP9RA39bsoWmeKbHy3blOxrIrHsHUKiechoZXAoTh+w/FYj6DUqCHooCHkaUBQmYBqUBk4mDIxLkhBBC7BMJc+KglHccNjSnSOVtcvmejl+FfMtGAMyKWh4v/y2dboCfWF9jk1ux32WKejUGF/nxmTqlQQ/DywIUB03KQ15KgxLkhBBC7BsJc+KglM7aNCcypHN5Mj1f7AE70QZATQiOUNcA8Jz6b5ySvZstlO5TWRSgOmxwVG0JlWEfIa/BpMERJlRHaOjMYOoyDkkIIcS+kzAnDjq247KkroP6jgytCavH88rB9jB3QriRwnL38IJz5D4HucI8chpHDytlXHWEsFdnSImfIcUBto6rwFAlzAkhhNh3EubEQaehM82apgTN8Qx5t+fn5ZrWkfjgeQBGRSxAI+V6uCN/yT6VQ9n6FfLoDCn1M6IsgKGrhL0mqqLQkiisJCE1c0IIIfaHhDlx0OlI54ll8qRyPa+TS61eTMtf78LNpRlVrPLNIwtrod5rnU09JftUDhUIejQ+N76So4cWY7kQ9ZnkbIfWZBYFBVNXKQ6Y+3R9IYQQAiTMiYNQMmvR0JmhM53b47Gu6xJ/+39pf+lBwGXSsBIWXJCj2KewySnjv+wv7FMZQqbC4OIAX5hUxRcnVZHMOTiuS8ay8eoaCgohr05NsV9WehBCCLFfJMyJg4rjuHSm8nywqZ1UDwY+dCx8hNibTwBQfcSJLP7iErx6IVz93DqfLHtfaxbxwKjKMEcNKWHS4CixrE0ya6EpEPAUavwqwh7KwzI5sBBCiP0nYU4cVNJ5m9ZUlo0tyT0e6zo2sbf+AkB0+tf45QkNeLe+I9Y4VTzlTNvr+xsKhP1eBkX9BL0ayaxFRypPadBDwGugqQo1xYURrUIIIURvkDAnDiodqTzvbmgj0dPpSJxCv7pxhx/OudqfuzbPt87B2Yclu4JejYqQh6BXZ2hpgJzlYmgK5WEPUZ9BUcDE0GTAgxBCiN4jYU4cFGzbYV1rkheWN/LPj5v2+vxvaM+iKYWhr+ucCp52pu71NQK6QnnYy5iqMMfWFlMZ9pLK2VRFvIyuCO319YQQQoiekDAnBrxM3ubVVc2saU7y96VbqI/3sFrO2T7a9QXnSCY6bRyrruA++2zsrXPM9ZQKlEe8jKmMMG1kKYfXREnnHXxZm7BPmlSFEEL0HQlzYsDrSOWIZ2zak1ksu+cTy8XeeRoANRDlNeNYXs9NZbKyiqVu7V6XIeLVOGZ4CZOqI4S8Bq2JfNe+oEfeZkIIIfqOfMqIAa8tuX0KkrzVs7nlrHgLnYseB6Do5K+hqIWauPfcUXt9fx2YPLSImqgfr6GTyFpEfCZhn05F2IvX2LtaPiGEEGJvSJgTA1rOckhkLRzXJZ21aIile3Re+8u/xc1n8FSPJTBxxn6VoTRsUuQzGV0RIpmzCXh0RpYH8ZkS4oQQQvQ9CXNiQItn8li2i6rApvY0n2jd3KVs/UpSHy0EFEbMvISksu+jSz0qFPlNjqotoihgEPWbVEQ8EuSEEEJ8ZmSOBDGgJbM2OcumJZFlVVOsR+fE3noKgKETJrNkyM+Yb/ySY5SP9un+Eb/BpEERTh9Xid+j4zM1mUNOCCHEZ0pq5sSAlsxZNMWzfFjXQX3HnpfvsmJNpFa8CsAPpnrQFYcztTcJk+Kr+XF7de+ADqeMq+Ab02rJOC6OA15DpcgvYU4IIcRnR2rmxICVtWwyOYslmzp5dXUTPZmQJP7O38B1CA2dwP+rWtG1/Xf2qXt9/4mDIhxTW0pF2EdbohAkq6I+FEXWWhVCCPHZkTAnBqxk1mZTe5o1zTHaks4ej3ddl8SyFwE495jBmEph5GuDW8SLzpF7dW+vBhMGFVEZ9RDLFmJkxGfINCRCCCE+cxLmxIC1uS1FWyJHeypPTyYkybdsxEl1ougm149a07X9j/aMvZ4kOOwzGF8dZGJ1hHRue5gTQgghPmsS5sSAlMnbbGhL0Z7Jkkj3YAgrkN20DICyQUMZYxSW/HJchT9a0/fq3iowvDTA5ydUEfToZPKFWkEZwSqEEOJAkDAnBqQ1TQmyeYd42qI9ueeBDwCZjUsBmD50+3/7V52JbKF0r+5t6nD8iDKCPpNUzsZ1QVMVTF3eTkIIIT578ukjBpyc5RDLWGTyNq7jkO5BG6sVbyG1+g0Avj2yuWv7E/ZJe33/Ip/JyLIAWctmY1sKkCW7hBBCHDgS5sSAYzsuruuSztusb0/Rk9VYY28+CbZFVc0QZgwuNMsmXC/POVP26t4+DY4bXsxJY8pZ15LEsl28hkp11LsPz0QIIYTYfxLmxIBjuy6W7dKRzvFx3Z4nCrbircTffxaA755Y0jV1yHPOFDJ4enxfFagtDXDJccPY0pkhb7l4DJVhpQF0Td5KQgghDgz5BBIDjm27JLMW65uTNMb3PPihc9F/g53HM2gsZw7fPhvd0/bxe3XfgKnyufGVWG6hqdfUVWpLAxgS5IQQQhxA0tFHDDgZyyaVt6jvSO1xSpL02ndILCnUykVP+iqz8pMYZ23kDO1NXnUm7dV9h5cFGF8dZlu77pBivwQ5IYQQB5yEOTHgJDJ56trTtO5hFKudjtH6f78EIHTULLxDDgPgI3coH1lD9+qeAUNhXFWYirAXUytMQWJostKDEEKIA0+qFcSAYtsOqxoTNCeyuw1zruvS9o/7sBNt6MWDiZ48e7/uWxo0GVYaoCxodm3TVAlzQgghDjwJc2JAaYhlaU/l6EzmSeZ2vYRXZv17pD5+FVSN0jOvRjV6PtBhZ0pDXsrCXrSttXKqiqzBKoQQol+QMCcGlFTOwnKgM5PZ5ZQkruvS+eofAAhN/iKeqlF8WVvAZGUVCntew/XTIh6F6qiP0oBJWyILQGlw/8KhEEII0Vukz5wYUDJ5m/ZkhtWNyV0fs2EJ2S0rUHST8HFfIkCaW/Xf4lXy1LvFXJz7Mevcqh7fsyzsoTTgwWvogELUb1ARlnnlhBBC9A9SMycGDMdxWduSYHVzkrbErvvLdS76bwCCh5+OHixmuroEr1KYwsRPhk1uWY/vqQJRvwdVBb+pE/TqDC7y7dfzEEIIIXqThDkxYLQmcyQyNo2dabK7aC11chmym5cDED7mXABmam937X/BORJrLyqkDRUcF6oiXnymypBiv/SVE0II0a9ImBMDRjydJ285JLLWrnu+udv3aP4oJnk+p77Xte05++i9uqfHVPGbGiPKggwtCcgIViGEEP2OhDkxYHSmczTE07Qksz0+51j1I0JKGoC0a7LQOazH56qAV9coD3qZPKRYJggWQgjRL8mnkxgwVjUlqWvPEEvtegkvO97a7fEna+VedSbu1VqsugI+U6e2LEDAK2OFhBBC9E/yCSUGhFTWoiOVJ5bKkbV2fkxm0zKa/3IHAEbZMNAMTlI/6Nr/kjN5r+5paFASMKkp9qNL86oQQoh+SsKcGBBakzls1yGeze+0v1xi6Qu0PjsfHAuzchRl5/2EGrWFEWp91zEL7cP36p5hv8nhg6NMHlIkgx6EEEL0WxLmxIDQnsyRzFrUdaS6bXddh46FjxJ78wkA/GNOoOSLP0A1vJykvth13Gqnmi2U9vh+hgKjykMMLQtQEjD3fIIQQghxgEiYEwNCezrHuuYkHcnubaypj1/rCnKR4y8kcuIlKEqhK+gnm1j/6Uzaq/v5TZWysIeKkAevoe1n6YUQQoi+IwMgRL/nui6ZvE1jPIP1qTZWq6PQjOofeyLRky7tCnIASbzE3cIEv3szihUg5DMoD3sZFPWjyyhWIYQQ/ZjUzIl+z3WhNZEllbWwd3GMYuw4SvXq/P9Dx2Kyspqlbm2P72eqMKoswMmjyxlS4t/HUgshhBCfDQlzot+zHZeGzixZa1dRbtcsdN5yx+7VORG/wZFDiwmYukwSLIQQot+T9iPR77WlcrQlsqQyu5iTpBdpQNinUxb2AqCr8hYRQgjRv8knlejXbMdlY1uKzkyeeK7vw5ypQ3nIi9/U0TUFryFvESGEEP2bfFKJfq2+M00slWNjW4pEzu3ROVOUFVyivcBgpWmv7xcwdYr8JoaqEPUbMr+cEEKIfk/6zIl+K5m1aE/meXtdG5taU3s+YasLtIVcoC8E4D+tLzLPuqRH5ylAkd8EFHRN3fqzEEII0b9JzZzotxJZi5xts6olQfbTc5Js5eazACiasW0LU7XlXfs/dIb2+H4q4DU1/B4Nj67K/HJCCCEGBAlzot9yXJdU1qIzmSOb33mYsxNtAGjBYgCGKE0MVlq69r/mTOjx/fwelaElfgZFvRi6vDWEEEIMDPKJJfot14WGzgztqRy7GvpgJ9uB7WFuqrq9Vm6VM4hminp0LwUoDZqUhrz4ZEoSIYQQA4iEOdFvucDKpjgdmfwuj/l0zdwJ6rKufa8543t8L68KUZ8JDvglzAkhhBhAJMyJfsuyHeKpPJnsricLdq0cAKrhRcHhePXDrn2LnIk9vpfPVFBVlazj4NFVykM7righhBBC9EcS5kS/lchYZC2HbL5nU5KMVzZSqsQAsF2FN/aiZs4wDFxcAqbOmPIQNcWBfSqzEEII8VmTMCf6rY50noZ4hl03snZ3/Cf6y33gjiBGzwKZDqgqGKrCiLIAo6tCe19YIYQQ4gDZpzB33333UVtbi9fr5aijjuKf//znLo9dsGABiqLs8LVixYp9LrQ4NLQmsmxpT+9yv2tb2Ol44YGqcqz6Ude+vekvpwCaolId9TGsJIjflOkXhRBCDBx7Heb++Mc/8v3vf58f//jHvPfee5x44omcccYZbNy4cbfnffzxx9TX13d9jRo1ap8LLQ5+rusSS+dIZHO7PCa5/CWcVAeqP4qnYjjHqNv/QFjsjOvxvXRdIWDqDCkJMLTMt1/lFkIIIT5rex3m7rnnHr7xjW/wzW9+k3HjxvGLX/yCmpoa7r///t2eV15eTmVlZdeXpsmErGLXXBeaEzlSuV1MFmxbdL7+JwAix55HmZFjg1uB7SrYrsLbzuge3ytgaoT9BhOqIoS9suqDEEKIgWWvwlwul+Odd95h5syZ3bbPnDmT1157bbfnTp48maqqKk455RRefvnl3R6bzWaJxWLdvsShxXZcNrSkyO5igrnkhwuxOhpQ/RGCR3yBFiKclbudw7L/xZdzN5GkZzVsOhD1m5QGTCoiXnyy6oMQQogBZq/CXEtLC7ZtU1FR0W17RUUFDQ0NOz2nqqqKX//61zz55JP8+c9/ZsyYMZxyyim88soru7zPvHnziEQiXV81NTV7U0xxEGhP5WiKp9l5vRykVhb+eAgdNQvV9HZtT+LjXbfntXJeD4S8BrWlAXymJvPLCSGEGHD2qae3onT/wHNdd4dt24wZM4YxY8Z0PT7++OPZtGkTd999NyeddNJOz/nRj37EVVdd1fU4FotJoDvENMYyNHZmdrnfTrQCYJYP36/7eDWdsF9jXFUIry61ckIIIQaevaqZKy0tRdO0HWrhmpqadqit253jjjuOVatW7XK/x+MhHA53+xKHjpzlsKKhk8Z4dpfHfHrlh32hAAGPQbHfS0XYj9eQmXqEEEIMPHv16WWaJkcddRTPP/98t+3PP/88U6dO7fF13nvvPaqqqvbm1uIQ0hzL8OzSBjK7Gvzg2NjJDgC0QBETlbWcpr5NlPhe3cfUIOTVKQqY+EwNj/SXE0IIMQDtdTPrVVddxaWXXsqUKVM4/vjj+fWvf83GjRu5/PLLgUITaV1dHY8++igAv/jFLxg2bBgTJkwgl8vxu9/9jieffJInn3yyd5+JOGisb02xsS3JLsY+4Fp5cAtBT/UEuFj7MxfrhUE1862zudu6sEf3MTSF4oBB2Fd4G0jNnBBCiIFor8PchRdeSGtrK7fccgv19fVMnDiRZ555hqFDhwJQX1/fbc65XC7HNddcQ11dHT6fjwkTJvD3v/+dL3zhC733LMRBw3FcVjZ00rybJtZuFDhG/bjr4Xq3ssf3CnoMKiJe/LqOooCpSZgTQggx8OzTAIgrrriCK664Yqf7Hn744W6Pr7vuOq677rp9uY04BDXFM7y3oYNEZlfjWLsrJs5IdUvX48XO2B6dZyoQ9uoETAPDUPEa6i4H8QghhBD9mVRFiH7l3Q3trGxJ7LKJFcDNbV/i60h1+0CaJjfKRre8R/cxTZWQzwDFxaOreGQkqxBCiAFKwpzoV+o7UqR2NVPwVrF3/waAWTGCYz3rura/5YymMEZ1zzyqSpHPQFdVgh4dXZNaOSGEEAOThDnRb1i2Q1vSIpu3d3mMnY4Tf+dpACJTL+xWM/eOM2ZXp+0g4DUpCnjwGho+U0OVJlYhhBADlIQ50W90pvO0p7LE0/ldHhN/+39xc2mMsmFERh3FYcr2mrmersdqKOD3qAQ8Gn5TR1dVJMsJIYQYqCTMiX4jls7T0Jkhu+uKOZIfLQQgcvwFTFI34FEKwS/tmnzoDu3RfTQVgh6NoM9AUxUMVUWTNCeEEGKAkjAn+o1UzqIxnmE3WQ7XKvSn04uquzWxfuAOx+rh4GyPruAzNIp8Jo7rEvLpBDz7NLBbCCGEOOAkzIl+Y2N7ivZUrsfHH6Wu7Pr5nR42sQL4PCYlQQ8oCiUBD35TwyurPwghhBigJMyJfqE1kWVTa2q3/eU+rVJp7/r5HWdUj84xAF1VqAx78ZkKXkMl4jf2trhCCCFEvyFtS6JfaElkaUpkyOTdHp9zbu4WKmhjirqSt3o4WbC2dT1WFPBqOrqmEvFJmBNCCDFwSZgT/ULOdtnQksDueZYDoJFi/u4c1+PjPbpKyGtgqIUVH8ZUBGXCYCGEEAOaNLOKfqE9maWuI0vPFvHaNzqgb11/tThgUBH2MLQk0Id3FEIIIfqehDlxwDmOy8a2FJ17MfhhX5gamIaGriqMrAhTU+zvCndCCCHEQCWfZOKAa4hlaE1kSed2v4zXJ41WNmHS88ESAJqu4NFUKsIeoj6T4oC5t0UVQggh+h0Jc+KAcl2XTe0pWuI5srmeN7LeYzzAUs83eNy8FehZR7ugxyDqN6ku8uMxVJlbTgghxEFBwpw4oDrTeZo6s7SnsmR2N1vwTngUCw95YM+rNyhAxGfg9+iFCYP9UisnhBDi4CBhThxQbcnc1mbW9G5XfgBwsimcbAIAfev/3PedET26jwYYqoKhFZbvKpK55YQQQhwkJMyJAyqds2noTFPfkdnjsR2L/oCbSzOs2GB8WeG/7rs9nCzY1CFruxiqyvjqoAx8EEIIcdCQTzRxQK1vTdGeztKW3P1I1lzzBuJvPw3AA2cYGFqhafU9d2SP7uP36OiqSkXYy3HDS/ev0EIIIUQ/ImFOHDDJbJ6NrUnWNCZI72Ega/uLvwbXoWb0OE4fWRi40OKG2eyW9eheuqrgMVVqS/0YMkmwEEKIg4iEOXHA1Hdm6EjniKVzWLsZyGqnY2Q2LAHgX06d1LX9A2c4PR38gKJiqCojy4P7V2ghhBCin5EwJw6YdN4hk7ex3T1MLuJsGxqhMKO4uWvzB+7wHt3HAExVIeo3GFYmKz4IIYQ4uEiYEwdMJmeRzttkrJ7PSTJJXdv1c6Fmbs80DQJeneElAUxNmliFEEIcXCTMiQMiZzlYDqSyNtm9WPmhUmnv+nnp/2/vzoPkLA9733/f9+23l5npac1opBmNNmQwBiMBRtggHLwmYAK2Eye52MfxUkmcS3LwAs7JgfJNgX2cg1P2tX1zy8SpeKn4Jjfm5kBSzjFJkI8NGEtALLAlhFgltM5Is/be7/rcP3rUaKQR0z2jrWd+H5fKvbxP9zvPvMX7m2eN1zVVJu06pBIOgz0ZrNl7ZUVERNqKwpycFUEUE0YxZT+iNsuWrLFfX7Yk4b66Y8OQ6WWEnqa+q8NN0JVOsCSTxLGV5kREZGHRfkZyVoSxYbzsUa4F+LPsxhWVxgCwOpdyo/c5LrV3k5h1ieFXZTMJVi3J0NOZJO2qm1VERBYWhTk5K8IoZihfo1QNZt1ZNSrVu1btrl52mnXsjJrrXoX65IeVvR0s6agHuYzCnIiILDDqZpWzYqzkk6/65L1g1mOj8jgATmdvy9+Tci0yboJch4vr2Lja+UFERBYY3dnkrKgFEWOlAC+YvbvURPXAZ7mplr8nk0pgWZBLuyzvTrZcXkRE5FynMCdnnDGGg/kqk1WfWhNh7piSLX2PBaQTFsu6UvQvSbMil2mpvIiISDtQmJMzbv94lUI1oFANaCXL3eQ8zrfdL/Pr9uNNl8kkXXIdLusHu7G0LomIiCxACnNyRpW9kHw1oFQNwcR4r7GN1/HSBLzbeZrV1sjsBwMJC7pSCVb1ZujtbL2LVkREpB0ozMkZFUb1rtLhQo04nltLWbPbeKUSFrmMS08mha1WORERWaAU5uSMio1hsuozVvEoNTGTFWAJpWnPd8bnNVUumbDJdbhkXAetFSwiIguVwpycUWEUc2iyihfUd39oxgprvPH45XgFBTqbKufYNj0dSTJJW+PlRERkwVKYkzPqYL5GoRpQ9WJK3iz7eE0p7nsOgKUZix2muQWDLep7si7pSJLSQsEiIrKAKczJGTNW8hgtehRrASXfp1KbffaDN/QCz7x8CNuCP3pzkh1xc+Plkg70drlctCJLb6fWlxMRkYVLYU7OiCCKGc7XyFd9CtWAfCWkiSxHfsv3AfjwBpcLem22NxnmOlMOK7s76M+m6elQmBMRkYVLYU7OiMOFGpUgpBZE7B0tE0TRrEsA+yN7qb70JLYFn7s2SWQsdprzmvq+zlSC1cvqS5IkE7rMRURk4dJdTs6Iih9R9WPAwo9iyt7skx/8I7sB+JU1Dm/oc3jJrKRCetZyNtDXkaSvM002nZjnmYuIiJzbFObkjPDDGC+I8cKQIDSU/dknP0Sl+izWNbn6ZbqjyfXl0gnoy2YYXJLGcTSLVUREFjY1W8hpF0YxxoAXRkyUA/zYUG1iIuvRMLe/4yIeivr4WXRJU9+XcGyWZV2y6SSOliQREZEFTmFOTruSFxIZQ9WPOFL0KNV8mllhLhjZC8D2jqv5w+D9TX9f0rXpSidxHRtHqwWLiMgCp25WOa38MObgZJUgjKmFERMVn0Jt9ijnDb9Ebe8vwLLJnH9lS9+ZtC1ymQTZtENKkx9ERGSB051OThtjDPsnKsQxlLwA24LxskfFC2cte3RJks6L34bbu7Lp73SAjqTL8lyG5dm0dn4QEZEFT2FOTpsjRY+KF1ENQjJugsN5j3I1xAtee4E5//Buqi8+Dljkrrm5pe90bUi5Dsu6kvRosWAREVkEFObktBgreRwpeABkXAfHgYmKjxcbglnKVl56AoCr3rCMr/U/yO86m+kj39T3Oo5FNuUw0J3BdXR5i4jIwqe7nZxyE2WfQ5M1AJZlU2SSCWIDFS/AD5uY+hDXj3lTd57/LfEIX3S/S7813tR3u47Nmr4O+rrUKiciIouDwpycUvlKwIGJKgBLu5IM5NLExhDHMFkLKNVmHy93lEO9O9YzCV4wq5sqk3JtzuvtIpdxWz95ERGRNqQwJ6dMyQvZP1EBoKfTZXBJBoAoNoRxxHjJoxY0syjJdLvMGoImV9HJplyW59Ik1MUqIiKLhO54ckrEseHgRBVjIJdxWTkV5KAe5qpeSKEaMocsx/b4/KaOs4DeriS9Ha5msYqIyKKhMCenxEjJww9jEo7Fyp7MtDBlDBRqIV4YN7VY8PF2mHVNHZdxYG1vJ50pdbGKiMjioTAn81YLIkaK9Zmrg7nMtF0X4tgA9WVKvKC58XLOcZFve9zcnqzZTIJVPR3a9UFERBYVhTmZtyMFD2Mgm06Q65jeKhabqTBX8qiEpqnP62Oy8bhiUrxkmls0uLcrRTbjKsyJiMiiojAn8+ZH9VmnMy3SG5t6oBsr1Lthm9FdGwZgSdpip1lLhNNUuWzaJe3aLOtKNXnmIiIi7U9hTk6BeovbTA1iBkMQRRycrBI1l+Wwy0cAGMza7Giyi9UFlnQkuXhFN6t6O5r7IhERkQVAYU7mbWpY3IwzSI2BA+NVRks1msxyeKX6bg8ruqymx8ul3frkh7VLO5v8FhERkYVBYU7mzRwNczO8FxvDc4cLVJpek8RwsFzvVl3S6bLdNBfmujMuvdkk3enm1qMTERFZKHTnk3mLpprmZpp44AUxE+UAz2+2Xc5iIu4Eynwk+jMSZkVTpZKuw8pcRosFi4jIoqM7n8zb0Rmr9gzdrBMVn+LUGnOtqk98mH1mqg1k3AR9mvggIiKLkMKczEscm0Y360wtc0cKVYYmqzTdMDcHjlVfFqUj1dysVxERkYVEYU7mJZzqYrWsmcPcs8NFJqpe058XTA4TFUcBsNNdTZVJJaArkyCVUJgTEZHFR2FO5sUL6xMbkokTL6WRYo0DY1UK1eZ2fuimzLon7gETs2TdJbg9zY2XSydsXr8sS2qGcxAREVnodPeTeTk6Fu74IFULIp4fLjJeqTUWFZ7NeYVtPLH9ZQC+/47hps8h15lkoDtNwtblLCIii4/ufjIvfiPMTe/iPDBRYbLqMzRZww+aC3Nj//EgYQy/+jqHzMqLaGbyA0BPJknSdUg42sZLREQWH4U5mZejYc49JkgZY6j6MUcKHpUgoskshzcxBMCH1je/vpwD9HSmSCcU5kREZHFSmJN5CeOpMHdMN2tsIF/1GS/7lGvh1GZfs8tSASBh0/Q2XmnXYmlXip5Ol5SjCRAiIrL4KMzJvPhhPaolj1msN1/xGS35VP2IfNVv6nN6KZC2Xj32l02GuVTCIeXa5DLJGSdhiIiILHS6+8mcGWMauz+4x4S5A5NVjIFiLaRQa24br0vt3Y3HBdPBML1NlUs4Nt3pBK5jK8yJiMiipLufzFl8TP/psaPVKn49wIVR8+PlNlivhrkDZhnNTH5wgK6Uw4pcB45tzbjOnYiIyEKnMCenxLE7eflhTBjFDOdrTZc/tmVuv1nWVBnXgZVL0nRnXLXKiYjIoqU7oJxyfhgzWvLYN1ZusoThcvvlxrN9ZnlTpTJJh8ElGRzb0oLBIiKyaOkOKHMWm5nnqXphxN6RImPl5iY/rGCcZVaeqd5ZDjDQVLkO1yXXmcS2LFKuLmUREVmcdAeUOTu6+0MyYWNN9bMGU61yz48U8Zqb+8Bya4I9cT+HS/VwWOkcnLWMDaSSFr0dKZIJm56O5Jx+BhERkXanMCdz5gX1tHZsF2ehFrB7pMTesSpNzn3gl+YC3ul/jeeKGQCczp5ZyyRt6M4kSScc+nOpabNpRUREFhPdAWXOGvuyHtPFuedIie37J6l4YUufFQceUa0+xs7pmn1Zko6kQzph4SQsVuYyLX2XiIjIQqIwJ3MWRieuMffLQ3kK1ZCo2W0fppSffQSoBzk73TXr8WnXIZ1I0JtJ0pV2W/syERGRBURhTk4ZYwx7RkpUw5Co2T5WwEQhha33AdD95t9sjL97zTKOTW9nkjVLM1pfTkREFrXE2T4BaX9Ho9RYscZIyadUi5oeL/d66wD5Z3/Mvvxh7I4ldL3phqbKdSZserMp+rrSczpnERGRhUItc3LKPHOoQM2PqIVNTmMFftfZTO3n/wOA9179Omx39nBmA11pl9U9maZa8URERBYyhTmZs6PrzB0NVPvGqxRrAU03ywGX2S9zqFj/nOXnX9JUmZQNXZkEPR0pEo7CnIiILG4KczJn0VSYc6bC3NBklUItoNl2uRQ+b7T2Np4/b9Y0Va4rbbOsy8W20M4PIiKy6OlOKHNmpsKcbcN42eNQvkrNa34m68XWPpLWq9Fvj2lu54febJpcOoVlWaQSTsvnLSIispAozMmcBVOpzbEt9o9VmCgHVFsYL3fZMfuxAkRNzsfpSCToSiVw7PruEyIiIouZ7oQyJ1U/IowMlgXphMNLo0UqfojXQpi73H5pTt/dmXZYmk2ytFNbeImIiCjMyZwUagEA2XSCohcyNFGlWA2JW5n8YL08+0HHSVqwPJuhpyNFX1eq5fIiIiILjcKczElxKsx1JhMcmqxyYKJKREyzDXM5SrzOHm75ezOuRS7jsjybJOVqvJyIiIjCnLTMD2Oqfr0JzrLqe7ROVAKi2BA2Ofnh2PFytaPbuDqzh7Nspt692pV2tSyJiIgICnMyByWvnr4ySYcoNpS9gKofUagFTS8xd/lUF2vRM5SDqYkUnT2zlluaTbKiJ4M19T8REZHFTmFOWlao1rtYu9MJvDDm0ESFyWpA1QtnKfmqN9j7ABgqTbXwJTPYycys5VZkM+Q63HoZZTkRERHtzSqtMcY0WuayaZeJ8Qq/PJCnWAtoIctxa/Ap/s9wmKVj/wu4D6erd9YyCWBlTwbX1t8gIiIiRynMSUu8MMaYeqtYwrGYrPgcytcoec3v/ABgsNltBnni6UMAJPsvmLVMOgnLsimiuN4tq90fRERE1M0qLQqnglQyYZOvBowUaxwu1FrqYj3KH91H5bnHAMhd/duzHt/XmSbtJki7DmnXJpt2W/5OERGRhUZhTloShPUxbq5jM1n22fryKJPlAC9o/bPyW+4DDJkLN5Fcvm7W4wdyGfwoxk1YWmNORERkisKctCSIpuarGsPLI2WeP1zCjyJaaZdbYx0mrk5S2fUoAEuu+eCsZWzAYJFwbDqTCZZ0qFVOREQENGZOWlQLpmaf2jBR9aj4UX0MHdDMEnNpPP5X8k/YVXa4DIPtpkj2nz9ruVTCoitls6wrRW9nCktTWUVERACFOWlRbWqLh4Rd72atBhHVoPn15S61duNaEVmr3i9rmlwrLp20WbEkxcqeDB0p7fwgIiJylLpZpWlxbPCmWuaMMRycrFGrhUQtTGPdaL84p+/uTiZ4ff8S3KluVhEREalTmJOmeVOTH/wwZjhfY6Tg4UeGuNlmOWCj/fycvrurI8l5vR2kXRvHVheriIjIUWrikKZFxlCsBUxUfNKuQ7EWEJqIqMn9WMHMuWVudU+GbMbFdfT3h4iIyLF0Z5SmDedrHC54WJZFLYyIjCGKTdOLBZ9vHaLHKgEQm+Zb1zIJi96uJK6jVjkREZHjKcxJUw4Xahwp1ADo60oSx4ZSLSQIm26W44pjWuX2mIGmy3WmHLrTSQC1zImIiBxHd0ZpymQlIDKGpZ1JBrozDE1WKdZCTPNZjiutFxqPd5jZFwk+KuMmWNpZX1dOLXMiIiLTKcxJU6LYEEYxnakEWIaRkk85CPBbCHMb7VfD3DPxeU2XW7kkzQV9WUBhTkRE5HgKc9KU2BjCCGwLxss+w/kKlRb2Y11CkQvsQ43nO8zrmirnWLCmt4ul3amp5wpzIiIix9JsVplVHBuMgSCOiWJDuRqyZ7RC0ML6cseOlxsxOQ6apU2VSydgXV9n47mtPz9ERESmUZiTWYVxvS81NoYgjtk3UWay4hO1sL7co/Gl/Ib3Bd5i7yJBDE3u/NCVchnsSRPH4NiQSmj3BxERkWMpzMmswqlVgaPYcHCywsuHC/hh3PQWXgAhCX5hLuAX0QVTrww3Va6/O8lgTweObZFM2CQTapoTERE5lu6MMqsgNARRzEjRo+obDkzWCJpfKXhe+rMd9E7NZO1K628PERGR4ynMyazCOOZIsYYxUPNDvDCiVG1+8sNcOcDavo7GdmFd2pNVRETkBApzMqvIGEpeiG3VJyCMlQKCFsp3UgVab8lLJizW9maoBfU015HSeDkREZHjqalDZuWHMVUvIl8NqAUBY2WvpfLfSX6ZVdYIT8QX8zfhjewya5sq15V06Jza+SHhWNr9QUREZAa6O8qsSl7I4UKNyUrAaMGnUG2+XS6Fz+XWy6y0xviA8xgZmg+C2YxDyq1foh1JtcqJiIjMRGFOZjVS8KgGEX4UcaTk47cwXO4y62VSVj38VUyK7UcXCw7rr1n2yUNaxnVJT7XGZVyFORERkZkozMlrimLDWMnHC2MsYP9EhRbWCuZqe1fj8bb49YRTPftReQIAu7NnxnIpB163rJOBng4A0mqZExERmZHGzMlrGit5hCamEkQcKVQp11qbxXqNs7Px+PH4jY3HYWkMAKerd8ZyuYzLNef3NWayqmVORERkZgpzclJxbBgpecSx4Ui+ykS5Ri1svl0ujcebrFe38dp6TJiLSvWWOadr5pa5ZdkUq5fWt/HS5AcREZGT0x1STsqPYsLIsGe0xGQ1oFiLiU3zS4xstF8gZdVb8kom/ep4OcAEVQDsZMcJ5RygryvJko763xop7fogIiJyUrpLykkFUcyhyQovHi7hhTExBi9oPsxdY7/axfpkfFFjvNw01ol7tGZcWJbNYFv1y1OtciIiIienu6Sc1HjZ56m9E0xWA6IoJopMS5Mf3mo/03j8s/iSpsulEwm60gnM1ELDCefEwCciIiJ1CnMyozg2bNs7TrEWUvFCsGjsxNCMbkpssPY0nm+J1zddtiuTwLEsKl79+xxbYU5ERORkFOZkRkEcM1EJKHkhFoZyLaLsNT+T9a32Thyr3rI2arp5zqxuumxnKkE1iIiNIeFYLMkkWz5/ERGRxUKzWWVGUWQYK9d3exivBNTCEL+F7VV/HL+J3/Xv5G32djxcTJN/N6QdSNgWGdchl3G5YHkXCY2ZExEROSmFOZnRZDXg4HiFg5MVqn5EqdZ8FyuAR5LH4g08Fm9oqVzSdejpcMl1uFzY34VtK8iJiIi8Ft0pZUYHxssMTVap+BFh3NrEh2YE4wcBsBx32usdCZuBJR30daUU5ERERJqgu6XM6KUjZSpBTBQbgqi1VrnZBOMHqTz3GACdl7xz2ntLOl2yaZelnalT+p0iIiILlcKcnKBYC9g/UcEPY2p+SAubPgDQS+E1389vvQ9MTOb8N5MauKDxetKCdDJBJuHQ361JDyIiIs3QmDmZJooNe8cqjJV9gjCiFrbWxZrGY0vqk7xiBvhx/CbuDd9HiVd3eQgmhynvfBiA3Fs/NK1sKuXQkXDIdbh0pad3v4qIiMjM1DIn01SDiELVZ7zkUfQC4hZmsAJssp8lbQVcZO/nI85mPKa3sHn7nwETk1r5RlIrLpz2nmtZpFMO2XSCzqT+zhAREWmGwpxMExvDUKHGSMnDj0zLYe4d9i8ajx+L1xMc1/gblcYBSPQMnlA2lXDIphL0dKTo7VI3q4iISDMU5mSaYiXgqb0TVP2QIIpobeqD4d3O041nD8eXn3BEVBoDwMn2TnvdAVzHoqcjxfLuFKmE0/K5i4iILEYKczLNlt2jFKshVT/GC1or+0ZrL6usUQBiY/Hj6E0nHBOVJgBwOnumve4mwE3YdKUdVvVm5nbyIiIii5DCnDTEccxLR8ocKVYJ47jFVjn4VfupxuNfmPMZYckJx5jQB8BOTg9sCdumw3Xo7UxpWRIREZEWKMxJw1C+xu6REhOVgJrf+tpy73JeDXM/iq5oqWw6adOXTbKmR61yIiIirVCYk4ZHnjvMcL5GLYjwo7Clsv2Mc7m9u/H8x3FrYS6bdBnIpUm6msUqIiLSCoU5AcALIx59aZQgjDFRTK3F8XK/5mxrPN4bL+c5s7ql8t3pBOlkAtexWvtiERGRRU5hTvDDmOeGChRrEbUopOSHLe/F+uv2E43HD8VXAs2HsrQDKTdBLuOyrq+zxW8WERFZ3BTmFrkgitkzWmai5OOFEWUvpFBtbbxcBzUuPaaL9cHoqpbKZ1yHzpTDW1+3lIGcxsyJiIi0QgOUFrE4NrwyWsYPY0ZLPmMlj2ItpLXRclAhzVXeN3i3/RTX2jv4hTm/pfIdaYeBXIYr1vbOfrCIiIhMozC3iBVrIbUgxrZg13CBshdQazXJTSmT4QfxW/lB/NaTHmPCAP/IHgDsZH2/VhvocF3esq4Xx1FDsYiISKt091zEvKg+Mm7veIlnh/IUqnNMck0q7dhMVBrD6eolc/6VAKRd6O9Osaqn47R+t4iIyEKllrlFzA9jXh4p8MC2gzx3qECt1VkPLTBRQH7rPwLQffXvYCXqe692JBKs6smQTGgWq4iIyFyoZW6RMsbwH3vG+PvH97FnrERhTknO8H77MZZQnPXI0vbNRMURnK5espddD9T3Y00lHZZnM7jqYhUREZkTtcwtUocmq2w/kKdQC6nOYSkSgEusvfxfyXvxjcMj8eX85+BT+LgnHBdVi0z+9O+A6a1yrmPRkbTp6XRJu858fhwREZFFS80hi9BoyWMoX2MoX6MWhATh3PpXf9t5BICkFdFrFWYMcgD5x/6OuFrA7VtD9vIbGq+nkw7LulLkOpJk0zOXFRERkdemMLfI5KsBQ5M1Dk1WGS/5VPyIvNf65yQJeJ+zpfH8f0Rvm/E4//Buik//KwC9v3oLllNvDE5YsCSToC+bImFbdCTVMiciIjIX6mZdRKLYsH+8zFjJZ+9ohXwtoDTHGay/Zm9jqVUfK1czLj+Mrp7xuPzW+8DEdFx0Lem1lzZedx1IODa9nSlcxyKjblYREZE5UZhbRMbKHgcmqlS9iEP5MuMlj2pk5vRZH3Z+1Hj8YHwVBWbehiuq5AHoeMP09edcxybp2KzqzdCZSmDbms0qIiIyFwpzi0TJC/nl/jzlWsT+yTJ7x6oUasGcPusC6wDXOM82nv99+O6WP6MrleC8vk56OtIs6UjO6TxEREREYW5ROFKscWC8ymTZZ+9YmbGKx57REt4c15X7uPPvjcfPxmvZZi5sqbwFZDMuK5d00J12tSyJiIjIPCjMLXCTFZ/t+/MUayGVIMILI54fKjBR8uf0eUso8lvOTxvPvxtdTz2eNc+m3s3an0uxpDOBoy5WERGROVOYW6DKXshI0WP3aIliLSSTtBkpRrxwuMS+sQq1eG6f+1FnMxmrHgTHTJYfRNe0/BkZF5Z3p1nVkyadSJBN6zIUERGZK91FF5hCLWCk6FHxIgyGYi3EsSyCKGbry6M8f7jAaGVuM1gz1Ph44t8az/82vB6P1sa7OcDrlnfxur5Ocuk0AD0aMyciIjJnGqy0QPhhzEtHiuwdrVDxIiwLHNvCxqIaBtz35H52HsozUZ5b9yqAR5L/I/g9no3XUjYpvhf9WsufkUnarO3toq8rhWVBZ8rR7g8iIiLzoJa5BSCMYl4ZK+MFMZYFS7uS9HWlePFIkTA27BkrM5Sv4ocx/hwnPQDE2DwYX82D/lWcbx1ikmxL5S0g6dqs6unAsSxcx1arnIiIyDwpzLW5ODbsHa/gBTEJx+L8ZV0kE/UG14mST6kWsOdImbIXUKxFzG1VueNZvGxWtlwqnbDp70qzLJviohVZkglbrXIiIiLzpDDXxowx7J+od6vaNqzr62wEuTg2DBdqbNs7zvYDkwwX57am3KmUdm02rOrmDQNZsul6i1wqoZ5+ERGR+dCdtI2NlDwK1RDLgrVLO6e1co2VPZ56ZZzHXh7hcGHu4+QA/nfnX3iddWhuhU29LdCxoCPlMJDrYFVPBoBkwtbODyIiIvOkMNem4tgwWqyHtMElGbpSrzay1oKIn704wouHSxSqIXNchQSATfZO7nT/gX9L/lfuSPy/JGmthS/2ygC46Qy5TJI1vR0s6UgBkHAU5EREROZLYa5N5asBUWxwExY9HW7j9TCKefSFI/zrzmFeOFKY14QHh4i7E38LQNKKuMp+joDWxrhFpXEAOpYsY8OKLFed30vUaK1TmBMREZkvjZlrU2NlD4DeziSWZdUnQoyVuf/pAzy1d5xXRsoU57oy8JRPOD/kDfaBxvO7go9hWsj/JgqIqwUAlvT1s2F1Dz0dKWpBPWFq5wcREZH5U5hrQ8P5GlW/vgzJkrTLWMnjhcNFfv7KGNv2TDBc8Jio+MyjUY4rrBf4bOIfG8+/H76D7eb8lj7DH9kLgOUkWLZsKcu7U3QmHSYr9e5hjZcTERGZP4W5NnNwssp4ySeIYlKuzYsjJSpexN7xMi8cLlGo+ZQ9n9rcNnkAoJcC30j+Ja5Vj4OHTC/3hP+p5c8pbP3/AMhddA0bVuZ405oevDBmslIfd5fLuK9VXERERJqgMNcmjDEcmKhyaLJKvhqQdh0qvkW+GmCMYbRQ45XRErtHSlTnEeRsYr7ufoMVVn2sW2AcbvU/RZ6ulj7HH3mFygtbAIt3f+iP+MjV57Esm2bPaBljoDuTmDZpQ0REROZGd9M28dxwgd0jFfwwImFbVPypvVcrPrtHyzz6wigHJyp48xsmx6cSD/A2Z0fj+T3hf+Ipc2HLn5Pfch8AfRuu5TffvYnl3RkKtYBSrb6UykAuPb8TFREREUBhri0cGK/w3FAJy6pvh5V2HRxgshIwWvbYdSjPofz8g9z77C18yvmnxvMHo7fwneg9LX+OMTGVF7cCcM0Hfo+OZALbgv3jFaC+3VgqoZ0fRERETgWFuXNcvhqw4+AkALlMgp7OFCUvxDKGih/y2IujvHC4OK8xcgAWMR9NPIRt1ZcN2R0P8KfBH1LfUbU1cbUIUf2Ebnz7VVx53hJGSj5xDJmkQ39WrXIiIiKnisLcOSxfCdg1XKAWGCzLkHIsXhgusH+ixPb9eX65f5LJeS4/cpTB5vf8/8L/k7yHVdYInwg+S4mOOX1WVBoDoGtJL+9840r8yOCHMW7C4rylHZrFKiIicgopzJ2jSrWAZw5Osm+8QqEWUKyG/PSFKrtHixwYrzJWnt/ODjMp0MlH/DtYbk3yslk558+JSxMALFm6nHzNJ+UksG04b2knCUfrVIuIiJxKCnPnmDCKGS/7PL1vgucPFynXIsqez8GJGi+PlBktV6kGYOb1LYbr7Z+zzhrim9H7pr1ToIuCaW3m6vHSpgqAm+7Ewppx71gRERE5NRTmzgFBFFOoBhwu1Ng3Xmb3aJmdBwscLtQII0OxFpCv+IxX5t8ad4F1gLsS3+Na5xkC47A53jivVrjjuRb0ZNPsBWzHJpdxWdXToSAnIiJymijMnQHGGKpBhB/G+FFMMDWGLIhiRosehyarjJY8DkxWOTBWYbxSY6ToUfZjyrVoXjs5HPV66wC/5/wrv+M8QsKqR0LXivhc4u/5veBPT8E31OU6ElhWvSs17dqcv6wLS3uwioiInDZzCnP33nsvX/7ylxkaGuKSSy7h61//Otdee+1Jj3/kkUe4/fbb2blzJ4ODg/zpn/4pt9xyy5xP+lznhzFVP6IShJS9iFoQMbW3PGFUD3QlL+RQvsorI2XyNZ/Rgk/VDzg4WWWi7FOe5+xUgPOsIW6yH+dG53Eutvef8P6j0Qb+PPzw/L9oSsIC13GwE/Xw1uEmFOREREROs5bD3H333cdnPvMZ7r33Xt761rfy13/919xwww08++yzrFmz5oTj9+zZw6//+q/ziU98gr/7u7/jZz/7GX/8x3/MsmXL+K3f+q1T8kOcTXFcb3Wr+BEVP6TiR4SRIYjqLW9lP6TshVT9qN46F8SMlWuMFj0OF6vsn6gwVvKp+RDMbyBcw+87D3Kz8xMutA/O+P4rcT9fDH+XH8VXMJelR04m6UB3xqWru770SMJRkBMRETndWg5zX/3qV/n93/99/uAP/gCAr3/96/z7v/87f/VXf8U999xzwvHf/OY3WbNmDV//+tcBuPjii/n5z3/OV77ylXMvzBkDXqH+/xgazWlTz40xVPyAihdSqAZMBDaHvRQTZY98NSBfDagUxokqk/hhRC2I8YKQahBS9SK8IKAaxBjAmprCsN/0EzF9PNkbrVfI4JG2fNL4pAhI45O2AnKU6bUK9FpFeinwP6NN3B+/bVr5ZdbkjEFuR3we34uu45+jXyE4hT3sFrC6J8llq3p49xsHeOyhXQA4WoJERETktGvpju77Ptu2beOOO+6Y9vp1113Hli1bZiyzdetWrrvuummvXX/99Xz7298mCAJc99zYbD2KDaMT4/T/36876TEW0Dn1bxnw9+5v8c3Eh+tj4cL6WLg/MA/wGee+mT/ABlLTX9pY+yvGyE177b7kfyNrVZs670Om74Qwtz1+9WfYFa/mf0ab+GF8Fa+YFU19ZisSFlw00MXV5/exad1SMqlXu1atU9jqJyIiIjNrKcyNjo4SRRH9/f3TXu/v72d4eHjGMsPDwzMeH4Yho6OjrFhxYsDwPA/P8xrPC4VCK6c5J8YYRooB/bMf2hDHZmrpDQvLBhOalpcMmSnu1HDJ0lyYW20dOeG1J+OL+S/BH/JkfBF7zUCLZ9S8BDCYS7FxbS9XrVuK49jEQHJqLTkNlxMRETn95tTXdvygdmPMaw50n+n4mV4/6p577uHzn//8XE5tzhzboreztVbCK9f2sOLKN1KsBRS8gOHxKm8+3Av7Tjw2NvWOVYM19a/+eCajZgkxNjWTpEYSD5caSWomSYkM4ybLGN2Mm272mhPj5yg5/jF6R0s/SysSQFfK4s3reljT181V65ayYVWOalAfL7jpivX84X/+FJdefOFpOwcRERGpaynM9fX14TjOCa1wR44cOaH17aiBgYEZj08kEixdunTGMnfeeSe3335743mhUGD16tWtnGrLLMtisK8X/usrR1+Zalo6/v9ffe9iO8HFznEBMP7vwH+vH3tMWD3Zvgc/n/HVG+f8c5wLXt+/iZveuelsn4aIiMii0FKYSyaTbNy4kc2bN/Obv/mbjdc3b97M+9///hnLbNq0iX/5l3+Z9tpDDz3ElVdeedLxcqlUilQqNeN7p5VlQaZnfp9ha7sqEREROXNaTh6333473/rWt/jOd77Drl27uO2229i3b19j3bg777yTj370o43jb7nlFvbu3cvtt9/Orl27+M53vsO3v/1t/uRP/uTU/RQiIiIii1TLY+ZuvvlmxsbG+MIXvsDQ0BDr16/nwQcfZO3atQAMDQ2xb9+rg8bWrVvHgw8+yG233cY3vvENBgcH+cu//Mtzb1kSERERkTZkmaOzEc5hhUKBXC5HPp+nu7v7bJ+OiIiIyGnTau7RAC8RERGRNqYwJyIiItLGFOZERERE2pjCnIiIiEgbU5gTERERaWMKcyIiIiJtTGFOREREpI0pzImIiIi0MYU5ERERkTamMCciIiLSxhTmRERERNpY4myfQDOObh9bKBTO8pmIiIiInF5H887R/DObtghzxWIRgNWrV5/lMxERERE5M4rFIrlcbtbjLNNs7DuL4jjm0KFDZLNZLMtqvF4oFFi9ejX79++nu7v7LJ7h4qD6PrNU32eW6vvMUn2fWarvM2u+9W2MoVgsMjg4iG3PPiKuLVrmbNtm1apVJ32/u7tbF+cZpPo+s1TfZ5bq+8xSfZ9Zqu8zaz713UyL3FGaACEiIiLSxhTmRERERNpYW4e5VCrFXXfdRSqVOtunsiiovs8s1feZpfo+s1TfZ5bq+8w60/XdFhMgRERERGRmbd0yJyIiIrLYKcyJiIiItDGFOREREZE21hZh7rzzzsOyrGn/7rjjjmnH7Nu3j/e+9710dnbS19fHpz71KXzfn3bMjh07ePvb304mk2HlypV84QtfaHqrjMXu3nvvZd26daTTaTZu3MhPf/rTs31Kbenuu+8+4VoeGBhovG+M4e6772ZwcJBMJsM73vEOdu7cOe0zPM/jk5/8JH19fXR2dvK+972PAwcOnOkf5Zz06KOP8t73vpfBwUEsy+Kf//mfp71/qup3YmKCj3zkI+RyOXK5HB/5yEeYnJw8zT/duWe2+v74xz9+wvV+9dVXTztG9d2ce+65hze/+c1ks1mWL1/Ob/zGb/D8889PO0bX96nTTH2fU9e3aQNr1641X/jCF8zQ0FDjX7FYbLwfhqFZv369eec732meeuops3nzZjM4OGhuvfXWxjH5fN709/ebD37wg2bHjh3m/vvvN9ls1nzlK185Gz9SW/n+979vXNc1f/M3f2OeffZZ8+lPf9p0dnaavXv3nu1Tazt33XWXueSSS6Zdy0eOHGm8/6Uvfclks1lz//33mx07dpibb77ZrFixwhQKhcYxt9xyi1m5cqXZvHmzeeqpp8w73/lOc9lll5kwDM/Gj3ROefDBB83nPvc5c//99xvA/NM//dO0909V/b7nPe8x69evN1u2bDFbtmwx69evNzfddNOZ+jHPGbPV98c+9jHznve8Z9r1PjY2Nu0Y1Xdzrr/+evPd737XPPPMM+YXv/iFufHGG82aNWtMqVRqHKPr+9Rppr7Ppeu7bcLc1772tZO+/+CDDxrbts3Bgwcbr/3DP/yDSaVSJp/PG2OMuffee00ulzO1Wq1xzD333GMGBwdNHMen7dwXgre85S3mlltumfbaRRddZO64446zdEbt66677jKXXXbZjO/FcWwGBgbMl770pcZrtVrN5HI5881vftMYY8zk5KRxXdd8//vfbxxz8OBBY9u2+bd/+7fTeu7t5vhwcarq99lnnzWAefzxxxvHbN261QDmueeeO80/1bnrZGHu/e9//0nLqL7n7siRIwYwjzzyiDFG1/fpdnx9G3NuXd9t0c0K8Bd/8RcsXbqUyy+/nD//8z+f1oW6detW1q9fz+DgYOO166+/Hs/z2LZtW+OYt7/97dPWfLn++us5dOgQr7zyyhn7OdqN7/ts27aN6667btrr1113HVu2bDlLZ9XeXnzxRQYHB1m3bh0f/OAH2b17NwB79uxheHh4Wl2nUine/va3N+p627ZtBEEw7ZjBwUHWr1+v38csTlX9bt26lVwux1VXXdU45uqrryaXy+l3MIOHH36Y5cuXc+GFF/KJT3yCI0eONN5Tfc9dPp8HoLe3F9D1fbodX99HnSvXd1vszfrpT3+aK664gp6eHp588knuvPNO9uzZw7e+9S0AhoeH6e/vn1amp6eHZDLJ8PBw45jzzjtv2jFHywwPD7Nu3brT/4O0odHRUaIoOqF++/v7G3Urzbvqqqv43ve+x4UXXsjhw4f54he/yDXXXMPOnTsb9TlTXe/duxeoX6vJZJKenp4TjtHv47WdqvodHh5m+fLlJ3z+8uXL9Ts4zg033MDv/M7vsHbtWvbs2cOf/dmf8a53vYtt27aRSqVU33NkjOH222/nV37lV1i/fj2g6/t0mqm+4dy6vs9amLv77rv5/Oc//5rH/Md//AdXXnklt912W+O1Sy+9lJ6eHn77t3+70VoHYFnWCeWNMdNeP/4YMzX5YaayMt1Mdad6a90NN9zQeLxhwwY2bdrE+eefz9/+7d82Bs7Opa71+2jeqajfZv57I3DzzTc3Hq9fv54rr7yStWvX8sMf/pAPfOADJy2n+n5tt956K9u3b+exxx474T1d36feyer7XLq+z1o366233squXbte89+xCfhYR296L730EgADAwMnJNiJiQmCIGj8lTLTMUebQ4//S0Ze1dfXh+M4M9ad6m3+Ojs72bBhAy+++GJjVutr1fXAwAC+7zMxMXHSY2Rmp6p+BwYGOHz48AmfPzIyot/BLFasWMHatWt58cUXAdX3XHzyk5/kBz/4AT/5yU9YtWpV43Vd36fHyep7Jmfz+j5rYa6vr4+LLrroNf+l0+kZyz799NNAveIANm3axDPPPMPQ0FDjmIceeohUKsXGjRsbxzz66KPTxto99NBDDA4OntD9Kq9KJpNs3LiRzZs3T3t98+bNXHPNNWfprBYOz/PYtWsXK1asYN26dQwMDEyra9/3eeSRRxp1vXHjRlzXnXbM0NAQzzzzjH4fszhV9btp0yby+TxPPvlk45gnnniCfD6v38EsxsbG2L9/f+O/3arv5hljuPXWW3nggQf48Y9/fMLQIF3fp9Zs9T2Ts3p9Nz1V4izZsmWL+epXv2qefvpps3v3bnPfffeZwcFB8773va9xzNGlSd797nebp556yvzoRz8yq1atmrY0yeTkpOnv7zcf+tCHzI4dO8wDDzxguru7tTRJE44uTfLtb3/bPPvss+Yzn/mM6ezsNK+88srZPrW289nPftY8/PDDZvfu3ebxxx83N910k8lms426/NKXvmRyuZx54IEHzI4dO8yHPvShGZcWWLVqlfnRj35knnrqKfOud71LS5NMKRaL5umnnzZPP/20ARr/7Ti6jM6pqt/3vOc95tJLLzVbt241W7duNRs2bFh0SzcY89r1XSwWzWc/+1mzZcsWs2fPHvOTn/zEbNq0yaxcuVL1PQd/9Ed/ZHK5nHn44YenLYVRqVQax+j6PnVmq+9z7fo+58Pctm3bzFVXXWVyuZxJp9PmDW94g7nrrrtMuVyedtzevXvNjTfeaDKZjOnt7TW33nrrtGVIjDFm+/bt5tprrzWpVMoMDAyYu+++W8uSNOkb3/iGWbt2rUkmk+aKK66YNj1bmnd03SfXdc3g4KD5wAc+YHbu3Nl4P45jc9ddd5mBgQGTSqXM2972NrNjx45pn1GtVs2tt95qent7TSaTMTfddJPZt2/fmf5Rzkk/+clPDHDCv4997GPGmFNXv2NjY+bDH/6wyWazJpvNmg9/+MNmYmLiDP2U547Xqu9KpWKuu+46s2zZMuO6rlmzZo352Mc+dkJdqr6bM1M9A+a73/1u4xhd36fObPV9rl3f1tRJi4iIiEgbapt15kRERETkRApzIiIiIm1MYU5ERESkjSnMiYiIiLQxhTkRERGRNqYwJyIiItLGFOZERERE2pjCnIiIiEgbU5gTETmGZVlYlnW2T0NEpGkKcyIiIiJtTGFOREREpI0pzImIiIi0MYU5ERERkTamMCciIiLSxhTmRERERNqYwpyIiIhIG1OYExEREWljCnMiIiIibUxhTkRERKSNKcyJiIiItDGFOREREZE2pjAnIiIi0sYSZ/sERETORVdfffVJ37vtttu4+eabz+DZiIicnMKciMgMnnjiiZO+NzQ0dAbPRETktSnMiYgcwxhztk9BRKQlGjMnIiIi0sYU5kRERETamMKciIiISBtTmBMRERFpYwpzIiIiIm1MYU5ERESkjSnMiYiIiLQxhTkRERGRNqYwJyIiItLGFOZERERE2pjCnIiIiEgbU5gTERERaWMKcyIiIiJt7P8HIWLPu466dvoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "axs = az.plot_ppc(\n", + " idata,\n", + " # data_pairs={\"L\":\"L\"},\n", + " var_names=[\"L\"],\n", + " kind=\"cumulative\",\n", + " # backend_kwargs=dict(sharey=True),\n", + ")\n", + "fig = plt.gcf()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "plots.plot_posterior_predictive(\n", + " identifier=\"peak_fit_skew_normal\",\n", + " time=timeseries[0],\n", + " intensity=timeseries[1],\n", + " path=path_result,\n", + " idata=idata,\n", + " discarded=False,\n", + ")\n", + "\n", + "plots.plot_posterior(\n", + " identifier=\"peak_fit_skew_normal\",\n", + " time=timeseries[0],\n", + " intensity=timeseries[1],\n", + " path=path_result,\n", + " idata=idata,\n", + " discarded=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exemplary result with a double peak" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "path_result = Path(\"./paper raw data\")\n", + "path_d = Path(\"./paper raw data/exemplary results raw data/A2t2R1Part1_132_85.9_86.1.npy\")\n", + "timeseries_d = np.load(path_d)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsJElEQVR4nO3deXxU9b0//teZPetkIxuEfRUQEZTFDRURLOLWaktLtbXorUsvV217bW9v6b1WW3/fVnvl1lpr3dDqvbeiVlsU3JEdjCwiggQIkIVsk33W8/vjnM+ZM8lMJrPPkNfz8eChJCeTkwCZ97y3jyTLsgwiIiKiDGNI9Q0QERERRYNBDBEREWUkBjFERESUkRjEEBERUUZiEENEREQZiUEMERERZSQGMURERJSRGMQQERFRRjKl+gYSxefz4dSpU8jLy4MkSam+HSIiIhoEWZbR0dGByspKGAwD51rO2CDm1KlTqKqqSvVtEBERURRqa2sxYsSIAa85Y4OYvLw8AMo3IT8/P8V3Q0RERIPR3t6Oqqoq7Xl8IGdsECNKSPn5+QxiiIiIMsxgWkHY2EtEREQZiUEMERERZSQGMURERJSRGMQQERFRRmIQQ0RERBmJQQwRERFlJAYxRERElJEYxBAREVFGYhBDREREGYlBDBEREWUkBjFERESUkRjEEBERUUZiEENEFCen2nrw+PtfwtHtTvWtEA0JZ+wp1kREyfbf7x3GC9uOw2Iy4NYLx6T6dojOeMzEEBHFSW1rDwDA0e1K8Z0QDQ0MYoiI4qSxvRcA4PT4UnwnREMDgxgiojhpUIOYXrc3xXdCNDQwiCEiigOnx4tWtaGXmRii5GAQQ0QUB43tTu3/GcQQJQeDGCKiOGjs6NX+3+lhOYkoGRjEEBHFgT4T0+tmJoYoGRjEEBHFgWjqBZiJIUoWBjFERHHQ0KHriWEmhigpGMQQEcVBYCaGQQxRMjCIISKKg8DpJJaTiJKBQQwRURzoMzFs7CVKDgYxRERxwMZeouRjEENEFKMelxftvR7t9+yJIUoOBjFERDHSL7oDOJ1ElCwMYoiIYtSgNvVmW4wAlHKSLMupvCWiIYFBDBFRjEQ/zMiibACATwbcXgYxRInGIIaIKEZ9gxiAzb1EycAghogoRo3qtt6qgCCGfTFEicYghogoRiITU5ZvhcWk/FhlEEOUeAxiiIhi5A9ibLCKIMbNchJRojGIISKKkThyoDTPBptZmVDi1l6ixGMQQ0QUI305ScvEsLGXKOEYxBARxaDT6UGXSwlYSvXlJPbEECUcgxgiohg0qlmYXKsJuVYTrCax8I5BDFGiMYghIoqB2NZbmm8FAFjNyo/VXjb2EiUcgxgiohiIc5PK8mwAABszMURJwyCGiCgG+qZewJ+J4Yg1UeIxiCEiioEoJ5XlK5kYNvYSJQ+DGCKiGIhMTKkWxLCcRJQsDGKIiGLQqGVilHKSjY29REnDIIaIKAYNHf4jBwBmYoiSiUEMEVGUZFn2l5Py1MZebuwlShoGMUREUWrv9WhnJJWqI9b+6SRmYogSjUEMEVGUxLbefJsJWRaljMRyElHyMIghIopS3/FqwN/Yyz0xRInHIIaIKEr+RXf+IIaZGKLkYRBDRBSlU209AIByuz6IYWMvUbIwiCEiitLR5m4AwOjibO1tWmMvMzFECccghogoSseauwAAo4pztLdp5SROJxElHIMYIqIo+TMx/iBG29jLchJRwjGIISKKQqfTg6ZOZTpppL6cxEwMUdIwiCEiisJxNQtTmG2GPcusvZ2NvUTJwyCGiCgKwfphAI5YEyUTgxgioigEm0wC/NNJPMWaKPEYxBARRSFUJsbGTAxR0jCIISKKwlE1iBldEjwTwyCGKPEYxBARReGYWk7q3xOj/Fj1+mR4vAxkiBIpoiDmoYcewnnnnYe8vDyUlpbi2muvxcGDBwOuueWWWyBJUsCvuXPnBlzjdDpx9913o6SkBDk5OVi2bBlOnDgRcE1raytWrFgBu90Ou92OFStWoK2tLbqvkogojnrdXtQ5lHOTRodo7AWYjSFKtIiCmA8++AB33nkntm7dig0bNsDj8WDRokXo6uoKuG7x4sWoq6vTfv39738PeP+qVauwbt06vPTSS9i0aRM6OzuxdOlSeL3+Rrjly5ejuroa69evx/r161FdXY0VK1bE8KUSEcXH8RYlC5NnM6Ew2xzwPpGJAdjcS5RopkguXr9+fcDvn376aZSWlmLXrl24+OKLtbdbrVaUl5cHfQyHw4GnnnoKzz//PBYuXAgAWLt2LaqqqrBx40ZceeWVOHDgANavX4+tW7dizpw5AIAnn3wS8+bNw8GDBzFp0qSIvkgiong62qT2wxTnQJKkgPcZDBIsRgNcXh8zMUQJFlNPjMPhAAAUFRUFvP39999HaWkpJk6ciJUrV6KxsVF7365du+B2u7Fo0SLtbZWVlZg2bRo2b94MANiyZQvsdrsWwADA3LlzYbfbtWv6cjqdaG9vD/hFRJQI/n6Y7KDv9y+8YxBDlEhRBzGyLOOee+7BhRdeiGnTpmlvX7JkCV544QW8++67+M1vfoMdO3bgsssug9OprOeur6+HxWJBYWFhwOOVlZWhvr5eu6a0tLTf5ywtLdWu6euhhx7S+mfsdjuqqqqi/dKIiAZ0rMWfiQnGP6HEchJRIkVUTtK76667sGfPHmzatCng7TfddJP2/9OmTcPs2bMxatQovPnmm7j++utDPp4sywFp2b4p2mDX6N1///245557tN+3t7czkCGihAifieH5SUTJEFUm5u6778brr7+O9957DyNGjBjw2oqKCowaNQqHDh0CAJSXl8PlcqG1tTXgusbGRpSVlWnXNDQ09Hus06dPa9f0ZbVakZ+fH/CLiCgRjoZYdCdway9RckQUxMiyjLvuuguvvPIK3n33XYwZMybsxzQ3N6O2thYVFRUAgFmzZsFsNmPDhg3aNXV1ddi3bx/mz58PAJg3bx4cDge2b9+uXbNt2zY4HA7tGiKiVHB5fDjZ2gOg/5EDAs9PIkqOiMpJd955J1588UW89tpryMvL0/pT7HY7srKy0NnZidWrV+OGG25ARUUFjh49ip/85CcoKSnBddddp11766234t5770VxcTGKiopw3333Yfr06dq00pQpU7B48WKsXLkSTzzxBADgtttuw9KlSzmZREQpdaK1Gz4ZyDIbMSzPGvQaNvYSJUdEQczjjz8OAFiwYEHA259++mnccsstMBqN2Lt3L5577jm0tbWhoqICl156KV5++WXk5eVp1z/yyCMwmUy48cYb0dPTg8svvxzPPPMMjEb/kqgXXngBP/jBD7QppmXLlmHNmjXRfp1ERHGh74cJ1aPnD2JYTiJKpIiCGFmWB3x/VlYW3nrrrbCPY7PZ8Nhjj+Gxxx4LeU1RURHWrl0bye0RESWcdmZSiH4YALCa2dhLlAw8O4mIKAJaJqYkeD8MANjUTEwvMzFECcUghogoAszEEKUPBjFERBE4HmZHDMDGXqJkYRBDRDRIHq8Pta1KEDNgJoaNvURJwSCGiGiQ6hy9cHtlWEwGlOfbQl4n9sT0spxElFAMYoiIBqm2RcnCVBVmwWAIPl4NADaenUSUFAxiiIgGqanLBQAhl9wJ3NhLlBwMYoiIBqm50wkAKM4NE8SITAzLSUQJxSCGiGiQmjuVTExxjmXA69jYS5QcDGKIiAapuUsEMQNnYmxmNvYSJQODGCKiQRLlpKJcZmKI0gGDGCKiQRKZmJKw5SQ29hIlA4MYIqJBahHlpHCNvdzYS5QUDGKIiAapSZSTwmVitOkklpOIEolBDBHRIDg9XnT0egAAJWF6YkRjLzMxRInFIIaIaBBau9wAAJNBQr7NPOC1WjmJmRiihGIQQ0Q0CKKUVJhjGfDIAYCNvUTJwiCGiEjn0Y1fYMVT2/qNR/t3xAxcSgLY2EuULAxiiIh01m49jo8ONeHTWkfA21u6lExMSZjJJEDX2Ms9MUQJxSCGiEinV+1jOdXWE/B2ceRAuMkkALCp5SS3V4bXJ8f5DolIYBBDRKQjgpiTfYMYbUfMIMpJZv+PVmZjiBKHQQwRkcrt9cGjZk76Z2IGX06yGHVBDM9PIkoYBjFERKpe3Uh0LOUkk9EAkzrBxOZeosRhEENEpOoJCGJ6A94XyXQS4J9Q6uWuGKKEYRBDRKTSl376ZWLU6aRw5yYJ3NpLlHgMYoiIVPpMTIfTA0ePW/u9KCdFmolhYy9R4jCIISJS9S39iGxMj8uLbpfyvsFMJwGAlZkYooRjEENEpOpxBQ9iRCnJYjIg12oa1GP5z09iEEOUKAxiiIhUvX2yJloQoyslSdLA5yYJIhPDxl6ixGEQQ0Sk6puJOalOKLVEsOhO4PlJRInHIIaISNW3CVdkYsQJ1sU5g5tMAtjYS5QMDGKIiFQiEyMqRv6emMgmkwDAamJjL1GiMYghIlKJ/pXhBVkA/EFMVOUkcZI1e2KIEoZBDBGRqkedJBo3LBcAUN/eC7fXp5WTiiIoJ4mTrPs2CxNR/DCIISJSiUzMiMIsWIwG+GSgob3XP50UVSaGQQxRojCIISJSiSAm22JERYENgHKGkignlUQ1ncRyElGiMIghIlKJIMZmNqLS7u+LaY6inMTGXqLEYxBDRKTq0QcxanPvybYeNEU1ncRMDFGiMYghIlL1qv0rNrMRw9Vy0qGGDrjUbEokPTE2bWMvMzFEiTK4Q0CIiIYAkYnJMhuRo2Zi9px0aG/Ltgz+RyY39hIlHoMYIiKVvyfGgGF5Sv/LkdNdACLLwgDcE0OUDCwnERGpenWZGNETIxTnDr6pF2BjL1EyMIghIlLpe2LEdJIQSVMv4C8n8RRrosRhEENEpNJPJ2VZjCjSBS6RBjGisZeZGKLEYRBDRKTS98QAQKU6oQREU05iYy9RojGIISJSaT0xFiWLoi8pRVtO4p4YosRhEENEpNJ6YtSmXH1zb+TTSWo5iXtiiBKGQQwRkaqnTyZmeEAQE1k5SZSkmIkhShwGMUREANxeH7w+GYA/EzO8MJZyEjMxRInGIIaICP4sDADYLKKxN4ZyEht7iRKOQQwREfxNvZIEWIzKj8YRaibGaJACxq0HQwQxLq8PPjXDQ0TxxWMHiIgA9LqUjEmW2QhJkgAAJblW/GzpWbCZDVp5aLBEYy+gBDI2Q2QfT0ThMYghIgLQ6/EvutO79cIxUT2ezeRPdPe6vf0el4hix3ISERGAHpcaxJji82PRZDTAaFAyOuyLIUoMBjFERNBt67XEL2OiNfdyQokoIRjEEBFBd25ShL0vA+HWXqLEYhBDRAT/tt6suGZieAgkUSIxiCEiQv/DH+NBPFavm5kYokRgEENEBN3hj3GcImImhiixGMQQEcHfE2ONZxCjZmLE5BMRxReDGCIi6Hpi4hjE5NmUVVwdTnfcHpOI/BjEEBFBN50Ux54Ye5YZAODoZhBDlAgMYoiIADgT0BOjBTE9nrg9JhH5RRTEPPTQQzjvvPOQl5eH0tJSXHvttTh48GDANbIsY/Xq1aisrERWVhYWLFiA/fv3B1zjdDpx9913o6SkBDk5OVi2bBlOnDgRcE1raytWrFgBu90Ou92OFStWoK2tLbqvkogoDH8mJn5BTL4WxDATQ5QIEQUxH3zwAe68805s3boVGzZsgMfjwaJFi9DV1aVd8/DDD+O3v/0t1qxZgx07dqC8vBxXXHEFOjo6tGtWrVqFdevW4aWXXsKmTZvQ2dmJpUuXwuv1N78tX74c1dXVWL9+PdavX4/q6mqsWLEiDl8yEVF/vQkIYuwMYogSKqIDINevXx/w+6effhqlpaXYtWsXLr74YsiyjEcffRQ//elPcf311wMAnn32WZSVleHFF1/E7bffDofDgaeeegrPP/88Fi5cCABYu3YtqqqqsHHjRlx55ZU4cOAA1q9fj61bt2LOnDkAgCeffBLz5s3DwYMHMWnSpHh87UREmh61sZdBDFHmiKknxuFwAACKiooAADU1Naivr8eiRYu0a6xWKy655BJs3rwZALBr1y643e6AayorKzFt2jTtmi1btsBut2sBDADMnTsXdrtdu4aIKJ4SsSdGBDHtDGKIEiKiTIyeLMu45557cOGFF2LatGkAgPr6egBAWVlZwLVlZWU4duyYdo3FYkFhYWG/a8TH19fXo7S0tN/nLC0t1a7py+l0wul0ar9vb2+P8isjoqEoERt7mYkhSqyo/7Xedddd2LNnD/7yl7/0e58kSQG/l2W539v66ntNsOsHepyHHnpIawK22+2oqqoazJdBRAQgsZkYBjFEiRFVEHP33Xfj9ddfx3vvvYcRI0Zoby8vLweAftmSxsZGLTtTXl4Ol8uF1tbWAa9paGjo93lPnz7dL8sj3H///XA4HNqv2traaL40IhqiehPQE1OQZQHAIIYoUSIKYmRZxl133YVXXnkF7777LsaMGRPw/jFjxqC8vBwbNmzQ3uZyufDBBx9g/vz5AIBZs2bBbDYHXFNXV4d9+/Zp18ybNw8OhwPbt2/Xrtm2bRscDod2TV9WqxX5+fkBv4iIBisRI9YiE9Pj9sLF85OI4i6inpg777wTL774Il577TXk5eVpGRe73Y6srCxIkoRVq1bhwQcfxIQJEzBhwgQ8+OCDyM7OxvLly7Vrb731Vtx7770oLi5GUVER7rvvPkyfPl2bVpoyZQoWL16MlStX4oknngAA3HbbbVi6dCknk4goIRLRE5NnM0GSAFlWsjHD8qxxe2wiijCIefzxxwEACxYsCHj7008/jVtuuQUA8KMf/Qg9PT2444470Nraijlz5uDtt99GXl6edv0jjzwCk8mEG2+8ET09Pbj88svxzDPPwGj0vwJ64YUX8IMf/ECbYlq2bBnWrFkTzddIRBSW1hNjiV8mxmCQkGc1ob3XwyCGKAEkWZblVN9EIrS3t8Nut8PhcLC0RERhTfv5W+h0evD+fQswuiQnbo970cPvoralB3/9/nzMGlUY/gOIhrhInr95dhIREfw9MfHMxADcFUOUSAxiiGjIc3t98PqUpLTNlJgghhNKRPHHIIaIhjyRhQEAmyW+PxYZxBAlDoMYIhryRFOvJAEWI4MYokzBIIaIhrxel7LDJctsDLtdPFL5DGKIEoZBDBENeb2e+C+6E5iJIUocBjFENOT1uOJ/bpLAIIYocRjEENGQJ3pirHHc1iswiCFKHAYxRDTk9STgBGuBe2KIEodBDBENeYk4wVpgJoYocRjEENGQ15uETExbN4MYonhjEENEQ14iTrAWRBDT4/bC5fHF/fGJhjIGMUQ05PW4EzdinWcza//PkhJRfDGIIaIhL5E9MUaDhDybCQCDGKJ4YxBDRENeIqeTADb3EiUKgxgiGvKcCeyJAThmTZQoDGKIaMhjJoYoMzGIIaIhz7+xl0EMUSZhEENEQ16P23+KdSIwiCFKDAYxRDTk9SZwxBpgEEOUKAxiiGjI0zb2WhLzIzGfQQxRQjCIIaIhT8vEmJiJIcokDGKIaMjTNvZaGMQQZRIGMUQ05GkbexOcieGeGKL4YhBDRENej0v0xDATQ5RJGMQQ0ZDn9CRnYy+DGKL4YhBDREOelolJ8Ih1t8sLt9eXkM9BNBQxiCGiIU2WZfR6EneKNeAfsQaYjSGKJwYxRDSkub0yvD4ZQOKCGKNBQp7VBIBBDFE8MYghoiGtV+2HARLXEwNw4R1RIjCIIaIhrVfthzFIgMWYuB+JbO4lij8GMUQ0pGk7YsxGSJKUsM9TkM1dMUTxxiCGiIY0sa03UZNJAjMxRPHHIIaIhrREn2AtaEFMN4MYonhhEENEQ5p2blICm3oBZmKIEoFBDBENacnKxHA6iSj+TKm+ASIaemRZxs9e2weryYgfLZ4Ea4IOXhyMXvbEEGUsBjFElHRHmrqwdutxAMDeEw48sWIWCnMsKbkX/XRSIjGIIYo/lpOIKOlqTndp/7/9aAuuf3wzjjZ1DfARidOT7MZeBjFEccMghoiSrkYNWM6pKsDwgizUNHXhut9/jOratqTfS2+SG3u5J4YofhjEEFHS1TQrQcyF40uw7s75OHuEHa3dbvzqHweSfi/cE0OUuRjEEFHSidLR6JIclObZ8NOrpgAAGtudSb+XZPfEdLm8cHt9Cf1cREMFgxgiSojWLhc2f9kEWZb7vU+Uk8aU5AAActQTnjudnuTdoEqbTrIkZ8QaYEmJKF4YxBBRQvxk3V4sf3IbPjrUFPD2HpcXdY5eAP4gJjcNghibKbE/Do0GCXk25etsYxBDFBcMYogoIQ42dAAAdhxtCXj7sRYlC2PPMqNQPRQxV31y73Z54fP1z9wkUo96irUtwZkYwH8IZBuPHiCKCwYxRBR3siyjXs227DvpCHifGK8eXZKjnRotMjEA0OVKbjam16P2xCRh4V5BlrILx9HjSvjnIhoKGMQQUdy193rQrWY49p9qD3ifmEwaU5ytvc1qMsBoUAKaLqc3SXepEJmYRPfEAMzEEMUbgxgiiruG9l7t/xs7nGjs8P/+qNbUm6u9TZIk5KhBRLL7Yk53KhNR+TZzmCtjV5CtZGJaGcQQxQWDGCKKO9G4K+izMTXaeHV2wDWipNSVxCDG7fXhQJ1yb1Mr8xP++QrErphulpOI4oFBDBHFXUPfIEbXF1PT1A3AP5kkpGLM+ouGDrg8PuTZTBhVnB3+A2KklZM4nUQUFwxiiCjuRCZGbXPRMjEdvW40qeWb0X2CGDGhlMwgZu8JJbg6e4RdazJOJLHwjj0xRPHBIIaI4q5e7YmZPboIALDvlBIsHFWzMCW5ln49KKkoJ+1RM0TThxck5fMVaj0xLCcRxQODGCKKu3pHDwDg8smlAIDalh44ut3+yaQ+WRgAyLEkP4jRZ2KSQZSTeH4SUXwwiCGiuBPlpInleagqygIA7K9z+M9MKg4SxGg9MckZsXZ6vPi8XilzTR+e3CCG5SSi+GAQQ0RxJ0asK+w2TK1QAoT9J9t1k0n9g5hcqzJinaxMzMH6Dri9MgqyzRhRmJWUz2lXl921sZxEFBcMYogornrdXm0PSnm+DdOGK6PL+085tCBmbLByUpKnk/acEP0wyWnqBaAds9De64GHJ1kTxYxBDBHFlcjC2MwG2LPMmFqpZGL2nWrH0eYBMjFJnk4SxyEkqx8G8E8nAUogQ0SxYRBDRHEl+mHK822QJAlT1UzM4cZOrRckWE9MsqeT/JmYgqR8PgAwGQ3IU79OlpSIYscghojiSmRiyu02AEBpng3D8qza+yvstqDnFInppGRkYnrdXnyhnrKdzEwMANi58I4obhjEEFFciUxMhd3fLDtNt9I/WBYG8PfEJCMTc6CuHR6fjJJcCyrUYCtZxK4YZmKIYscghojiql4NYsry/cGB6IsBgDHDggcx/nJS4kes955MflOvwDFrovhhEENEcVXv8I9XC2JCCQDGhMzEJO8Ua/1kUrLx6AGi+GEQQ0RxVdc+cCYm2GQSAOQlcTpJbOqdPqIg4Z+rLx4CSRQ/DGKIKK4agmRiRhRmoSRXae6dVJYX9OP0PTGyLCfs/rpdHhxqTE1TL8CeGKJ4ijiI+fDDD3H11VejsrISkiTh1VdfDXj/LbfcAkmSAn7NnTs34Bqn04m7774bJSUlyMnJwbJly3DixImAa1pbW7FixQrY7XbY7XasWLECbW1tEX+BRJQ8Hq8PjR39gxhJkvDnW2bjiRWzMLI4O+jHiiDG45Ph9CRuEdyBunb4ZKA0zxqQLUoWlpOI4ifiIKarqwszZszAmjVrQl6zePFi1NXVab/+/ve/B7x/1apVWLduHV566SVs2rQJnZ2dWLp0Kbxef0Pf8uXLUV1djfXr12P9+vWorq7GihUrIr1dIkqi051O+GTAaJBQnGsNeN/ZIwpw5dTykB8rRqyBxE4ofVqb/CV3egUiE8NyElHMTOEvCbRkyRIsWbJkwGusVivKy4P/sHI4HHjqqafw/PPPY+HChQCAtWvXoqqqChs3bsSVV16JAwcOYP369di6dSvmzJkDAHjyyScxb948HDx4EJMmTYr0tokoCbTJpDwrjIbIpn6MBglZZiN63F50Ob0ozk3EHQIfHToNAJg5sjAxnyCMAjUT42A5iShmCemJef/991FaWoqJEydi5cqVaGxs1N63a9cuuN1uLFq0SHtbZWUlpk2bhs2bNwMAtmzZArvdrgUwADB37lzY7Xbtmr6cTifa29sDfhFRcokgpjzK3SuJPj+po9eNjw83AwAWnVWWkM8RTmGOEsS0spxEFLO4BzFLlizBCy+8gHfffRe/+c1vsGPHDlx22WVwOp0AgPr6elgsFhQWBr4KKisrQ319vXZNaWlpv8cuLS3VrunroYce0vpn7HY7qqqq4vyVEVE49e2xBTFiQqnLlZgg5r2Dp+Hy+jB2WA7GlyYo1RMGT7Imip+Iy0nh3HTTTdr/T5s2DbNnz8aoUaPw5ptv4vrrrw/5cbIsByydCraAqu81evfffz/uuece7fft7e0MZIiSTMvE5GeFuTI4bVdMgg5HfGuf8iJo8dTypC+5Ewp0J1l7fXLEZTci8kv4iHVFRQVGjRqFQ4cOAQDKy8vhcrnQ2toacF1jYyPKysq0axoaGvo91unTp7Vr+rJarcjPzw/4RUTJ5c/EWMNcGVwiz0/qdXvx3kGltD1Qg3Gi6U+ydrC5lygmCQ9impubUVtbi4qKCgDArFmzYDabsWHDBu2auro67Nu3D/PnzwcAzJs3Dw6HA9u3b9eu2bZtGxwOh3YNEaUf7QRre3SZmESeZP3RoSZ0u7yosNtSNpkEAGaeZE0UNxGXkzo7O3H48GHt9zU1NaiurkZRURGKioqwevVq3HDDDaioqMDRo0fxk5/8BCUlJbjuuusAAHa7HbfeeivuvfdeFBcXo6ioCPfddx+mT5+uTStNmTIFixcvxsqVK/HEE08AAG677TYsXbqUk0lEaSzYkQORSGRj71v7lVLSlSksJQn2bDM6nB6OWRPFKOIgZufOnbj00ku134s+lJtvvhmPP/449u7di+eeew5tbW2oqKjApZdeipdffhl5ef4tnY888ghMJhNuvPFG9PT04PLLL8czzzwDo9GoXfPCCy/gBz/4gTbFtGzZsgF30xBRasmy7C8nRblELidBh0C6vT5sPKCUqBdPS10pSSjINuNEaw8cnFAiiknEQcyCBQsGXAn+1ltvhX0Mm82Gxx57DI899ljIa4qKirB27dpIb4+IUqS12w2Xumm3ND+6nphETSdtr2lBW7cbRTkWnDe6KK6PHY0CdUKpleUkopjw7CQiigtRSirOscBqMoa5OjjR2NsR5+mk9epU0hVTytJiGkg7BJKZGKKYMIghoriob+8BEP2OGMA/Yh3Pxl6fT8bbn6mj1WlQSgJ4kjVRvDCIIaK4qHcoCy2jbeoFEjOd9OmJNjS0O5FrNWH++OK4PW4sRDmJRw8QxYZBDBHFRb1DycTEcjJ0IqaTDtZ3AABmjy6MuswVbyITw6MHiGLDIIaI4mJrTQsAYOyw6Nf5a5mYODb2ikChOCe6ZuNE4EnWRPHBIIaIYnaqrQfb1SBmSQx9J7m2+I9Yi4VyhdnmMFcmD0+yJooPBjFEFLO/fXoKAHD+mCJUFkS3rRdIzLEDYoy5MMcSt8eMFRt7ieKDQQwRxex1NYhZNqMypscR5aR4HgApykkF6ZSJET0xXczEEMWCQQwRxeRwYyf2n2qHySDhqukVMT2WGLHucXvh9YVeqhkJfzkpnTIxyr2Ik6yJKDoMYogoJiILc/HEYSiKsWQjppOA+DX3pmMmRn+SdTtLSkRRYxBDRFGTZRmvV58EEHspCQCsJgNM6kbdeO2KScdMjNlo0Epn7Ishih6DGCKK2t6TDhxt7obNbMAVZ5XF/HiSJOkmlGIPYmRZ1lb7p1MQA/izMTw/iSh6DGKIKGqvVSulpIVTygJKQbHwTyjFPmbd4fTAo/acpFM5CQAKc8SYNTMxRNFiEENEUfH6ZG20+ppzhsftceM5odTWpQQIWWYjbOb02NYriKMH2nqYiSGKFoMYIorKu583orHDCXuWGZdMHBa3xxUTSvHYFdOahovuBDtPsiaKGYMYIorYl6c7cd//fgoAuP7c4bCY4vejJCeOh0CKIKYgzfphAP/WXp6fRBQ9BjFEFJHWLhe++8wOOHrcmDmyAD9ePDmujx/P85O0pt6c9MvEiEZjHj1AFD0GMUQ0aE6PF7c/vwvHmrsxojALf1wxO+69JrlxPMk6rTMxPHqAKGbxGScgojOSLMto6nThVFsPTrX14LXqU9h+tAV5VhP+fMt5GJYX/5Oh41tOEuPV6ZeJESPW7Ikhih6DGCIKSpZlfO0PW7DzWGvA240GCf/9zXMxsSwvIZ83rtNJabjoThDZoTaWk4iixiCGiIJq7XZrAUx5vg2VBTZUFmThq7NG4OI4TiP1lWON354Y/5ED6RfEFLKcRBQzBjFEFFRLlxMAkG8zYetPLk/a581VR6zjUU5qS+MRa55kTRQ7NvYSUVDNncqTa3Fu/PteBpITx+mk1jQuJxXnKN/X9l4PnJ7Ys05EQxGDGCIKqkXNEMR6MnWk4jqd1JV+J1gL9iwzzEblsEsRMBJRZBjEEFFQzSkOYuJbTkq/TIzBIKFEzXKd7nCm+G6IMhODGCIKSmRiipMcxPhHrGMrsbg8PnS5lMdIxyAGgDaiziCGKDoMYogoqFSVk0QQ09Eb29SOyMIYJCDPlp4zDFomppNBDFE0GMQQUVApLye5vJBlOerH0Y9XGwxSXO4t3oapQUwTMzFEUWEQQ0RBiRHr4txkZ2KUEWuvT4bT44v6cfxHDqRfU6+glZOYiSGKCoMYIgqqRZ3sKcpJ8oi1xV/6iWVCKZ2begX2xBDFhkEMEQWlZWKSXE4yGCTkWGJfeJfO5yYJnE4iig2DGCLqR5bllDX2AvqjB2IJYtL3BGtBZGKaWE4iigqDGCLqp8PpgdurNNWmIoiJxyGQbRmQiWE5iSg2DGKIqJ8WdYNsjsUIm9mY9M8fj6MHxJlEmZCJ6XJ547Lcj2ioYRBDRP1o49VJnkwSxIRSLCdZ+3ti0jeIybEYkaUGiSwpEUWOQQwR9aP1w6QoAMi1KiWgWLIT6XyCtSBJEkrylO8xgxiiyDGIIaJ+xGRSKvphACDXGo/ppPQvJwH+hXfsiyGKHIMYIurHv603uTtihHhMJ2mNvTnpm4kB2NxLFAsGMUTUj2jsTfa2XiHWk6xlWUZbT/r3xAAMYohiwSCGiPpJ5Y4YIPZMTHuvB16fMiKezscOAPpDIF0pvhOizMMghoj6SdXhj4J4Ym9ojy47IZp6sy1GWE3JHxGPBDMxRNFjEENE/YhMTLKPHBBGFmUDAI63dEf18ZkwXi1ojb2cTiKKGIMYIuon1eWkqqIsAMCJ1m7Ishzxx2fCCdaCdvQAMzFEEWMQQ0T9NGuHP6ZmOqmyIAsGCeh1+6LKUGTCCdaCVk7qdEYVsBENZQxiiChAt8uDXrcPQOo29pqNBlTYlWxMbRQlpdYupZyUCZkY0f/j8vjQHsNZUURDEYMYIgrQrE7JWEwG5FhS1xQrSkq1LT0Rf2wmZWJsZiPybMo0Fpt7iSLDIIaIAuibeiVJStl9VBUqzb1RZWIy4ARrPU4oEUWHQQwRBUh1U68Qy4RSphw5IHBCiSg6DGKIKECqd8QIVWoQU9saeRCTKUcOCJxQIooOg5ghqqapCw+88RkaO3pTfSuUZlJ9+KMQS09MpmViSpiJIYoKg5gh6smPjuBPm2qwduvxVN8KxZEsy/ifnbX48IvTUT9GumVi6hw9cHt9EX1sWwYtuwPYE0MULQYxQ1Rju5KB+aK+I8V3QvH08eFm/Oj/9uAHL30S9WNohz+mOIgZlmuFzWyATwZOtUWWjWnVppMyq5zEIIYoMgxihijRvHmokUHMmeRPm44AUDIR0Z4ALQKAohQtuhMkScIIbUJp8EGM0+NFt8sLIHPKSVpPDMtJRBFhEDNEiSDmWHN3xKn6ZEvWFtP1++rxb6/uhcuT3t+PUA41dOD9g/4yUrRPiOlSTgKim1ASpSSjQUK+un8l3WnTSczEEEWEQcwQJZ6oPD4Zx5q7Unw3ob29vx7n/XJjTD0eg+Hzyfi3V/di7dbjeP9gY0I/V6L86aOagN9H+4So7YlJ0bZevapCtbk3ggmlz061A1CCsFTuuYmEyMQ0d7ng9fHoAaLBYhAzBLk8PnTo1psfauhM4d0M7K39DWjqdOGt/fUJ/TwH6tvRpPaCHD6dvt+PUE53OLGu+iQAaNtfo83EiJ6YdMjEaGPWg8zE+HwyfrvhCwDA0rMrEnZf8aYEXIDXJ2vlPCIKj0FMBtl0qAl3vbgbzTHWzfv+kDzcmL5P2g1qA3Jta+RjtpH46FCT9v9fNqZvZiqU57ceg8vjwzlVBZg7thgAcLoz8idDp8eLDrWXJtWNvUDkQcw/9tVj70kHcixG3HXp+ETeWlyZjQYUqf077IshGjwGMRlkzXuH8MaeOvx9X2xZCVEuEA6lcRBT51CCl2hWz0dCX676MsMyMb1uL9ZuPQYAWHnR2JgmXcTBiUo/Seone7SjBwYRxLq9Pvy/tw8CAFZePBbFualtTI4UJ5SIIscgJoN8eVrJEJyI8Qm9bxATaSZGlmWs++QEapoSn7GodyiZmJOtPQnrFeh2ebDzaKv2+y9PdyatmTgeXtl9Ei1dLowozMKVU8u0xWnRvKJvVhfdFWZbYDCkvp9ELLxr6XKhM8y01f/uVP5OFuVY8L2Lxibj9uKqhM29RBFjEJMhOnrd2g+3EzGWVkRTb3m+DYDypB1JgPDm3jr8y8uf4t9e3RvTfYTT0etGlzoq6/L6tNJSvG2raYHL60N5vg0GCejo9WTU5tRnNisNvd+5YAxMRkNMr+j1hz+mgzybWdv1MlA2rsflxe/eUXph7rp0PHKtmTGVpMdMDFHkGMRkiCOn/VmPE1GcJaPXoj5Bz6iyw2I0wOnx4WQEgdHb+xsAJL4hWGRhhESVlEQp6dLJw7SR3kzpi3F7ffhC/XO4eobSyDosN/reinQ5/FFvMH0xz245ioZ2J4YXZOGbc0cm69biirtiiCLHICZDHGnyBwyxZmLEE9WwPCvGDssBABw+Hbj0bufRFmz4rKHfx3q8Pm0EubHDCafHG9O9DKSuTxATzWnGgyGaei+aMAzjhuUCyJy+mFb1z9IgAcXqcrpYXtE3i8mkNBivFsL1xWw90oz/eucQAOCeKybCajIm7d7iibtiiCLHICZD6DMxzV0udLui28YqPh5QNrKOK1WetPV9MV1OD7795+1Y+dxO7DvpCPjYXcda0a4bzz7VlrgDJOv7lI8SMaF0qq0Hhxs7YZCA+eOKg34/0lmTbhzaqPaw6HtiIu3tSbdyEjBwJubdzxtw85+3o9vlxQXji3HtzOHJvr24EcHntpoWHOYmbaJBYRCTIfRBDICIyj99iRHr4hwLJqhP2vrS0LufN2pr21/eURvwse9+HrgILtbS1kCSUU7apGZhzh5RgIJsC8apmalMycSI0kOJbhJH/H+v26f1FA2WCHDT6eBE/2nWgX/+f/v0FG57bhecHh8WTinFUzefpwVymWjBpGGosNtQ5+jFNWs+xt/31qX6lojSXsRBzIcffoirr74alZWVkCQJr776asD7ZVnG6tWrUVlZiaysLCxYsAD79+8PuMbpdOLuu+9GSUkJcnJysGzZMpw4cSLgmtbWVqxYsQJ2ux12ux0rVqxAW1tbxF/gmaLvk2osJaVm3av38SLzoHv8f+zz//B8tfoket3+J8J31CDGYjLEfB/hiHKSuMdEBDEfHFL6YS6eOAwAtHJS36AxXYlpIv123RyrCdkWpaQSaWmiJcjjpZq/nOT/8395x3H84KVP4PHJuOacSjz+rVmwmTOzjCQUZFvwt7svxNyxRehyeXHHC7vx4N8PwJPmx4IQpVLEQUxXVxdmzJiBNWvWBH3/ww8/jN/+9rdYs2YNduzYgfLyclxxxRXo6PCnR1etWoV169bhpZdewqZNm9DZ2YmlS5fC6/U/WS5fvhzV1dVYv3491q9fj+rqaqxYsSKKLzHz+XwyjqpHA0wsU55kY8mA6Js3tSCmQRkr7nZ5tGxLrtWEjl4P1qt7aY41d+FwYyeMBglXTSuP+T7CqVd3xJw3ughA+J4YWZax8bMG7DzaMqjH9/pkfHxYycRcPKEEgD+IOdnW069k19HrTsq5Sj6fjJ1HWwZVMmzWTpwO3IkSbZNoejf29kCWZfzPjlr8+K97IcvAN+eMxCM3ngOz8cxIKpfkWrH21jm4/WJlRPyPHx7Bv7++P8xHEQ1dEf/LX7JkCR544AFcf/31/d4nyzIeffRR/PSnP8X111+PadOm4dlnn0V3dzdefPFFAIDD4cBTTz2F3/zmN1i4cCFmzpyJtWvXYu/evdi4cSMA4MCBA1i/fj3+9Kc/Yd68eZg3bx6efPJJvPHGGzh48GCMX3LmqWvvRa/bB7NRwjx1G2ssGRD9E9WYkhxlrNjpQWOHE+99fhq9bh9GFmXjexeNAeAvKYng5rzRhTirMj/m+winvl15Aj5/TCEApZFYnxXS83h9WP36fnzvuZ245ekdgzrUct9JB9q63cizmjCjqgAAUJhj0Z7A9dmYxvZeXPzwe/jOM9tj+ZIG5R/76vHVP2zBr/7xedhrRU9M38xJqJ0jXp+MfScdIV/dN6fRkQPC8IIsSBLQ4/bijx8ewY9f2QMAuGX+aDxw7bS02GcTTyajAfdfNQX/9Y2ZkCTgxW3H8eYelpaIgonry5eamhrU19dj0aJF2tusVisuueQSbN68GQCwa9cuuN3ugGsqKysxbdo07ZotW7bAbrdjzpw52jVz586F3W7XrunL6XSivb094NeZ4oha6hlZlI1RxUrPRrTBg093NktxjgVWk1F7zMONnVod/qrpFfja7CpIErDlSDOONXdpQczlk8swQk3xB7uPA3Xt+I+/fRZ2ORmgTNdc/dgm/Ocbn/V7n8jETC7PR5669yNY5qfL6cFtz+/Cs1uUrbWdTs+gxr/FaPW8ccUBr+THB5lQemNPHVq73djyZXPCszGiqXj38dYwV0I7gqKkz3bakhBj1i/vqMXSxzbh8fe/7PdYsizjZJvyPR9ekBX5jSeIxWRAhbrT6KF/fA5ZBlbMHYWfX31WxhzwGI1lMyrx/UvGAQD+9ZU9Cd9aTZSJ4hrE1NcrZYeysrKAt5eVlWnvq6+vh8ViQWFh4YDXlJaW9nv80tJS7Zq+HnroIa1/xm63o6qqKuavJ12IjMDYYbkYoZ7qG20Zx9HjhthrV6i+2hYlpT0nHFqg8pXpFRhekIULxytllqc/PoqtR5oBAJdNKR3wPv6/tw7izx/X4AV1Ff5AXtpRi70nHXhh2zH4dAv3et1etHYrK/Ar7DaM0JUU9Brae3HjE1vw7ueNsJoMqLArT3b7TwVOVQWzSS0lXaT2wwjjSkVzrz8TI0pqPlmZaEok0ZdyuLEz4HsSTHOIaaJQY9YiMPr0RFu/xzrd4YTT44NBAirTKIgBoP35A8A3zq/CL5ZNPaMDGOFfrpiImSML0NHrwT+/9An7Y4j6SEghue8PF1mWw/7A6XtNsOsHepz7778fDodD+1VbWxv0ukwkMjFjh+UMmAEZDPGkl28zadkHEcQ8t+UoetxejCjMwrThSrnopvOUYPDZLUfh9soYXZyNsSX++2ho778r5kCdkgXbe3LgQMLnk/HSjuMAlEkafeOm2M5rMxtgzzJjpDqh0rcv5tZnd2D/qXYU51jwl9vm4qrpysK3/acGzsT1uLz45HgbAOCCccUB79N2xagZkdMdTuw45u+zOZbgV8QtavDW6/ZpmZFQQmdigvfEiL9Lx5r7fw3ie1thz0q7HpNz1HLf12aNwC+vnX7GlZBCMRsN+K+vz0SezYTdx9vw6MZDqb4lorQS159U5eVKs2ffbEljY6OWnSkvL4fL5UJra+uA1zQ09F+0dvr06X5ZHsFqtSI/Pz/gVzrafLgp6BK5gRxRzygaV5KL4WoGJNpdMcEaN0X5REwDfWV6hRYsXnFWGQqzzRDrRi6bXAZJklCYbUaWOg1Sp9sV4+h2a48TLpBQylT+J9OD9f7mb/EYFfYsSJLkn1DRBRDHm7ux72Q7TAYJ6+64AOeOLNSCr3CZmJ3HlKMGKuw2jCnJCXhf34V3b39WD/26lUQt3RNEJgYInBoLJlRPjD8TE3hOljjv6nhLd78sjwgiR+qyHuninism4o27L8TDXz17yAQwQlVRNn51/dkAgP9+/zCqa9tSe0NEaSSuQcyYMWNQXl6ODRs2aG9zuVz44IMPMH/+fADArFmzYDabA66pq6vDvn37tGvmzZsHh8OB7dv9TZTbtm2Dw+HQrslEzZ1O3PL0Dtz+/M6wr7D1/OWkHNizzMi3Kf0h0eyKEU+Q+iBmgjrxJIhsBgBYTcaABWILpyhlPkmSdCUl/30cbPAHIjVNXWjvdYe8lxe3Hw/4/Re6jxU7YsrylSfjkcXKE6s+gPj4S6UcdO7IQu39UyvtAIDPTrUPWIr5+LBSGps/rqRfdk8bs27qgtcna6UkMbZ8vDmx49eiuRZQpsZCkWU56J4Y/e/1Z0C1drm0Ep3T40Njn1LT8Wblz1HsZUknNrMR04bbh0QJKZivnF2Bq6aXQ5b9pU0iiiKI6ezsRHV1NaqrqwEozbzV1dU4fvw4JEnCqlWr8OCDD2LdunXYt28fbrnlFmRnZ2P58uUAALvdjltvvRX33nsv3nnnHXzyySf41re+henTp2PhwoUAgClTpmDx4sVYuXIltm7diq1bt2LlypVYunQpJk2aFL+vPsle//QUXF4ffDKwo2ZwY8A9Lq8W8IxVn1xjKSnpt/UK4klbeewsnD3CHvAxXz9vJAySEvjMVsedxbXKfeizKYHZl89CZGOaOp14e7/yw/iacyqVj9U9YYttvRV25XMEWz0vFtVdoPbtAMDYkhzYzAZ0ubzaWHowm9UAaH6fUhIADC/MgsVkgMvjw/5TDmz5Ugl4bpytlNaClWLiSTReAwNvDu5yeeFUm4xDZWKadIHKkT6njvfNKKVzJoaABZOUFxC7j4Vv+CYaKiIOYnbu3ImZM2di5syZAIB77rkHM2fOxL//+78DAH70ox9h1apVuOOOOzB79mycPHkSb7/9NvLy8rTHeOSRR3DttdfixhtvxAUXXIDs7Gz87W9/g9HoX1b1wgsvYPr06Vi0aBEWLVqEs88+G88//3ysX29K/XW3f6HfjkHuMhHp/4Jss5Y9iaW5t6WzfyNojtWkTaNcpSslCZPK8/CXlXPxl5VztSV3yn30D6b0mRgA/Y4tEP666wTcXhkzqgpw7TlKpueL+v6ZmHK1UVe/el6WZfh8spaJuXCCPxAxGQ2YXK6UlPaFCKAc3W7tvvQBkGA0SBirlpie+PAIPD4Zk8vzcInaAJzIcpIsy1rJDxi4nCT6YbLMRmRbAk9tHqbLxIijB2r6BDHHmoMHNVUMYtLSrFHKMMSnJ9oGtUKAaCiI+Lz6BQsWDHgeiyRJWL16NVavXh3yGpvNhsceewyPPfZYyGuKioqwdu3aSG8vbR2s78C+k/4n1Z1HB/dqShz8qO/biCUT09Id/IC/r5xdgZe2H9caefuaM7Z/xiJ4JkYJRMYNy8GXp7uC9sX4fDL+opaSlp9fpZWzjjR1wu31wWw0oE4drxbTRuJzdTo9aO1241RbD9q63ci1mnD2iIKAx582PB/VtW3Yf8qBZTMq+33+rTXN8MlKeU4ESX2NG5aLz+s7tJHzxdPKtSf342oglYjSRofTA7fX/+/rUENHyM8l+mFK8vrvdBHlJJfHhw6nB/k2s9bUK/TLxDCISWtjS3JQkG1GW7cbn51q13YbJcKbe+pwrKUL379k3JAt4VFmSK8RhDPYK2oWZrb6aupgQwcc3aH7RQStH6YksOQDRBnEhBjJ/clVU/DpzxcFlJbC6RtMybKMz9Ug5oZZIwAEn1DaeqQZR5u7kWs1YenZlRhekIUcixFur4yjarbA3xOjBBk2s1Hrj6lt6dbGo+eOLeo3SSP6YvafDJ6J2Xw4dClJEGcoiXh9ybQKVBUpS9e6XV6tLBdvIlNmMRlgkID2Xk9AX4ueyMT03dYLAFkWI3LV3TqipCQyMeXq91RfFnN6vFoJT5TuKL1IkoRzRyo/P3YlsKTk88n48V/34OH1B7V/z0TpikFMjGpbuvHNP23V+iaC8Xh9WPfJSQDA9y4aq5Uqdh0PX1LSj1cLMZWTBjjgL9JXXH2DqTpHLzp6PTAZJFyjloi+PN3Zb4pKNPReO7MSOVYTJEnCxHKl3CjKUf6eGH+mRDy5Hm/p1o4LCFYOmiaCmFOOoFnDzeqf1QXj+n+sIE6zBpRXwBPLcmE1GbWla4nqixGZsmG5Vi0jEqovRgRSJSHOORJvF7tiREC8YFL/stjJ1h7IslKaCvV4lHqipLRrEIsQo1Xf3qstqgzV00aULhjExOh/d53Ax4ebsea90PsbNh1uQmOHE4XZZlw2uRSzRys/iHYMoqQkXj2PGxafcpK2Vj4OT1Ri3LuhoxdOj1crJY0dloPhBVkozbNClv17YwBlQuYttaH3G+eP1N4+qUwJYr6o74Db65+c0Zd7Ruqe1LerjdEXBgliJpbnwmSQlLJTn5OwG9t7caixE5KkbOoNRZ+RunJauRbg6XtzEqFFNzItThgPGcQMkIkB9OcnueDzyahpDh3EiIZpJdvE8kG6EpmYwTT3/mNvXcC/vcHS90717XEDlIzryzuO41CQ9xElG4OYGIlsyO5joZvtXtmtZGGWzaiExWTQJnzCHVQoy3LAtl4hll0xocpJ0SjOscBmNkCWlV0xIvU8UQ1Ipg1XMiL6XqDXqk/C7ZUxtTJfK/voP+ZgQwdOdzghy4DJIKFE9wQttra+Vn0STo8PZflWbVGfntVkxAT18fb3KWeJLMzUynwUBMlGCWOHKWdKAcAS9bBLABiljnInLBOj2+MzLkwQE2pHjOA/P6kXpxw9cHl8sBgNmDe2RPtcHeoIvAhoOJmU3mZU2WE0SKhz9A64OXrLl834/gu7cfvzuwbsYQxG3zsVLAh6/4vT+PFf9+L+V/ZG9LiUfLIs4+976xJ6UG+qMYiJkciG9Li9QSdx2nvdWubh+nOVPhFxKvOntY6QBxoCymRJh9MDg+R/8gQQ9a4YWZb9jb1xCGKUXTHKfZ1s69H2vEwuDwxi9H0x/6f2Bn1N7ZkRJqkf80VDp1ZKKsu3BSw2E0+wR9UA4oLx/Xe8CFMrg08o+UerQ5eSACDbYsIvrpmGH145CdOH+4Mtcc7UsZbE7IrR/nyyLdoSwtBBjJqJyQ2fiRHB8KjibNh1k24iGDvBpt6MkG0x4awK5e/2QH0xr396CoASnEaasdUftxGsJ2aXmkEeaIWBXpfTE9FeLIqfncdacccLu/HVx7fA0RO+BzMTMYiJkT6I2B5k98vf99TB6fFhfGmutn9ldHE2inMscHl9IUeQAX8Pw4jCbFhNxoD3RVNS6nJ5tcMLQ5UgIqXvzxE/8CapI87TRCChfo0H6tqx72Q7zEYJy84ZHvA4YkLpWHOX1tzbd3KoqjBwCVuwUpIgPvdnus29sizrltyFLiUJK+aOwp2Xjg8IlGItJ3U5PXjnQAP+843P8H+7TvR7vz4TI7JJh0KWk8L1xPjPTxIlAjHlNlI3aaX/L5t609+5IwsAhD4g1OP1Yf0+/6nXO48Nbp2DoC8nne5wamVLQZy71dTp6nfkSDD/tHYXLnn4vYADVSk5xIuU+vZePBDkkN0zAYOYGLi9Pm0UGAi++0WUkm44d4T2ZChJ0qD6YkRTnb6pVxDBQ20EaULRb2EzG5BlMYa5enDEfdQ0dWtnDfXNxBxq7ESv24u/qk/al08u65cJGpZrRWG2GT7ZfzBjvyCmT5YgWFOvMDVIKet4SzdOtvXAZJBw/piiUB86oFFF0ZWTPvjiNG56YgvO+Y+3ceuzO/HUphr8+K970OMKfBLQ9yyJPqjTHc6gr6Kau4Jv6xX8mRinViIYoz7mqD4bkLnoLnOcO2rgvpgtR5q1zcwAsL0msiZgsdZB0B8HIssyPtUde9DgCD45Jxxr7sJHh5rg8ckJmahye339/g2Rn/4Ik//ddQLvfh7ZkTeZgEFMDOraeqHfbL+9piVg1X2dowfb1cBGbKUVzhugL6a504n7X9mL/3xTiZyn6XpHhGgyMeJJL15ZGP19bDp8Gi6vD9kWo7Y4r8JuQ3GOBV6fjP2nHHi1WgnovtqnlAQogZ3oi/nwCzWIyQ8MYsrybbCo49QTSnO18etgplTkQ5KUVyBNnU74fDKe+PAIAGDmyIJ+y+EGSzzJN3Y4B/3Ds7G9F7c9txPbalrg9sqoKsqCxWiA1yfjlCPwz09s6y3OsSDPZta+B8FKSs2D7Ilp6nQGnL8F9A/GjjeznJQpxITS/lPtQf8OvrlHycKIf4fheu/0et1e7WeK+DwHdEHM0eZutPf6+/D6/v3t6409/oxQ32WL8bDyuZ2Y/6t3+h10SoqWLiWYFUem/Otf9w5qtUcmYRATA9EsNao4G9kWI9p7PQHd/OKHyexRhagsCCyFaM29x1q1wMfnk/Hs5qO49P+9j79sPw5ZVoKf2y8Z2+9zRzNmHezwx1iJ+xAZj4lleVofiyRJWkZkzbuH0dTpQkmuBZeo0zF9ib4Y8QOpok8mxmiQtKbmgbIwAJBrNWGM2r9SfbwNq16uxovblNHub80dFdkXqVOQbUae2o802CzY79//Ek6PD2ePsOP9+xbgox9dhtElSrDQtzmzuc8IvCizHW4M7E3w+vz9TaGCUv2ItShNikzMSPV7c7ylC45ut/bElI7nJlGg4QVZKMu3wuOTsUct7Qhurw/r1R68+6+aDEDJhLYOcq+RssgRyLOZtNPd9UeJ9P18dZEEMafjG8T0ur348IvTaO12Y9uRyEpmQ4X4c//uBWMwdlgOGjuc+MXf9qf4ruKLQUwMxCuWUcU52qsWfUlJ/AO+OsjW2KmV+bCZDXD0uHH4dCc6nR7c9vwu/Pz1/Wjv9WBKRT7+5/Z5+N3XZyLPZu738YNZeNfp9Gg9MEBigpjhfYIzUUoSRG/KewdPAwCumzm833I6QWRihGDbdM8fXQRJUjYMhyMCqH/5n2q8/ukpmAwSfnvjDG2HTTQkSfKXYgZRUqpz9GjB0w+vnITRak+KCGr7BjEi/SuyK+NCNPe2drsgy4AkAYXZ/f9+ALqTrDud2itmsaNIP2UlgrGSXEvUGSpKHkmSQu6L2fxlM9q63SjJtWDx1HJtem/nIEs52l6qkhxMURuI9c29fU/QPtUWuMJA78vTnQHTTfHOxBxu7NQy4cGWapL/RVFFgQ3/72szYJCAVz45eUaVlRjExEBkQaoKs3C+mlnZpjb31rZ0o7q2DQYJWDK9vN/Hmo0GzKxSfhC9svskbvj9Zmw80ACLyYBfLJuKN+6+cMC+jXDlpBOt3Zjzy42488Xd2tviOV7d9z6EvoGIfrIH8G/yDWZSnwCobyYGAH5xzVR8+MNLtXLcQMSEUkevB9kWI5665TxtQiwWoqR0bBDNvf/93mG4vD6cP7oooBFZBDEn+zwJiL4lcUDn+BBj1qKUVJhtgSlEUCjKSW6vDFkG8m0mLYAVX8Opth6t1MRSUuYItS/mzT3KVNLiaeUwGQ04b3T/F1cD+VK30kH8ezxY3wGvGi3sOaEEC+JF1ECZmDc+VV7Eib/DNc1d2uPEg/7U+4EGJIYyfXn63JGFWKFmocWfzZmAQUwMRAAxojBbCzi217RAlmW8qZ65M2dMMUrzgvduiB8wf/jgSxxs6EBpnhUv3zYXN88fDaMh+OiwIMoqLV0udDn774p57/NGdLm82PBZg/ZqPxGZmJJcC6y6QyH7ZWJ0Qcz04XbtcMZgJpYGfmywnheb2TjoJ1vxZ1KcY8FfVs7VDnCM1cgitRQTZsT0RGs3Xt5RCwC4Z9HEgCmn4UEyMb1uL7rUHociUU5SnwD6TiiJkttA23VtZqNW+gKUJyZxD6V5VtjMBvhk5RgIgJNJmUQ09+461qrtgXF5fHhrv/IK+yvTleyvCPYjPXB2bEkORhUrJ8I7PT4ca+6CWzdNuXiq8sKs3hE8EyPLMv6mBlS3XTQWZqMEl8c34G6bSH2hO/V+78ng27mHur4b2sV5W40dZ04PEYOYGIg0/IjCLMyoKoDFaMDpDieONXfjDfUf8NIZocses3XZhLNH2PH6XRdipvoKKxz9rphgpyrrp57+sU+pkWv9FnEMYpRdMf6SUt9syojCLNizlHJHsIZePXu2WTsfSZIQMvgbrHNHFuJ/bp+H9asujutheX0ne0J57J3DcHtlXDC+GHP7HKBZWaB8bfof6uJVk8kgIT9L+bMVr2JPtvUENHE2hdnWKwzTTS6N1R0iKkmSlo3ZdEhppOZkUuaYWpkPi8mA1m43fvnmAbR0ufDxl01w9LgxLM+qBfAiiNl7wjGoRnT9FJvRIGmbtD+v78DB+g44PT7k2UyYP175+xyqnHSwoQOHGzthMRqweHq5tl8pniUlfSbG0eOOaoP5mU7LvqsvdsTP1MaO0GXATMMgJgb+TEwWbGYjZlQpWYeXd9Zi38l2GA0SlkwLHcTMGVuEhVPK8K25I/E/t88LeaJyKGLjbbDpA/04oziJORHlJMBfUirJtfZbvCZJEv5l4QQsOqtswFKSIMpRJblWWEyx//U8f0yR1hsSL4MpJx1r7tIW+91zxcR+76+098/EaCWiHIuWMSlWR89lGQF7NsJNJgkluq+976i+llHSFt2xqTdTWE1G3DRbOXH+T5tqcNGv38Uv3zwAALhqWrmWyR1RmIXyfBs8PrlfP0swR7RMjBI8i8zp53XtWinp7BF2rRwaqpwkyhUXTxyGfJtZ20+UiCBGTCwmuy/G6fEGTKOmG7fXp61mEJkYrU+OmRhyeXzaZlnxJC5e/Tz1UQ0AZYJmoNKN1WTEn26ejQeunQ6bOfK9LRdOUHosxF4V4VRbD0629cAgKRmNXcdaUefo0TIx8SwnAf76+KTy4Cdg33LBGPzx27O1U5UHIl759R2vTiciiDnR0hPyh9gfPvgSXp+MSyYOw6xR/ft3tMZeR6/2GK26bb16E9Qym74vJtyOGEGfiRlTEvjno98CDbAnJtP8xzVT8dTNszG1Mh9dLq/29+MrZ/sHCQJ3Ug1cUmrtcqFNHb8VQYfIrH5e36Hth5kxogAVahDe2u3ul+GRZVnLRF+tZqJFAB2vIKbL6dFeRF4+pRRA8oIYt9eH37x9EFP//S387LV9Sfmc0RB/lpIE7YiVUjWIae12Bwx9ZDIGMVGqcyin/trMBq0v4fwxSorVpZ6htHQQEzSxEFtnt3zZHNAwJyYRplbaMVutnf9jb702bhfu1XukRKlm7pjwW3DDOUfdRhrsTKR0UWG3wWSQ4PL6A1k9n0/G22pvwm0X9x+PB5TJK0lSgmERXIbqWZqoBofilTCgy8SECUj1WagxJX0zMdkD/p7SmyRJuHxKGd64+0I8sWIWzh1ZgCunlmn/5gXx4ipcECOW3FXabdoyzMkVuiBGHa+eUVWAfJtJ2z3S99/A/lPtONrcDZvZgIVTygD4S5nx2toresSG5Vlx0QSl1y0Zzb1HTnfiq49vxmPvHobHJ+Mv248PakoxFcTPk4Iss5aZK8g2w2xU/j/W3Tp1jh78+2v78N7njbHdaIwYxERJ39QrUv/njizQDg00GyVceVb/qaR4mj7cjjyrCe29noB/wLvUH1azRhXiqulKIPX3vXW6J8n4lle+NmsENt5zMe64dHzMj7VkWgWe/PZs/GzpWXG4s8QwGQ1a9ilYX8xnde1o7nIhx2IMOUVlNhpQlhfYFxPqhHFxYOOHh05rb/Mf/jjwn6W+8bdfEKPLxJgMkvbqmjKLJEm4cmo5XrnjAjyxYnbAeWMAMFvNBO4+1gpPiENqgcDJJEGUk463dGvlmxkjCiBJkjY9WNenWVcMNVw2uRQ5avZVZAHjlYn5QjtsNlebgNxzIrHNvS9tP46v/NcmfHrCgXybCRPLcuGTgT9/XJOwzxmLliA9kJIkadnZWJt7Pzh4Gs9tOYbH3j0U0+PEikFMlE7omnqFPJtZ61O5eMIw2EPs74gXk9GAuWo25uMv/SUl0dR73ugirSdn57FWdKpTTH3LFbGSJAnjS/PCTlQNhtEg4Yqz+h9LkG60ZXFBXoV98IUSbMwbVzxgX0/f5l4tyOzz53Ph+BIYJKWcpAU8XeGnk5T3Kz+w9K+uhVG6zMvwwqy4/PlR+plUnoc8mwldLm/QAx0FbTJJ1ztVlGPRmu19MlCWb9V69/QlUT1xQORlk8u0t4kA+mRbz4CH3g6WCKgmluVhYnkuzEYpYc29Xp+M1a/vx7++shc9bi/mjyvGW/9ysfZC63921sa8Bbe6ti3s4sBI6cer9eLVFyN+zl0ysTSmx4kVg5go1bb4m3r1vjZ7BEwGCd+5YExS7kNs1dysHmzY0evG5+qGzdmjC1Fut2mLsYDAyReK3ki1CTbYadYfqv+4Lw4z0u3fFaMGMSFOGLdnm7WSnXjscCdYCyKonh0kIzSiMFvLHHK8+sxlNPiX4wU7pFbQJpP6ZOwm6dYinD2iQPv/YJkYn0/GZ+qCu2nD/R9XkmtBntUEWQ491SfLMnYda8F//O0z7ApzaOVBXRBjNRm13p1498V0OT247bmdeGbzUQDKwsq1t85BhT0LF44vweTyPHS7vPjLjuNRf47DjR24/vcfY+VzO+N014q+27+FYXGYUPJ4fVovZqgN7MnCICZK/kxM4A//b88bjS8eWKI13Saa+Dw7jrag1+3FJ8fb4JOVSROxZ0WUlIDAyReK3ih1sudon0xMp9OjTYZdPGHgf9z+XTHKD5OWASaOxGOJklK4E6yF6SPs+PCHl+Lhr57d730Wk0ErIbGp98wmyprr99eHLLkcCVJOAoApurUJ5+hWFYi/O/pMzInWHnQ6PbAYDdq2aUDJ1ooMz5E+xw84PcrhsMvWfIwbHt+CP39cg1ue3oFjA+xh0mdiAP9SzXgGMQ3tvbjxiS145/NGWE0G/P6b5+LOS8cHHKty64XKi9VnPj4adaPsp7UO+GTl6JZ4ngEVqgcyHpmY6to2dPR6UJht7rfQNNkYxERJP17dV9+adCKNG5aL0jwrnB4fdh9r1Zp6Z+smYq7SbQyO93j1UCVWsn/4xWmtTAcoTdYen4yRRdnaEQOh9D16oO9iKj3xamfToSZ09LrRrU6EhMvEAErvS6jpN9HMy/HqM9uyGZWwmAzYXtOCtz/rv3Le65O1w0DH9vl7K5p7AWW8WhCZmHpdGURkYSaU5fY7XiTYmLWjx40lj36Ee//3U+w96YDFZMDwgix09HrwT2t3By09ObrdaGh3ap8H8C/VHKi51+nx4umPa0Iu6NOTZRkrntqG/afalWWZt80NeDEoLDunEsPyrKhv78Wbe0+Ffdxg9N+PUCeTRyPUzxMxoRRLT4woJV04YVjKy9AMYqIkgphUp+ElSdIOQ9x0uEnbGaMvIVXYs3CuOvWT7r0mmWL+uGKMHZaDjl6PtpUX0JeSwmfi/D0FgeWkYIHmjBEFsGeZ0d7rwbvqNIDVZECOJfLRfL2vzR6BccNycMWUsvAXU8aqKsrGbRcpk3IPvPlZv+DgZGsPXF4fLCZDv8NqJ5XpyknDC7T/r9B2xfiDAhHEnFXRfzO3aO49optQevWTkzjS1IXCbDN+eOUkbL3/cvz1+/NRnGPBgbp2/Nur+/pljr5QD0OttNuQr54rp8/EhMo0rd16HL/422f4zzc+C/p+vf2n2vFFQyeyLUasu+MC7ZiHvqwmI26ZPxoA8OSHNVE1FoupMKD/WVixCDXtGI9MjL8fJrWlJIBBTFScHi8aOsSOmNS/ghVBzIeHTmsLrfpOxVw3Uzn0sG+9m6JjMPhTyU9/XKNNfYhyT7hSEjBAY2+QEpHRIGlnL72y+yQApWk31tLg9eeOwDv3LsCEPmde0Znn+wvGoSzfitqWHjy1KXCi5kv1iXRMcU6/V9aTy/PwrbkjsWrhhIBhhUp7/63Tn51Sg5jKIEFMkF0xf1UXQt592QTceel4FOVYUG634bFvzIRBAv5v14mAFwmArpSkK3NNKs+D2SihrTt0c+8OtR9o85dNYZfUvXNAeaFw4fiSgCm+YJafPxI2swGf1bXjjx8eGVSmR09fXtt1NPFBTKyZmKZOp7bu4eIktU0MhEFMFE619UKWgSyzMS0yGxeoK8D3nWxHt8uLfJtJO3NH+OacUfjjilm4d9GkVNziGemGc0egKMeCE609eGt/A441d+FYczdMBgnzxoXfmSN6Ypo6Xeh2efzL7kL8nRLZnY/UQClcPwyRXo7VhPuXTAGgHEyqf7KtOd1/MkkwGCQ8cO10rFoYuHlaZGLaez3a+W0HBsjEjO1TTjrU0IE9JxwwGSQsO6cy4Nr540tw35XKz6p/f31/QJnIP17tD2KsJqP2+1AlJfECr7Xb3e8ssr7EKc9ikd5ACnMs2vbkh/7xOeY+9A4WPfIBfvWPz9Ht6n+unZ7PJwcEdXtOOuD0xD69BQQfsQb8mZimKIMYcUzJWRX5KE2DpaQMYqKgH69OhybZCntWQB171qjCfn05BoOERVPL0yLoOlPYzEZ8Sz0V9smPjmilpHNHFSLPFn683p5l1haGHajrgMhEB+uJAfzTTuJF5GD6YYj0rjmnEueOLEC3y4uH138OWZbR1OnEJ+oTfCSZ2lyrCXnqHpg6Ry8c3W5t0m5y0HKS8tjNXS44ut34q5pRXDBpWNDN0/908TgsnFIGl8eH+/73U7jVbKc4+HFin+zhQM299Y7egKV822qaQ35djR29+FTNNFw6aXDjw/dfNQX/snAiZlQVQJKUe/zDB1/i/3adGPDjTjl64PT4YDZKKMw2w+XxYd/J9kF9znBCjViLwON0hzOq8pdWSkrxVJLAICYKAzX1poooKQHBx2kpMVbMHQWLyYDq2jY8qR43Mdg6sSRJWv+BePWYbzP1a4gUKuxZARk2NmlTpCRJwuplUwEAr3xyEuf8xwbMfmAj/vap0pQ6blhkm7Ir1JJonaNH64fRH/qql2M1aTtnDp/uxLpPlCf4G84NfqaawSDh4a+ejaIcCz6v78AfPzwCQD+ZFHiv0wYIYqprA8s0246EHuF+/3PlSfrsEfZBZxpsZiP+eeEEvHbnBfjkZ1fgG+crmZmdYcpDopQ0sihbO54kHs29siyHHLEWGVyX7mylwfL5ZH/f3yBK5snAICYKIhOTTmOpoqQEoN/acUqcYXlWXHeO0m8k9l9E8o9bBDHiB2+47Ip+9wwzMRSNs0cU4OvnKU+yjh43JEl5El16dgWumBpZg7cYs65r6x2wqVcQ2ZgXth5DQ7sT9iwzLhugZFOUY8HPliolsN+9cwg7jragucsFSep/NMl03YRS3wyDyDSJj9lW0xwyC/GOWkq6bHJ0S9wKsi34ynSlPLY7TKOuf8FgrnbG1a44BDHdLq828t13xNpqMqJA7W2KtC9m/yn/NvJZafI8wyAmCumYiZk3tgS5VhMKdIvRKDm+d5F/sWFxjgVTgzQ1hjJcfSUrMjGFYbY864MY9sRQtH5xzVQ8+93z8Y9/vggH/mMxPvzRpViz/Fxt2mewtOZ0R4/W1DtlwCBGCSLWVSulpGUzKmE1DTxhd+05w3HxxGFweXy444XdAJSp0GxL4NLOyRV5yLYY0drt7leSqT7eBgC4eZ6SOW3qdGkndus5PV58pPZ8XD45+om9GVV2SJLyXDHQUjkxqTV2WI4WFOw81hrz8QmiH8ZqMiAryHoFcfRApBNKH3yhNDzPH18y4DbyZEqPu8gw+nOT0oU924xX75yPV74/P6oTsSl6E8rysECtD184oSSiPUGV6itZ0WgY7lyrOWOKYFV/eMT7IE8aOqwmIy6ZOAxTKvJj+nlRnu/PxGhNvQME8ePUxmHxHH39ucPDfg5JkvDLa6chy2zUnnT79sMA/q8JAN7+rF57u9cna5nO88cUY6b6Ii9YSWnbkRZ0u7wozbNG9GKkrzybGRPV0+d3H2sLeZ0IpMaW5GD6cDvMRglNnU5tI3y0RBBTHGK5aWm+mFAKDLBeqz6J7zy9HT9/bR+e23IUHx9uwvHmbnT0uiHLclqNVgvcPx+F2pb+5yalg/GlHJNNlV8sm4r/eucw7rosskMwRTlJnEIers/FZjbimnMqse6Tk5hZlR7pXBq6RE/M8ZZuHFL3twymnAQo2YdzBpk1rirKxr2LJuKBNw8AACaVB+/dWTS1DP/YV4+39zdok5hfNHSg2+VFjsWI8aW5mDO2GNtqWrCtphnL54wM+Hixg+myyaUxLy09d1QBDjZ04JPaViyeFvwwYP2WZJvZiGnD7fjkeBt2HmsJO9o9kFCTSUKoTMyv/vF5wN4fPbNRgtur/JxKpyCGmZgI9bq9Wh0xnTIxlFqjinPwmxtnRLyHp+9isVA/dPR+ed10fPrzRWE3AhMlmsgk7jrWCrdXRp7NNOCLO/2/jxvOHRHRdOd3LhijlcpD9WNcNqkMRoOEgw0d2rEFn6r9MGePKIDRIGHuGKWBdtuRloCyjSzLMffD6M1UF+R9EiIT0+v2aosuxXTprJHx6YsJtSNGEA3Lje3+IKa1y6UFMCsvGoOFU8owpiRHK0eJAGZGVUFa9YMyExMhsdgp22IM279AFM7wPkHMYCaOzEZDyAkmomQSmRiXOv48pSJ/wMCkqigbBdlmdLu82gLOwTIaJKy99XzsOeHA/BB7mOzZZswdW4SPDzdjw2cN+N5FY7X9MOeoW8tnjiyE2Sihvr0Xx1u6MUo9kf5wYydqW3pgMRkCpj2jJbb87jnZBrfX1+/fbE1TF2RZmUgUwcbs0YX406aamIOYcDuntEyM7qymA+rBwVVFWfjpV84KuL7H5UVrtwtt3W6MLkmfAAZgJiZi+uMG0mFHDGW2MrsV+r9G3ONDmUScnyQMVEoClAD85dvm4ZXvz++XhRyMPJsZF4wvGfBnrzhC4+39SlZFC2LULE6WxYgZ6mnc+r6Yd9RS0ryxxcixxv76fmxJDuxZZvS6fVq/kJ5+Mkl8PeeqGaaDDR1o741s/Fkv1Hi1oPXE6DIxB+qUcuCU8v5/hlkWIyoLsnBWZX6/hupUYxAToZJcK741d2TIGidRJKwmo/aqCGAQQ5kl22IK2AkzUFOvMKk8T9vpkghXTFV+Nu881oLalm5tr8xMXf/N+aKkpB5FcKihA89uPgpgcFt6B8NgkLTAKdjuF/1kklCaZ8PIomzIsn+iKhqtXaHPYQOCZ2I+rws/XZaOGMRE6KzKfDxw7XT8yxUTw19MNAj6V6QMYijT6LMx4TIxyTC8IAvThufDJwOPbPwCPlk550m/uG7OWKUcta2mGR8fbsL1j29GnaMXY0pycM2MyMpcAxElpd1BAhL9ZJKe6PfZeiT0VuFwmsM09vozMf4mXlFOYhBDRBEZziCGMpgIwk0Gqd8CulS5YoqSjVn3ibKPRvTDCLNGFcJokHCitQff/vN2dPR6cN7oQrzy/fkBh1zG6txRyuf9pDZYJsZfTtKbpwZYj3/wJX674QttcjES4TMxSkDX3utBr9sLj9enHecwpSKzplwZxBClmFgYBnD3C2UekYkZX5qbNjuqFqmbh8XwUd9R7lyrSStpeX0yls2oxPO3zhnUdGAkzlHPUqpt6QkYZ5ZlWSsn9Z1ovO7c4bhpdhVkGfivdw7hm3/aiob2yE7GDjdinZ9l0pbVne5woqapCy6PDzkWI6oybOqWQQxRiolXsqG2axKls1HqPpPpCexzidTk8jxUFfkznOcE2al07TmVMBok3H3ZePzu6+ckJAALWHqnO4KgpcuF9l4PJKl/EGM2GvDrr56NR286B9kWI7YeacFVv/tI24g8GC1hppMkSQroixFHRkyuyI95P06yMYghSjERxITarkmUzm46byTuXzI5rfoEJUnSSkpGgxQ0wPrOBWOw/xdX4t5FkxL6726mWsrSBzGiH6bSnhUyeLp25nC8cfeFmFyeh+YuF/7jjf2D+nwerw9t3cpk00Dlaf2EkphMmlyeWaUkgEEMUcrNGlWIklzrgAfhEaUre5YZt18yLqqR6US6ekYFJEk5EDfLEjxQSEb569wgS++CTSYFM3ZYLv58y3kwGyVsPdKCLV+Gb/Zt051MXRDkNHFBn4n5PEObegEuuyNKuZJcK7b/5PKMS+MSpbOZIwvxt7suRHmfXTbJJpp79UvvQk0mBVNZkIWbzqvC2q3H8bt3vsC8cfMGvF409RZkm2EaYCmmyMScbvefe5WJQQwzMURpgAEMUfxNG25HSe7Ah6om2tiSXG3p3Xee3oFDDR0hJ5NCuWPBeFiMhkFlY8R4dVGIRXeCmFA62NCBBnXpHctJREREpDEYJPz0K1NgMRmw6XATlvzuI3x8uAlA/6beUEQ2BgAe3fiF9vbalm6seGobrv/9x+h0egD4MzHh1jUMy1OCu82HlaBoVHF2XDYVJxuDGCIiogS6cXYVNv7LJbjirDJ4fDK6XV4A4Xti9L6/YBwsRgO21SjZmPX76vGV//oIHx1qwu7jbdpOnHCL7oRSNYjpUIOfYMcNZAIGMURERAk2sjgbT357Np797vk4qyIf88YWa6eAD4Y+G3PXi7vxT2t3ob3Xo2VcXth6DLIsh110J4hMjJCJ/TAAG3uJiIiS5pKJw3DJxGFRfez3F4zDyztqtWzL7RePxW0Xj8UFv34Xn9d3YPfxtsFnYvIDg5jJGbapV2AmhoiIKANUFmThX5dMxlkV+fjzLbNx/1VTUJxrxdKzKwEAL2w7htbuwTX2FucEBjHpcO5VNBjEEBERZYjvXjgGf//ni3DZ5DLtbd+cMxIA8OaeOtSo49vhGnstJoN2TZ7VhBGF6bXnZ7AYxBAREWWwc6oKcFZFPpweH/accAAY3GGyYuHd5Iq8jN0WziCGiIgog0mShOVqNkYYTBAj+mImZ+hkEsAghoiIKONdO3M4cnTHKwwmiBETSXPHFifsvhKNQQwREVGGy7WacM3M4drvBxPE/PDKSfjHP1+Eq6aXJ/LWEopBDBER0RlANPgWZpuRHeLQSz2z0YApFfkZ2w8DcE8MERHRGWFqpR1/vmU28m3mjA5MIsEghoiI6AyhH70eClhOIiIioozEIIaIiIgyEoMYIiIiykgMYoiIiCgjMYghIiKijMQghoiIiDISgxgiIiLKSAxiiIiIKCMxiCEiIqKMFPcgZvXq1ZAkKeBXebn/cClZlrF69WpUVlYiKysLCxYswP79+wMew+l04u6770ZJSQlycnKwbNkynDhxIt63SkRERBksIZmYqVOnoq6uTvu1d+9e7X0PP/wwfvvb32LNmjXYsWMHysvLccUVV6Cjo0O7ZtWqVVi3bh1eeuklbNq0CZ2dnVi6dCm8Xm8ibpeIiIgyUELOTjKZTAHZF0GWZTz66KP46U9/iuuvvx4A8Oyzz6KsrAwvvvgibr/9djgcDjz11FN4/vnnsXDhQgDA2rVrUVVVhY0bN+LKK69MxC0TERFRhklIJubQoUOorKzEmDFj8PWvfx1HjhwBANTU1KC+vh6LFi3SrrVarbjkkkuwefNmAMCuXbvgdrsDrqmsrMS0adO0a4JxOp1ob28P+EVERERnrrhnYubMmYPnnnsOEydORENDAx544AHMnz8f+/fvR319PQCgrCzwlM2ysjIcO3YMAFBfXw+LxYLCwsJ+14iPD+ahhx7CL37xi35vZzBDRESUOcTztizLYa+NexCzZMkS7f+nT5+OefPmYdy4cXj22Wcxd+5cAIAkSQEfI8tyv7f1Fe6a+++/H/fcc4/2+5MnT+Kss85CVVVVNF8GERERpVBHRwfsdvuA1ySkJ0YvJycH06dPx6FDh3DttdcCULItFRUV2jWNjY1adqa8vBwulwutra0B2ZjGxkbMnz8/5OexWq2wWq3a73Nzc1FbW4u8vLywAdJgtbe3o6qqCrW1tcjPz4/LY57J+P0aPH6vIsPvV2T4/Ro8fq8ik4jvlyzL6OjoQGVlZdhrEx7EOJ1OHDhwABdddBHGjBmD8vJybNiwATNnzgQAuFwufPDBB/j1r38NAJg1axbMZjM2bNiAG2+8EQBQV1eHffv24eGHHx705zUYDBgxYkT8vyAA+fn5/MsdAX6/Bo/fq8jw+xUZfr8Gj9+ryMT7+xUuAyPEPYi57777cPXVV2PkyJFobGzEAw88gPb2dtx8882QJAmrVq3Cgw8+iAkTJmDChAl48MEHkZ2djeXLl2s3fuutt+Lee+9FcXExioqKcN9992H69OnatBIRERFR3IOYEydO4Bvf+AaampowbNgwzJ07F1u3bsWoUaMAAD/60Y/Q09ODO+64A62trZgzZw7efvtt5OXlaY/xyCOPwGQy4cYbb0RPTw8uv/xyPPPMMzAajfG+XSIiIspQcQ9iXnrppQHfL0kSVq9ejdWrV4e8xmaz4bHHHsNjjz0W57uLjdVqxc9//vOA3hsKjd+vweP3KjL8fkWG36/B4/cqMqn+fknyYGaYiIiIiNIMD4AkIiKijMQghoiIiDISgxgiIiLKSAxiiIiIKCMxiBmEjo4OrFq1CqNGjUJWVhbmz5+PHTt2pPq20sKHH36Iq6++GpWVlZAkCa+++mrA+2VZxurVq1FZWYmsrCwsWLAA+/fvT83NpoFw369XXnkFV155JUpKSiBJEqqrq1Nyn+lioO+X2+3Gj3/8Y0yfPh05OTmorKzEt7/9bZw6dSp1N5xC4f5urV69GpMnT0ZOTg4KCwuxcOFCbNu2LTU3mwbCfb/0br/9dkiShEcffTRp95duwn2/brnlFkiSFPBLHDWUSAxiBuF73/seNmzYgOeffx579+7FokWLsHDhQpw8eTLVt5ZyXV1dmDFjBtasWRP0/Q8//DB++9vfYs2aNdixYwfKy8txxRVXoKOjI8l3mh7Cfb+6urpwwQUX4Fe/+lWS7yw9DfT96u7uxu7du/Gzn/0Mu3fvxiuvvIIvvvgCy5YtS8Gdpl64v1sTJ07EmjVrsHfvXmzatAmjR4/GokWLcPr06STfaXoI9/0SXn31VWzbtm1QK/DPZIP5fi1evBh1dXXar7///e+JvzGZBtTd3S0bjUb5jTfeCHj7jBkz5J/+9Kcpuqv0BEBet26d9nufzyeXl5fLv/rVr7S39fb2yna7Xf7DH/6QgjtML32/X3o1NTUyAPmTTz5J6j2ls4G+X8L27dtlAPKxY8eSc1NpajDfK4fDIQOQN27cmJybSmOhvl8nTpyQhw8fLu/bt08eNWqU/MgjjyT93tJRsO/XzTffLF9zzTVJvxdmYsLweDzwer2w2WwBb8/KysKmTZtSdFeZoaamBvX19Vi0aJH2NqvViksuuQSbN29O4Z3RmcrhcECSJBQUFKT6VtKay+XCH//4R9jtdsyYMSPVt5OWfD4fVqxYgR/+8IeYOnVqqm8nI7z//vsoLS3FxIkTsXLlSjQ2Nib8czKICSMvLw/z5s3Df/7nf+LUqVPwer1Yu3Yttm3bhrq6ulTfXlqrr68HAO2EcqGsrEx7H1G89Pb24l//9V+xfPlyHtwXwhtvvIHc3FzYbDY88sgj2LBhA0pKSlJ9W2np17/+NUwmE37wgx+k+lYywpIlS/DCCy/g3XffxW9+8xvs2LEDl112GZxOZ0I/b8JPsT4TPP/88/jud7+L4cOHw2g04txzz8Xy5cuxe/fuVN9aRpAkKeD3siz3extRLNxuN77+9a/D5/Ph97//fapvJ21deumlqK6uRlNTE5588knceOON2LZtG0pLS1N9a2ll165d+N3vfofdu3fzZ9Ug3XTTTdr/T5s2DbNnz8aoUaPw5ptv4vrrr0/Y52UmZhDGjRuHDz74AJ2dnaitrcX27dvhdrsxZsyYVN9aWisvLweAflmXxsbGftkZomi53W7ceOONqKmpwYYNG5iFGUBOTg7Gjx+PuXPn4qmnnoLJZMJTTz2V6ttKOx999BEaGxsxcuRImEwmmEwmHDt2DPfeey9Gjx6d6tvLCBUVFRg1ahQOHTqU0M/DICYCOTk5qKioQGtrK9566y1cc801qb6ltDZmzBiUl5djw4YN2ttcLhc++OADzJ8/P4V3RmcKEcAcOnQIGzduRHFxcapvKaPIspzwdH8mWrFiBfbs2YPq6mrtV2VlJX74wx/irbfeSvXtZYTm5mbU1taioqIioZ+H5aRBeOuttyDLMiZNmoTDhw/jhz/8ISZNmoTvfOc7qb61lOvs7MThw4e139fU1KC6uhpFRUUYOXIkVq1ahQcffBATJkzAhAkT8OCDDyI7OxvLly9P4V2nTrjvV0tLC44fP67tOjl48CAAJaslMltDyUDfr8rKSnz1q1/F7t278cYbb8Dr9WpZv6KiIlgsllTddkoM9L0qLi7GL3/5SyxbtgwVFRVobm7G73//e5w4cQJf+9rXUnjXqRPu32LfgNhsNqO8vByTJk1K9q2mhYG+X0VFRVi9ejVuuOEGVFRU4OjRo/jJT36CkpISXHfddYm9saTPQ2Wgl19+WR47dqxssVjk8vJy+c4775Tb2tpSfVtp4b333pMB9Pt18803y7KsjFn//Oc/l8vLy2Wr1SpffPHF8t69e1N70ykU7vv19NNPB33/z3/+85Ted6oM9P0SY+jBfr333nupvvWkG+h71dPTI1933XVyZWWlbLFY5IqKCnnZsmXy9u3bU33bKRPu32JfQ33EeqDvV3d3t7xo0SJ52LBhstlslkeOHCnffPPN8vHjxxN+X5Isy3LCIiQiIiKiBGFPDBEREWUkBjFERESUkRjEEBERUUZiEENEREQZiUEMERERZSQGMURERJSRGMQQERFRRmIQQ0RERBmJQQwRERFlJAYxRERElJEYxBAREVFGYhBDREREGen/B5rf5AJV3tmQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(timeseries_d[0], timeseries_d[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\joche\\miniconda3\\envs\\pp_env\\lib\\site-packages\\pymc\\data.py:287: FutureWarning: ConstantData is deprecated. All Data variables are now mutable. Use Data instead.\n", + " warnings.warn(\n", + "Sampling: [L, baseline_intercept, baseline_slope, height, meanmean, noise, separation, std]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "

Sampler Progress

\n", + "

Total Chains: 4

\n", + "

Active Chains: 0

\n", + "

\n", + " Finished Chains:\n", + " 4\n", + "

\n", + "

Sampling for now

\n", + "

\n", + " Estimated Time to Completion:\n", + " now\n", + "

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ProgressDrawsDivergencesStep SizeGradients/Draw
\n", + " \n", + " \n", + " 1400000.5515
\n", + " \n", + " \n", + " 1400000.5415
\n", + " \n", + " \n", + " 1400000.5215
\n", + " \n", + " \n", + " 1400000.4915
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [L]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e7adad524a584934b7a6ff499da3717c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
baseline_intercept1116.57838.6451041.8901188.5580.7380.5232743.03418.01.0
baseline_slope-21.7563.070-27.447-15.8060.0590.0422712.03492.01.0
noise_log__4.7730.0674.6464.8940.0010.0018809.05963.01.0
std_log__[0]-1.8130.108-2.012-1.6110.0010.0017129.05764.01.0
std_log__[1]-1.8790.044-1.963-1.7980.0010.0007303.06430.01.0
height_log__[0]6.6500.0856.4936.8120.0010.0017345.05516.01.0
height_log__[1]7.4740.0377.4057.5440.0000.0007762.06293.01.0
meanmean12.0820.00812.06612.0980.0000.0006577.05571.01.0
separation_log__-0.3540.023-0.397-0.3120.0000.0006911.05108.01.0
noise118.5137.938104.088133.4410.0840.0598809.05963.01.0
std[0]0.1640.0180.1330.1990.0000.0007129.05764.01.0
std[1]0.1530.0070.1400.1650.0000.0007303.06430.01.0
height[0]775.18865.076656.037902.6960.7580.5367345.05516.01.0
height[1]1762.62065.1701634.6241878.0310.7400.5237762.06293.01.0
separation0.7020.0160.6720.7320.0000.0006911.05108.01.0
area[0]317.09928.666261.556368.2530.2800.19910562.06227.01.0
area[1]674.79926.942623.811724.3680.2420.17112379.06343.01.0
sn[0]6.5710.7075.2357.8530.0090.0066926.05009.01.0
sn[1]14.9391.13512.77517.0150.0120.0098383.06378.01.0
offset[0]-0.3510.008-0.366-0.3360.0000.0006911.05108.01.0
offset[1]0.3510.0080.3360.3660.0000.0006911.05108.01.0
mean[0]11.7310.01511.70411.7600.0000.0006241.05139.01.0
mean[1]12.4330.00612.42112.4450.0000.00011078.06184.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", + "baseline_intercept 1116.578 38.645 1041.890 1188.558 0.738 0.523 \n", + "baseline_slope -21.756 3.070 -27.447 -15.806 0.059 0.042 \n", + "noise_log__ 4.773 0.067 4.646 4.894 0.001 0.001 \n", + "std_log__[0] -1.813 0.108 -2.012 -1.611 0.001 0.001 \n", + "std_log__[1] -1.879 0.044 -1.963 -1.798 0.001 0.000 \n", + "height_log__[0] 6.650 0.085 6.493 6.812 0.001 0.001 \n", + "height_log__[1] 7.474 0.037 7.405 7.544 0.000 0.000 \n", + "meanmean 12.082 0.008 12.066 12.098 0.000 0.000 \n", + "separation_log__ -0.354 0.023 -0.397 -0.312 0.000 0.000 \n", + "noise 118.513 7.938 104.088 133.441 0.084 0.059 \n", + "std[0] 0.164 0.018 0.133 0.199 0.000 0.000 \n", + "std[1] 0.153 0.007 0.140 0.165 0.000 0.000 \n", + "height[0] 775.188 65.076 656.037 902.696 0.758 0.536 \n", + "height[1] 1762.620 65.170 1634.624 1878.031 0.740 0.523 \n", + "separation 0.702 0.016 0.672 0.732 0.000 0.000 \n", + "area[0] 317.099 28.666 261.556 368.253 0.280 0.199 \n", + "area[1] 674.799 26.942 623.811 724.368 0.242 0.171 \n", + "sn[0] 6.571 0.707 5.235 7.853 0.009 0.006 \n", + "sn[1] 14.939 1.135 12.775 17.015 0.012 0.009 \n", + "offset[0] -0.351 0.008 -0.366 -0.336 0.000 0.000 \n", + "offset[1] 0.351 0.008 0.336 0.366 0.000 0.000 \n", + "mean[0] 11.731 0.015 11.704 11.760 0.000 0.000 \n", + "mean[1] 12.433 0.006 12.421 12.445 0.000 0.000 \n", + "\n", + " ess_bulk ess_tail r_hat \n", + "baseline_intercept 2743.0 3418.0 1.0 \n", + "baseline_slope 2712.0 3492.0 1.0 \n", + "noise_log__ 8809.0 5963.0 1.0 \n", + "std_log__[0] 7129.0 5764.0 1.0 \n", + "std_log__[1] 7303.0 6430.0 1.0 \n", + "height_log__[0] 7345.0 5516.0 1.0 \n", + "height_log__[1] 7762.0 6293.0 1.0 \n", + "meanmean 6577.0 5571.0 1.0 \n", + "separation_log__ 6911.0 5108.0 1.0 \n", + "noise 8809.0 5963.0 1.0 \n", + "std[0] 7129.0 5764.0 1.0 \n", + "std[1] 7303.0 6430.0 1.0 \n", + "height[0] 7345.0 5516.0 1.0 \n", + "height[1] 7762.0 6293.0 1.0 \n", + "separation 6911.0 5108.0 1.0 \n", + "area[0] 10562.0 6227.0 1.0 \n", + "area[1] 12379.0 6343.0 1.0 \n", + "sn[0] 6926.0 5009.0 1.0 \n", + "sn[1] 8383.0 6378.0 1.0 \n", + "offset[0] 6911.0 5108.0 1.0 \n", + "offset[1] 6911.0 5108.0 1.0 \n", + "mean[0] 6241.0 5139.0 1.0 \n", + "mean[1] 11078.0 6184.0 1.0 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pmodel_d = models.define_model_double_normal(\n", + " time=timeseries_d[0],\n", + " intensity=timeseries_d[1]\n", + ")\n", + "idata_d = pl.sampling(pmodel_d, tune=12000, draws=2000)\n", + "idata_d = pl.posterior_predictive_sampling(pmodel_d, idata_d)\n", + "summary_d = az.summary(idata_d, var_names=[\"~y\", \"~baseline\", \"offset\"])\n", + "summary_d" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\joche\\AppData\\Local\\Temp\\ipykernel_5868\\1105783876.py:9: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " plt.tight_layout()\n", + "c:\\Users\\joche\\miniconda3\\envs\\pp_env\\lib\\site-packages\\IPython\\core\\events.py:82: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " func(*args, **kwargs)\n", + "c:\\Users\\joche\\miniconda3\\envs\\pp_env\\lib\\site-packages\\IPython\\core\\pylabtools.py:170: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " fig.canvas.print_figure(bytes_io, **kw)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcJ0lEQVR4nOzdd3xkd33v/9fp50xXLyttt73r3jBgG7AB28AvJmAIJiSUJOQGwg0OJfeGJBTHl04IIbRAIGCSQAgmAQKhOdiADbiXdd1etOoaTT/9/P4YrWzZu6vRrnZX0n6ej4cekmbOd84ZrWbnrW/7KEmSJAghhBBCiGVPPdEXIIQQQgghFocEOyGEEEKIFUKCnRBCCCHECiHBTgghhBBihZBgJ4QQQgixQkiwE0IIIYRYISTYCSGEEEKsEBLshBBCCCFWCP1EX0Ar4jhm//79ZLNZFEU50ZcjhBBCCHHcJElCpVKhv78fVT18n9yyCHb79+9ncHDwRF+GEEIIIcQJs3fvXgYGBg57zLIIdtlsFmg+oVwud4KvRgghhBDi+CmXywwODs7mocNZFsHuwPBrLpeTYCeEEEKIk1Ir09Fk8YQQQgghxAohwU4IIYQQYoWQYCeEEEIIsUJIsBNCCCGEWCEk2AkhhBBCrBAS7IQQQgghVggJdkIIIYQQK4QEOyGEEEKIFUKCnRBCCCHECiHBTgghhBBihZBgJ4QQQgixQiw42P3sZz/j6quvpr+/H0VR+M///M9529x6661ccMEF2LbN+vXr+dznPnck1yqEEEIIIQ5jwcGuVqtxzjnn8KlPfaql43fu3MlLXvISnvOc53DvvffyF3/xF7z1rW/lpptuWvDFCiGEEEKIQ9MX2uDFL34xL37xi1s+/nOf+xyrV6/mE5/4BACbN2/mrrvu4mMf+xiveMUrFnp6IYQQAoA4TlBVZfbzAUmSoCjKnGOTJCFJmD0+ThLUmWOax0OlEaApCm4UoyvNN8hEBT+IcYMATdXQVUhZJqVGgO8HTFWqOLZFueFTcUMKKR3P9ZmqutiOiZbEZNIpqvUA01AYn67RntYYKbnsHtnPpv4e3CgmUXVqbpmRkoemRKQUi1CLcEyD3WNV2lIGGgkZx2Sq3qBUSXBDWN2uESYxbqLTnbYxTA1V0/A8n3w6y2hxgs5sBs200eKAtmyWJPAZc2OypkJ3Pk/dDVATBSej0ZvPMl72COOIvnyKlG2jKlB2A4IwImsbhIlKZ9YmjCBJYvwwwFBATWIwHUxdRQESEpIogtoYmpKgKglqEhMEAbqSoBChJDHEEUk883V+FXGmD4AD/4TKxFaY2k4chahJRBSFKIqCOvefeObfEpTTXwqaMfeOh/4T4rC1X6y2dTBwwdzbpnbA0D1PPzbTA+ue09rjHicLDnYL9ctf/pIrr7xyzm1XXXUVX/ziFwmCAMMwntbG8zw8z5v9vlwuH+vLFEIIsczsmKgyVvGwdJXOtMV41QMSbEOnJ2fT8COqfkDG1BmruBTrAV4Qs3eqjmUo9OZsHh8t89hwhf2lBjsn6tS8GIAEiI/Hk7hn+BB31Gc+H3gvDGY+PyWc7IyedH8w9z4qM5+nZm+xGKJLKdFGhYJSJUudtOKSocFP43PZlfTNeYR36N/gueoDZGiQoUHgNag2QvY2IkqNiLIbM9VImGokDDUMbqw9i9itEjcqxG6F9o3nMHLVrXMe0zzIsz2Q0T4SvIrPRC+bc9+f6V/nLfp3ZocYtYO0f/LjvOaWbxIZKdKWQW/eImMZ/J9734we1g/T8gneWa+hUjiTeOaPgThJsB/+KW0/efvTjq0NPo+pl1/AYHuqpcc+Ho55sBsZGaGnp2fObT09PYRhyMTEBH19fU9r88EPfpDrr7/+WF+aEEKIZSZJEspuyGjZ5aGhMjU/wNE17t5dxA9jdEVF1xU6UgaNMGKo6FJq+DT8iFLDxwtjdo5XqXkBdS/BT5ohbrkzCfCZ21GyQRnirfp/0M003UqRLqVETqnjhQlFtxnGijOhbKqREFUvZbrRSexWiBpVYrfC33vb+aRbYaqRMO0mxIf9YXnAT+bc4nb2L+h5aAeJ09ECZ43tnKwR6AmOrjNR9chYBlGctBx4al7E8LQ757Y2L6TtIMfGCXjhcfkToGXHPNgBB+0SP9jtB7zrXe/i7W9/IhmXy2UGBweP3QUKIYQ44eI4IUoSopmh0ihOCKMEL4xohCETJZ/9ZZeJisu20Qr7inWiBBxLY7Li0fAjEiAIY2peQKUR4ccQzXvm5SFNg7XKKOuUYdYwTG+4j3Z3iLQ7xkONNt5XuabZW+ZWiBsVtrr7uTG4aza4HQhytad27M36ydNu2XqQoxwd2h1l9qPNUWi3FdKOwVeNV6LaGVQ7i+pkKeTSwHtn28aJQoRKjEo08xGjzH7tHqQ/bzwp8Fg8QIRGNHMsKCg0h2sVpfm1pipoqsIZ3Xn0VIaCbdCWNsnYBtPumRiJNzv8riigKsrMxxPDvqCgtK+lkDLmHGO39xL0XXDgiNkuRqt3EwNtzvz/eMfRMQ92vb29jIyMzLltbGwMXdfp6Og4aBvLsrAs61hfmhBCiBOg4gZMVn3COCaKwQ0ixiouQZQQRwl+HOP6ERU3ZKRc55H9VcZrLmGY0AhCvDDGC2OiOCGKj9OQ6XGQRAFRrUhULRLVipxV+zVt9d1EtSKNapVy3Wd7I+HORrPHbW5H0TjwoTmPVwb2HuJcCpCzVXKOTsYxSNkmU9YA4/ZqNDvTDGdOlg1OlVWOT2TniOx2QruNWLdng1iEyliiMoxKhEaewpzzeCSc6n5l9tgnBl2foAKm1vywbI1VukrKNEhZOramsNd8NX9nvZa0qbGuK0N7ysDUNRxToy1l0pm1yNk6hqahKPA3M2HtQChTFFCf86MnbjvY5LwnseHpvXPn/WbzYxk45sHu2c9+Nt/97nfn3PajH/2ICy+88KDz64QQQqxMlUbA3mKd6VqAG8a4QYgXROwrNZiqBDSCEDeI8MKYME6YrnuMV3wqjYAwTgjiiDACfxkluSRJSPw6UXVqNrAl1QlS9SHM6ihJbRKvVmKsEhG4c+eA/U8Lj29q0DHTa7bd2tTsKbOzqHYa3cnw/NR2Arsd1+6gbndTsXooOf3EVg5FaQ5x1nliRt9Tu1tGZz7mPqmF/AQUQgw0BWwddFXF1FWytomhK1i6RtrSsDQVy9BQFBVNgba0Sc4xsHUNVVUYbHdY25HG0FTyKYO8Y5A2tUOO/J3MFhzsqtUq27Ztm/1+586d3HfffbS3t7N69Wre9a53MTQ0xI033gjAm970Jj71qU/x9re/nT/8wz/kl7/8JV/84hf52te+tnjPQgghxAkTxQlBFBNEMW4QUXUjar5P1Y0ouyGlRsBQscFYuUEjiKj7EVEcE0QJbhBRrPuEIaAmRFFCPYjwZgKeHy3NOXBJHBHVS83ANtvLNkV84OvqFEltsnlf+PTVmJOHemBVR0u3oWUKnJZp8OzsKH1Zhb6MSldaIWsb1O0uynYvU/YAe7UBdid97Ep66KXAU3vE7jrEaY5FHNIAXQVDVdCNZlhL2yqmppEydCxDw9RUMrZG2taxdQ1b17AMDctQ0VUF21ApOCa5lIGla1i6QkfGouCYGLoqYa4FCw52d911F5dffvns9wfmwr3+9a/ny1/+MsPDw+zZs2f2/nXr1vH973+ft73tbXz605+mv7+fT37yk7LViRBCLDNRnDA03WC4WKfkhlTdgOGSSz2ICMJmUGuEIRMVj2ojpOIFTNeD5rDpzApDDmyEkUCcxIQxRHFMGC29IdUkjggm9+IPP443so1wepSo1gxyca3EQiJnzoK+jEpvRpkNar0Zhb6MQm9G5Q7nYj7n/D6qnZntSTtT3cKF6n3sSnq5JeljV9zLCG0kT15McBx+aBpgKKDrkDZ1so5BX95hoM2hPW2SNg1iNcHWVGxTJ28b9OZt2jNms4dOU9E1BVNT0TQVTVFm58OpyqHn24sjoyQHVjIsYeVymXw+T6lUIpfLnejLEUKIk4YXRrhBjBdE7C3WuW/PNLWZbrSaF1L1mr1RcZJQrPnsK9ap+SF+GFPzQ8Io5kD/UEJzQUSSQBRDtIRWpCZJTFgcxht+HH94K/7INvyx7SSBd8g2qgKdaZX+jMJjqXNR0+1omXa0dAE908bXCp9jXS6kN6OQMuaGlyhRGEo62Zn0sTPp5bb4TH4cX3isn+YhqYBjgGMZmJqKqijoioJlajM9aRodKYONPVk2dGUYaE9h6Rrak+arpSyN7qxF1pZpVottITnouKyKFUIIsbQdGEZ1g3hmnlvz6zBO8IKIRhByz64i4zUPTVVxNIWxqstU1adU8xkr1akFCY2wuQp1bmBbKvGtKUkSovJ4M8SNbMUf2Yo3sp3Eqz3tWNvUOL3P4eL+hPO6otketr6sQldKmQ02z/X+mD3J3K29OswfUlBGeSAZZHvYz86kl51JL7uSXvYm3U/bnuR4MhWwDRVdV7E0lWxKJ2vqWKaBqTeDXG6md66QMimkmj1x/W0pCikDTW0Onepa82eQNnXSlkSKpUD+FYQQ4iQTRTFTdZ9izWe6ETBWdpmo+QxN1Sm7IXU/pOKFjJUaTNQ8Ko0QL1x6Q6UH01ys0CCql4jrJaJGec5nf2I3wchWovrTN75XdBOzez1m3ylc1u/z4cFfcFqnOrtFxuG2xt2oDD0t2P2O/xfUsDk2M9oOzwAcEwqO2RweTZmsKth0ZG1ydnPhQcY2aE8bZG2DtKWTMjUcQ8PQVXRVRVMVjJngduB7sfRJsBNCiBUkSRKC6InFDH7UnPvmBxGlRkCxHjBadqk0AoqNgGLVp+IFlOoBI6U6FTeg4oW4wdLY/y2JI+JGuRnUGmWievmJ758c3A7c3yhDNH/pKF2Fs7pVntGvke5bz9e73oLRuRpFa74tptWH2Gz+8mntJpIc25JVbI1XNT8nq9gWr2LsKdt8ANQ4Pvub6TTnv1m61twixNDQVZXurElHxsQydFblbJ65oYPenE3WNshYGrYpEWAlkn9VIYRYRsKZoOaGEQ0/oOEnTFddio2A6UbAdNWj7IVM1lwmKx5TVZfRap2pUkI1PvGDorHvEjdKzYA2p0etRFwvz3xfnvm+ROxWj+g8jqHQlYKulEJnSqErrdKVUljfpvKMfpVzejVsvdkDtTVW+Za/fk77bXE/P43OYUfSz7akn+1xP1uTVRQ58fO8DwQ5U1PJ2TpZ2yCfMuhIm2RtE8fQyDs667ozdGUs2tMm67symPrhinGJlUKCnRBCnCBBFFOs+eyfblB2A8IowY9iGn7IrokqD+wrsm86wPWa+75V/QB/ifSkHUySxPgj23D3PEBULT6lR63Z05aEh16McDh5R6MzpdCbSuhKK08EtpTCN6yXscM+HTWVR3NyqKkc/5T6e16g3XvIx4sShX1JBzvjXh5Pnl7ZaJw2fi/4v0d0ra1ygEwaspZJT9aiPWPTnrZoz5h0Zk060hb5lEWbY5B3TNKWhmloMjQqDkuCnRBCHENR3CyJ5c9US/CCGD+KqHohxZrP/XunqXrR7OKFyZrH1tEqE1UPN4iJTnQX2zxit0pj1300tt9JY8fdxPXpeduomkY6ZZNPmdhOiv3ORrRUDtXJoaXynJGe5obcf870tDXLVumHCTH7g0GGowvm3LYn6WY4aWco6Zz92Jd0sTfpYnfSw3DSQXAM3gJTOmRtjULaJmfrDLalac+YpGYWFzimRsrQsA0VU9foy9us6UjhGDqGvrCaqEIcjAQ7IYQ4SnHc7Glrlrpqhri6F1L3I2p+iBvENIKQhtfc42204jFRcZmqeoxWXGp+RMMLqfkw/+ywEytJEoKJPTR23EVj+514+x6G5IllFYrpsGbtajZ06PSnIgZTPuvTLqekqgxkYrpSChnzwN5lEY/Fea7y/2zOORRlhOdZ/3XY65hO0gwlnQwn7RST7NPuvz58HdeHr1+U53wopgK5lEZnxiJrW3RlDDqzNl1Zi4yts74zQ1vaxNSbe7kpTyp1pShQSJlkZCWpWGTyGyWEEC1IkoS6H1Fq+OyaqFNqNFeUjky7VLyAsYrHyHSD6bpPxQ2pNAIaS7RqwqEkcUTsN0j8OrHXIPEbxH4Dwy+R88cJhx9ldMcjlEtzV5Tq7QM4Gy7E2fAM7IHT+Uf7E4cYBn16j1Sf8vQaDMNJB4/Gg+xPOhhOOhhO2ptf08Fo0sZI0k4de55ns/BhShXIm5BP6eTTFt0Zk3XdOboyJo5pkrE0unM2aztT5GxzZquP5qpZBeatQSrE8SDBTgghDsH1QyZrPhNVn2Ldp+6HbBkqUaz5BGHCzskqE+Vmz1s1PP4hLkliEt8l9uszn58IY83bGnNum+++JPQPea6hJ31taXD5Oo2XbDR4YN3v8uPcy+YcO5y0H/Jx6on1RFCbCWsqMfGTQp+PwYv8Dx/pj+WQDAUcQ6UtpdOeMVndnmFVWwrL0GjPWGQOskp0XVcabaaHrS9v05GxFv26hFhMEuyEECeNOE6Ik4QoSYhjmp+ThCCM8cOYYt1npOSyf7rOnqkao2WXyarHZLnOVNWn4kH9KDZzS5KEJPQOErQaJF79ECFspgftIPclgbt4P5wnMTXImgpZ68BnhawJ69tUXnKKzuVrddJms3fqb4OIHz9lNccd8SZSkcdw0s5w0jEb4vYnHZRIczz2dTuwctTRtZlNdnV6c2na0zqZmd62gmNg6CqW3hxOVRVmy1ypikLW1sk7Brqq0JW1sA1ZVSqWPgl2QohlJ4hi6l6zGsJE1cMP4+aK0jgmjhIqbnO/tpofUnVDJiou+4p1ijWPYiOk0vCp+EfewxaWx/D2P76gEHbg6yfPR1s0iopqOihmil7Lpd9qkLcSMqbSDGYmM+FsblhTDYs/Vv4S1XJm2js4psbj6T98+nNOVEZoZzhp5+akg/1hM6zdFZ/6tGO/E1/Cd+JLFu3p2UBbBtqc5tYdPQWH7pxNTzZF1tFJ2wYZc2ZhgqmjayqGpmLoSvOz2hwy1VRmKyZoqiI1SsWKJMFOCLHsbBurMlJyeXSkQhA+EZTiJKHqBWwfrzUXMPgRE5UGUzWPWrA4565u+R+mfvipww5btkIxnwhTT/5smzp5M6HdiugyA3osj17Lpc/yGLBq9Fj+bEj7hPq7fFu7AkU3Z0PK9fo/8Xr9xy1eRcxfuutoPGm+mg/8Xfhyykl6To/bOIU5w6VHw5pZdJCyNHqyNpt7smxe1cam/ixr29Ok7WYvmQQvIRZOgp0QYtnww3hmO5AKYxWXKI5mel6g6gWUaj67JusMl1ym6y41L8FbpA6yJAop/vSLVO7+LgBG5xr0XNdTglmq+dlyUAwb1UwdNLyppkmXUmX8KdUKTlX28iNrvr3Tnvhve33goUZz53yNJm2zX3uJwWhSYJQ2RpP2mYUHbYwlBcZofvYwn3aGvw1/a2E/nENQAVuDXNog5xhkLQPH0OjMNue3nbc6zzmDbRQcUxYeCLFIJNgJIZaUA6tPwyih7Pq4YcRExWe07DI0VadY93l4X4mxmjdTtL5ZfcELj91WIVGtyPi3P4y3dwsA+WdfS/7S16Co88+5Mgk4TdnL2eqjnKHsYrO6h1OVvdRwuMj7zJxjdyc9xImCqhx+kDhMVMYpEB6kdulN0XO5OT6f0aSNaTIcq/lsWR2ylkpH2qKnzaErbdGRc2hLmWTt5l5tacskl9LozjpkZuqRmrJXmxDHlAQ7IcSSsmeqTrkRMlxqUHFDdk9VeXykSqkRUGn4jJZcKl6IHx2fovRheYLRr/054fQIiunQ+f+9ndSpzz7E0QkblP2cr27lXGU7Z6vbOU3Zi6k8vVZEGo8CFaZ5Yg82D5P9dJBN6uxOetibdLE36WFf0snIk3rcJskfclh0lHZGD7MqtRUGYBmQtgwcSyNtNMtW5RyDvoLFBWs6WNeZOWhbU1dJmRoZS5cgJ8QJIMFOCLFkxHHCVM1naKrOtokaE2WPx8crlGrNnrtyzafsxcetpFZYnWL03/6ScHoEvdBL9yvfi9Hx9PJTB/y5/nXepH+35cdfrwxzz1M2173K+/BxKx5/gK7MBDJDJeMYZCyD9pRByjYwFAXH1LB0lZSls7rNYVVb8/qUmXaOIUFOiKVCgp0Q4oTxw5g4aa5i3V+sc+/eaX61bYJdxQZh1AxyU/XohFRjiOolxr7+V4RTQ2i5bnp++wMYuU42Kbu5RN3CVJLlW/Fz57S5N95w0MfyEp1HkjU8GK/jkWQNj8SreTwZOGiAO5ahzgCyNqQMg4xtkHV0OnIWg/kM3XmTnG00e+lmyl6l7eYq07SpYxkautYs7aXPrCyVeXFCLD0S7IQQJ8RYxWXPZJ3tY1UeGJrm8ZEqe6ZqVFyfMAH/BNfWmvjuxwgm92Bk2/nd17yMqzv+nUvVB+lSmlUX7ok38i1/brC7M95ElChsTQa4J97IA8kGHozX81gyQHic/rs1FLB0cEydnNMMaxlbo7/g0FdwKDgGHWmL/jaH/rxDxtYxNHWmsLysRBViuZNgJ4RYdEmSEMYJQRQThM06qsHMR8OPmK4HPDhUZKjYaH5MN5isukzXw0VbxXoUV88p/uPs2X0fAPf8rseZ3V9/2lFnKTtxcOdsFTJFjnO8L1AldbwuFkMB21DJ2DoZSyfvNDfgLaSaQ6o5x6A7a7GhK0NHxqQzY9GWNjE0GTIVYiWSYCeEWLBoJrT5UUwQxgTRk76PmpsFJ09a2BlEMRUvYGS6wd6pOrsmazw2Uma81GD66LaDW1Sv0n7Km7XvsH3/ED9JEtYWFM7snrvyNEoUHkg2cHt8OhbBnGAHHNNQpwEpE9pTBoV0s9h8d6ZZ5qotbdCesUjPbNRraippSydr62Rsg5SpSeUEIU4CEuyEEC2L4oShYoNSY/7dfhWludHGrokqjw5X2DpeYaTkMlSsUaydmHlz87Hx6Y1GeOddzbR58WAzCO2Nu/h5fBY/j8/i9vgMShx8ReiiXosGq9psCimLrG3QmTHJOSYDheYmxilDpS1tkrWN2d43U1dJWxppUxYyCHGykmAnhGhJ3Q/ZO9XAn6n0oKkK5oGSTbMfCkEUUawH3L9nmvv2lJiouoyUG82aq1WfxvFa0noQKjEXKI/zYu0OIlTeH/7unPu/NdLHt75b46HxGAXQN1/B5d417Ex6OR71TTWgLaNTsE0GO1Js7MrgBgmKArahsbo9RW/eJuvopAwd22iuVM2YOilLk+FVIYQEOyHE/CaqHiMllyQBQ1dY3Z4iZeoEUUypETBebi6EeHh/iW0TNfZMVpmuB1S9kLoXnfB5c6cpe3i5dhsv035Br1IEoJI4fCx8FR4mSZJQve+/2fM//0gSxhjpPG2/8WfcuvbcIy8o2yIF6MzorCk4dGZtUpZOR9aikDJJmzolNyBj6pyxKkdbyiQzUxc1bWnoEuSEEE8hwU4IcVgjJZfxigdA3jFY1eYQRDEP7Cty164iw9Muo2WXvdMNxssukzWPIEwIj3Egmk8nJV6u/ZxrtJ+zWd07e3vFS3h0Iubh8RLW6MfZO+ETTOwhnB4BwF5/AZ0veRtaunBMrss2IGvppCydrKXTlbbYtCpHkijYhspgW4q8baKooKoKcZLg6Brnr27D1GWOnBDi8CTYCSEOa7rRnG/Wk7foztqMlBo8vL/MlqES+0sNJqoeYxWPkek6NS/EDzhuGwg/lUHI89V7uFa7hTPde3lsNOLnEzH/MB7zyETEw+Mx+8pPTpy/eOJLTaftua8n+4zfRFEWvyfM0qAjbZC2TCxdJSahM22zuT9PytQxVIXevE3a1kkZGo6poavN67ANVUKdEKIlEuyEEIcVRs0gZGsqv94xyUNDZR4fLbNnqsZU3afWCCjVfWonINAlSUJUnSSY3EcwsYeOqft5dOouXj0eM14/dJehlm5D7xjE6BjE7BxE7xjE7F6H5uQW9fpUmnvK9eZsTunOkLENwhjCOCZr6fQWbPryDu1pi/a0iTUT3mxDxZ4Jd47R/BBCiFZIsBNCHFIQxSQJVL2Ar/xyhLt2F9k/3aDcCCk1fPzw+NRrfaokjpi++fNUtvyUxK/P3l4Etj3puIG8Tq6zh3L76dQ7NmF0rMboHESzj82qVgVwDOjIWDi6Slo3KGQMzliVb86HUyCOwdRUVrU5rO5IkXeMZoibCXK2rklFByHEEZNgJ4Q4KD+M2TZWoVT3uX37GD99bIJS3cePIkqNiOAELYjoj/fjfvcG9jw6M29OUdHb+jE6BjA6Brmqe4Jndrn8qvAS7tLPoYaKBmQP+6hHT1cgZal0pm2yto5pqKRNnZxtYmgaiqqQtw3aMyYbu9Ks7cxgG6pUehBCLCoJdkKIOepeyN7pOr/ePslQ0WX7aIlt4zWGyy7eCZo8pxJzmXofr0p+xKe//Sv+6/EQU4PXvfQSfrT+nSi6MXvsHTMfx4upQkfGoJAy6Mul6MnZKBo4mkFb2mBTX46urEln2iRtN3vnZKNgIcSxIsFOCMF0zeex0Qq7J+rsnqqxY7xK2Q3YNVllrOyfsN65TkpcHfyQU8d+xPahIu9+LOCu/TG2Dv9xbYqzNwxxs6cd1+HgA/PmOjImG7qznD/YxrrONJ1ZC8fUieKEhARb1zilJyshTghxXEmwE+IkliQJO8aq/HrXFDvGqoxXXPYWXWp+QKnmMVENj2uFiCSOCCb3sGr4Fgr7f8XQ/mGuH4/nbCWXMuAfrh3gztUv5f96zyXm2O/lpgK2Do6l05YyWVVwuHBtB+esLtDmmHOO1VVQVVjfmZFQJ4Q47iTYCbFCxXFCEDfruIYzdVzDmZqu1UbA3mKdu/cU2T5WpVgPUZWEIIyYqgVMVr3jUiEiqk3jDT+Gt/8x/P2P4g1vJfEbDD/luPVtChet0smvWsf+9S/jr3LPgejYz03Lmgq9OYt8yiRlGwwUUnRnmvvOdaYtco6Brjarb+iagq42q2+kLV2qQAghTggJdkKsEDUvZLziEcyEuPhJ45MJCcWaz9B0g8dHK4yXPUYrLlUvxA0igjCm6vqUvGO/q3AShUzd/AXcnXfPbgr8ZIZp8pxVEc9apfGsAY21qzr5sXUFX48uZ4y2Y3ptKtDmqGzqy3LxKV1s7MoSxM15h5ahsargcGpPhoxlyMpVIcSSJMFOiBVipOxSf8rqBkVp1nQdr/iU6gHFWkDVbYY5U1PJWCqe51Ou+1SC43Od9cd+QfXe781+b3Ssxuw/Dav/NKxVm7A7+vmq83a2xav45+iF3ByfTxQd2yFNS4HuvMmazizrOtOc0pMlaxnU/WbQNQ2NNe0pNvZkyVjy36YQYumS/6GEWAGSJKHhN0PdQJuDYzYLwodxzO7JOhlLZ7ru05kxqHom1YbHWMNl+2id+nFcebBe2c/Q/V9hAviTi0zee5nN1cpfs5/O2WNi4Arvo9Rwjum1aApkLI3urMmazgwDbSm6cxZr2lI4lo6uqtiGimNoFFImnRkLx5Q5c0KIpU2CnRDLXBQnlBoBSdLsoSukDBRFoe6HPDRUZrTkct9QkfGyy927ioyUvOO6IEIn5IXKXTy//D0mdz3CH+9xURX4P5eYdDjw6vB/+Hj4qjltjkWo04C0pdCTtVnbleasgTb68w75lElXxmyuajU0LEPD0lWZIyeEWJYk2AmxzCRJQiOIqLohFS+k4UckM1PjUjM9StN1n1/tmGRk2uWBoSJDxebcuuLxWBEBJElMfvx+Tt3/XwR7H+Q7exr8Q/WJ+Xu/capOW9bhX8JL+V70rGN6LSqQtVQ2dmdZ152hP+dwwdo21nam6c5YODK0KoRYQeR/NCGWAT+MqXohVTek6oVE8dxFDpahYmkKUZJw+/YJ7ttb4r7dRfZNVRkpuxTdYzvemkQB/sh23H1bCPZuQRm6jz1uyINPOsZQ4RmrNM4YbMO54Dd5pncVVVLH9LryVrN01wWr21nblWFDd5oz+vJ0Zi2p+CCEWJEk2AmxRIVRzHjVo+KGeE/ZIThJmluZkChMVF2Gpxvsnqrz+GiFXZM1xqY9jvVaiMitUr3nezR234+//zGS0Jtzf9qAiwc1nrNa55mrTYp9z+Lflav4UXIazaqqiy+lQ3fWYm1nisGODGf05Tl/bTurCg5p6ZkTQpwE5H86IZaoqZrPRMWf/d4xNbK2jqEp7C822F90GS651LyQvcUaW4bKjJQalI9x3a8kjqg+8COmf/ZV4kZ59nbVyWENnI49cAbPX53w9dX/zn66+dfoBfx5dBlT5OAY7aZi6zBQSHHGQJ6z+wus7kjRljY5Z7Agc+WEECcVCXZCLFEHRlvzjkFHxqDmR5QbAVUv4uH9JYaKDdwgYu9UhS37K0xUfPxjvMLV3buF4k/+AX9sJwCnd6k898JNfLv/f2N0DKAozRB1HyFvDNdza3w2yTGsDGGosKpgcvZAG+eubuPcwTba0ya6ppK1DQl1QoiTjgQ7IZagOE4o1jy2j1dRFLB0lTBOKNV9Hh+p8uhIib1TdapeRMWLjlVH2KyoUaH847+n/MjtABRsuP4yizdfaII6zN1elrEnBbgQnVvicxf9OtosOG91nss295GxTDRNZX1nhq6sRU9O5s0JIYQEOyGWmDhO2D1V5/59JcbKHllbJ21pTNcD7ts3zVCxzr5inVI9JDz2hSIYVEbRf/EBbnlkOwrwvy4wuOFyi650M8htj7vpVyYZS45NVQgVyNkaG7rSXLSugw3dWTS1ee60qbO2M0XWNo7JuYUQYrmRYCfEEhLFCbsmawxPu4yVXVAgY2vU/Yg9xRqjJZfR6TrFWsix3lf4PGUr/0v/L65S7+KC/RUAvvwym9edYxInCj+OzufL0ZXcFp/JsVoMYesKBcdgXVeaSzZ00ptPYRkKtqGRcww29+Yk1AkhxJNIsBNiiYjihMdGyuybqnPvniIjpTrjtYCx6TrDZY+Kfxy652acqezgP6z3AhDGCY+MN2Pk2QMZ/iG8gq9GV7Av6T4m57YUaMuYrOt0OHd1Oxdv6KInb5OxNHK2gWPqaFKnVQghDkqCnRBLxFCxztaxKnsnajywr8TQdIOJqkfdj49579xTbUnWcV+8nnPVHfxsd4QXgWHovDr1Gdxw8feeU4CCrdKVtUlZOqf0ZLn8tG6ec0oXWUd65IQQolWyZEyIJcANIiZrPpMVj11TNcZrPlU3wAuPbajLUufN2nfYpOx5yj0Knw9/g1/4p3DN95pBzjrjhbjK4oc6R4furMlpvTlWtac4vT/PVWf0cmpvTkKdEEIskPTYCXGC1b2QX+2Y4v69U9y/r8TW0TLFWkg9PHaRrkCFP9D/m9dqP6ag1NgY7eMdwR/POea79TP4l189SnnybtR0gcLz3rAo59aBgqPRm7NZ3ZkhZek4hsZpfRkGCikaQUxPzqE7Zy3K+YQQ4mQiwU6IE2i41OC2rRPcu3ea0ek6O8drjJR8jtUWwzmq/KH+fd6g/ZCs0mDaTbhzMqY2eSvBmEVpeppgaj9hcT+xW5lt1/78P0SzM0d9/jZbY21nmrNX5enK27h+RKIoZEwdBZViPaQra2EbKjlZFCGEEAsmwU6IEyBJEnaMV3lwX5mHh0vsGi+zr+gyXHQXPdTFbhW9uIuLS//Nmum7uLPo869TMVsnYyYbT16Q8R9Pa6tl2kmf+XxSm597VNegATlH5/RVOTb3ZgljGK94ZC0DS9NgZq++tKXRlTXpKzhHdT4hhDhZSbAT4jiJ44Spms9UzeOBfdNsGSqxdbTC9rEK0/UQ9yhGXpMowB/fTTg1RFBs9riFxWGC4v7Zsl87D9FWTxfQ2laht/VjtPU1P7f3oxf6UM0jD1iWAvm0xkA+Q1fOYKA9TSFlEsWQMjU0VSFt6axqc1jdnqIzY0k9VyGEOEryv6gQx8kvd0wyWnYZnm7w6GiFx4fLjFVcyo1owb10SRTgDT+Ou+dBvD1b8IYeIQm9Qx7fm1HY2K5ySrvKQLvNzvwzuD3/IoK2dUcV3g5GA/IpnY2daU7rz2HqGpoCnWmbzmyzOkQhZbC2I0VfwcE2tEU9vxBCnMwk2AlxHIxXPMbKHlU3IIgSxssuFS+k7rUW6pIwwBs5EOQexBt69GlBTnVyGB0D6IVmj5vV1sPnur7JCzonyFoKjcTkS9GL+Ifwasqkm20W+XkaCuRSBqf3ZTmtNwco+FFMJm3QkTVZ3ZFifWeG9oy5yGcWQggBEuyEOObKbsDeqTrTdY+xqket4bN1pMRUIz5kjde5PXKHCHKpAvbqs5ofg2ehdww8rVbq19UuXmq8n29Gz+EjwbWMcWzKfnU4Kpv685zVn+eMVQUSwA1iMrZO1tLpzlmsbk/jmNI7J4QQx5IEOyGOoSCKeXykwvbxKvtnNhy+5bFRio1DT6hLopDhf3orweTeObcfLshtVnZzqnIb344vndPmV/HpPN//GLuSvkV/bhqQslQ60hbPO7WLgbYUq9pTpAyNlKljGyqOqdGbt6XslxBCHCcS7IQ4hvYV6zw+WmHHeI1SPeDxkQrlw4Q6gPq2XxNM7kUxLJwNFx22R04l5k3ad/lT/ZskqGzx17E9WTXnmGMR6hTANhQcU2NDV4bTenOc2pPFmpkvZ+gKPVmbtrQMuQohxPEkwU6IRZYkCV4YM1yq8537htkzWWdous54xWVoqjHvnLrqfT8AIHvBS2l73usPedyAMsYnjM9wofr4zC0RHza+wCv999KMXovrwHw8U4P+NptTu7Ocv7qdZ2/soC/vYBoapqaiqwq6JkVthBDiRJBgJ8QiCqKYbWNVyo2A27ZOsHuqyqMjVcoNn2LNn3dLE3fvFtxd9wKQOeeqQx53pXonHzP+gZxSn71tf9LOJ8JXcCxCnaNDxtZJmzqrO9I855Quzh0s0JGxWN919BsXCyGEWBwS7IRYRI0gIowSpuo+UZIQRAmGCkEc487TVVffficT//khAFKnXoxR6H3aMRoR79L/lTfq/z3n9m9Fl/K+4PWzq10Xiwo4hkLaMmjPmHSkTM5f3cZZAwUcU6crK2W/hBBiKZFgJ8QiSmZ65PwgwjE0inWfkbJLsRYetl31oZ8y+b2/hSTG2fAMOn7j7U87JoXLp42/43Lt/ifaJTZ/EbyR78QXL+rzUICcrdGWMujJOwy02ZzWlePs1W2s60yRdYzmsKsMuQohxJIiwU6IRRQnCVGcsHOyxuMjVR7aX6Y8T1dd/fHbmfyvvwEgfcbldLz4OhRt7kuzkxJfMj/C2eoT9SMeiVfzluCt7Ej6F/U5dKR1nn9qFwMdadZ0pNnUl2N1W4qUVIUQQoglT/6nFmIRBXHMeMVjtOTy6PA0tfnGX4Haw7cCkD7zBXS85DoU5em9YH9v/P2cUPeD6Bm8LXgzDexFu3YdWN/t8PLzBnnWhk7WtKdoS5tPW4krhBBi6ZJgJ8Qiqnsh9+2d4pHhMsV60FJVibA8AUBq4zMPGuoA3h2+gZvU95FX6nwpfBE3hL9Lskh1I3RgsM3g1L4Cm/sK/NaFq+mUuXNCCLEsSbATYpFU3IBbHh/n3j3TjFU8ao3WKsBGlXEAtFzXIY/Zlgzwh/47OEvdyRejlyzK9apAwdE4pTvDszZ0oagK569uI+fIZsJCCLFcSbATYpFM1332F+uMlRrUXR+/hTax7xJViwDo+e7DHntHspk7os2LcKXNUGfpCt05h86sjaaqFFIGvXkbU5cFEUIIsVzJ/+BCLJKaF/HocIWJmk/JO1QV2LmaZcMS1FQBLZUHmgslPqR/nhTuMblOFWhP6Wzuy3HOYIHz17RxxqosV5zew/rOxd0uRQghxPElPXZCLIKGH/LDh0Z4ZH+JshvRWqyDYLy5IMLsWg1AmgZfNj/MmeouTlGH+D3//yza3nQKkLU0zhrIc3pfjrMHCpy5Kk9fwcGeKQUmhBBieZNgJ8Qi2D1V59HhMmUvZJ7iErPC8gTTP/9nAMy+U1GI+VvjM5yp7gLgAnUrL9Lu4BvR5Ud9fSqQsTUuWF3gdZes4/zBNvIpqeMqhBArjQQ7IRZBqeGzc6JK2Np6CWKvzthNf01UncLoWE3+ma/kT7T/5Ert7tlj/jF88aKEOh0YbLd51voO3nL5KQx0yHCrEEKsVBLshDhKUZzw44dGGSrWW9reJIkjJr77UYKxHaipAt2/9V6en9rG241vzh7zP9G5vD/8naO+NluD1R1pXn7+Kn77ojUUpJdOCCFWNAl2QhyFKE64f2+RO3dNUfdbm1lX/J9/pLH9ThTdpPsV72Z1XuNvjc/M3r8j7uVPg7cc1T51CmBp0JYy6S+keM7GLgl1QghxEpBgJ8QRqvshe6bq3LFziomK11JvXfmu71C5+7sAdPzGO0j1b+TvzBtoU6oANBKTNwVvO+oFE3lbxTZ0egspfuuCfjb15Y7q8YQQQiwPEuyEOAITVY+RksuuiRoPD08zVfPmbVPffifFm78AQOGy3yN92iW8Vf8mz1Afnz3mL4Pf5/Fk8IivK2MoDLSl6cyapC2dC9a08aKzVqGpUhZMCCFOBhLshFiguh8yPO0SxQnjFZfdUw0a4fztSj//ZyAhc85V5C66hvOUrfxv7T9m778pupRvxc894utKm9Cbd+hvtzmjL4+uqQy0pSTUCSHESUSCnRALNFpu9s7ZhkKxHrBvsjZvmyQK8Sd2A5B/9qtQFIVXaz9FU5rz8nbH3bwn+L0jviZHg+6cwzmDBS4/rZs9Uw10VeHsgcIRP6YQQojlR4KdEAtQ9UKqboiiQLHuc+fOCSbr88+uC4vDEIUopjNbE/b/hn/Ir+NN/F/j67w9eDM1nCO6po6Uxll9eZ6zuYc17WlMXaE9HdGeNukvHNljCiGEWJ4k2AmxAFPVZgXYtKXzi8fHeXB/uaV2tYdvAcDoXI2iHFjtqvCt+Ll817uY4AhfiikdevMpNg8UyNsGtqEwVQuxdI3B9hSqDMMKIcRJRWrFCrEA9aA5mS6KYn6xfYy6N3+dCW//Y5R+9e8A5C582dPuP9JQpwF9BYfTejIMtDmYusp4JSAmoa9gs75LNiIWQoiTjfTYCdGiMIrxg5jJms9wucY9u4rzlg+LA5eJ7/0tJDGpzc+lY/NFuItwLY4GF61rZ6A9wyk9GTK2QQy0pQ02dmXoLzjSWyeEECchCXZCtKgeREzXA8puwDfv2Ee9hZWw1ft/SDi1Dy3TTtcV/4vvmH/FXfGpfDS8liJHtrecBpw5kGdVW5p8SidnG+Qdg+6sxdrONClTXtZCCHGykncAIVo0UmowWfOZqrnsK9ZbatPYdgcAuYuu4Xcyd3GqOsSp6hAv0u7kud4nqJJa8HX0ZA02dGVwTJXBthTru9J0ZCxWSS+dEEKc9CTYCdGCIIrZMV7DCyMeHqlQbKG7LvYbuPseAqCw/iz+VP/Y7H0/iS44olBXsBRO7csz0J6m4Oh0523yKZOBNgdFkVAnhBAnO1k8IUQL9k7Vafgx4xWXbaMVghbKwnp7H4IoRM/38L+6ttCllIBm2bC/CX9rwdegKc296gbbHCxNJWUaZC2d1e0pCXVCCCEACXZCtGS80tyUOIoT9k3NvyExQDA9DIDTs5Y/NL4/e/tXoqsYpX3B15CzdHKOiaIqpC2dlKVzel9eKksIIYSYJUOxQswjihOKdR8/CHloqNjShsQAUXkcgLPydTqUCgC1xOIfwv9vwdeQt1W6ciaOqTPY5rCmM825g3nSlryEhRBCPEHeFYSYR8UNCKKY3cUad+0uttQmDlzcPQ8AcFVhz+ztX42uWPBqWAPozdoYukZH2mCwLc3ZA3nSlrGgxxFCCLHyyVCsEPPwo5i6H7F3sjnPbj5J6DP+rffjj2zDNA1es6nZw9dITL5wBL11GVsFBdrTFoMdaU7rzZG1JdQJIYR4OumxE2IeU1Wf0bLHcMnFnWcUNokCxv/zg7i77kUxLL76211sbG+WHft6dDmT5Bd0blOFrlyKdd1pNnakuXh9J715+0ifihBCiBVOeuyEOIyyG7BrskapHrS0aGL65/9CY/udKLrJS155La9a2wx1UaLwpehFCz5/d9bktJ4sGzvTPGtjJ1lHxzbkZSuEEOLg5B1CiMOouCH7inVGynUq7vx717m77gWg/Yo3sWrtWnbH3QD8IH4Ge5OeBZ07pcOa9gw9eYv+thR5x6QjY8rWJkIIIQ5JhmKFOIzRUoMtQyWm6wG1eXJdEkf4E82FEtbgmfww7ufH/oW8QL2HvUn3gs/dnrFZ1ebQnbVZVXBY15UmI6tghRBCHIa8SwhxCEmS8IMtI81eu8nKvMeHxWGIAhTdQs83e+diVH4cX7jgc9s6dGdturIWZ6zKs6ErI6FOCCHEvGQoVohDeGDvNEPFBnU/YLwSzHu8u/dBAMyeDSiqdlTnzto6XVmTZ6xrJ+8Y5B1ZBSuEEGJ+0gUgxEEMFRv8eucUbhgxUvJpZU/ixo67AXDWX3BU5zaAM1cVeN2z1tBTSDHQ5mAbRxcUhRBCnBwk2AnxFFU34Fc7Jii7Afun61Rcf942SRTg7r4fgL859T58PeLfosvZmfQt+Pyn9GS46oxeNvXn6chYC24vhBDi5CVDsUI8xUjJZbziE8UJmqJQbWE1bFiZJPEbqJrOG1bt4k36f3Gz+U76mFzQuXXgvNVtXLi2XUKdEEKIBZNgJ8RT7C3W8cMYBXDDZN5NiQESvw5A1tZQZ7Yj+XW8mWE6FnTuNR02z9rYwZr21EIvWwghhJBgJ8STVb2QkZIHQBzF7J+ef1NigNhrBrtu+4neva9Hly3o3IYCm/ry9OVtVFVemkIIIRZO3j2EeJJizccNQ9KWxmNjZdz5F8MCkATNMJjSEwBKSYofxBct6Nx5R6czY5MydVTZg1gIIcQRkMUTQjxJ1Q0JIyjXfR4brRIvsP2BohD/EV2Kh9lyOx3Y3JflxWf2cEpPVqpLCCGEOCLSYyfEjCCKqfoBxZrHg0MlirX5V8Me0K1Mz/n+pui5Czr3qjaL553Ww5quDIYmL0shhBBHRt5BhJjhBhEVN6TshkzVfFpYDDvrWTwAgKbA1ngVDybrWm5rq9BXcGhPm5gS6oQQQhwFeRcRYkYYxZTrAW4QU/dDkpZbJpzhPwRA3lb4VvQcoPWh1LaMycbuDDnHxNTlJSmEEOLIybuIEDOKjYAgSqh6PhOVRsvtzlR2YgfTAOQthW9HF7fc1tagPWXSkbFJWzqWLhUmhBBCHDkJdkLMKNUDvDCi4UdMe633171Eu4NHxmeWWaTa2E9ny20tUyNt6+Qcg7SlSY+dEEKIoyLvIkLMqLghjSBisuotqN3f+S/lHx9uroDVNl7ScjsFMDWV/oLDuo40aUsWqQshhDg6EuyEAJIkoeaHjFUa7J9ufRgWoLRvG/VqFdXOcMfq17fcTgG6MxandGfozFg4hgzDCiGEODoS7IQAvDAmCGMeGapQaaWG2JM0dt0HgLPxmSia0XI7Q4N13Rk6MzaKomBLsBNCCHGUJNgJQXMPu4obMFxyCVqfXgdAVBoDwOhcvaB2OVtnc0+WDd0ZAHRNNiUWQghxdGRSjxBAw4sYK7uMV+ott8lTRSFhpDwOgJ5tfdGEBvQVUjzn1C5MQyMIE1SpNiGEEOIoSY+dEMBY1WVkukG99WIT/I52M3dZb6ajug0ALdd6sEuZ0Ju1KDVCgrDZRahLgVghhBBHSXrshACmqh6jZY8FFJvgSu1OdCXG9ZppULWzLbfNOyZnDeQxNBXH1Mg7hsyxE0IIcdQk2ImTXsOPqPkxw6XWV8P2Msm56g6SJKE8s+edaqVaautosL47w7mr2zl7IE9KtjkRQgixSGQoVpz0Sg2fuhcyWml9/7oXavcA0AghnNmbWDVbC3ar2hyeubaDtrQpoU4IIcSikmAnTnqTNZ+H9k9TXsA2J89X7wWg5M4soVVUFNOZt52uQD5lsrEnS0ZCnRBCiEUmwU6c1MIo5qF9JW7bNkncYhsHl0vULQCUDgzDmg5KC6taC2mDfMog55jknNb3vBNCCCFaIcFOnNTGKi537JqkuIDlsM9WH8ZSmssstleapcQUK91SW1tX6c7aaIpC1pYeOyGEEItLgp04qU1WPKZqPn7Q+jDsZer9s19/4bHmSlhr1aZ521kaZC2dDZ1pHFPD0OTlJ4QQYnHJO4s4qe2ZauAGMbWg1YHYhMvV+wCIk4SbH5oCIL35efO2dEyN9Z0Z2jM2KUteekIIIRafjAWJk1YcJ+ycqFH3AlrNdeuVYQbVZqWJX+2LqFbrKFYaZ93587ZtTxl0FxwUIG3KS08IIcTik24DcdIK4piKH1KqBy23eab6yOzX/76zOQzrrD0XRT/8QghDgf5CipSpYmgqbWnzyC5aCCGEOAzpNhAnrcmqx0jJpeK3Xm/ia9ELuD0+g+eqD/Dtvd8DRrFWnT5vu/a0waa+HDnbZLAjhaVLlQkhhBCLT3rsxEmp1AjYNV4nDGNq3kIKicHupJcb/cvZvW8UmH/hhAoMtjus78zQm7cxZdGEEEKIY0R67MRJqeqFuGGEAgQLy3UA1B6+lditomXaMXs2HPbYlKlyxqo28imDJIGUKb11Qgghjg3pOhAnJTeIaPgRVT9kobkuSWLKv/4WANkLX4qiHf7vo/6Cw+beLH7Y3My4J2cfySULIYQQ85JgJ046SZLgBhEVL2CoWGu53RnKLjQi3F33EUzuQTEdsue++LBtLA0GCg5Zu9lLl3MMHOmxE0IIcYzIUKw46ZQaAWGU8NhIhfFqaytiu5jme9ZfUE5SvGm/zdeA1KmXoM5TcaItbdKRtVBVFSVO6MrKalghhBDHjgQ7cdIZr3jsnazx8NA0dbe1gdhnqw8BkFPqFCfKAJjd6+Ztl7cNspaOpij05i1Ssn+dEEKIY0jeZcRJpeIGVN2Q/35omKof4yettbtkJtgB3NdcDIvRteawbTSaCyWyjsGqNoc4UVAV5QivXAghhJifzLETJ5VGEFF2A6YbAY2W969LuETbAsDWyYiRYh0Udd7VsKYO+ZRBe9rCmempswx5yQkhhDh25F1GnFSSBCpuiOuHuFFrdcQGlHEGlAkA/u2hZhi0156H5mQP287WFdrTFpauUPcjAHL24StUCCGEEEdDgp04qSQJ7Cs28MKYaqO1hRMXzwzDxknClx9sjt2mNz/3sG1UwDINMpZBHDfPa+oqtiErYoUQQhw7EuzESaURhFRdn4Yf4fmt9dgdmF/3+bsDtk/4KKZD6tRnHbaNpkJK19A1BUNvvszSloQ6IYQQx5YEO3FSKTcCan6EF8Z4LS2cSHiW+jD7KzH/9ycuAIXnvm7ebU7Spkp33kJRYKDQ3JBYFk4IIYQ41mRVrDip1LyIqZpP3W1tGHatMkKPMs2rfuBS9iDVt4HseS+Zt13G0uhMW6RMjba0RRAlSK4TQghxrEmPnTipuGEz2NVaHIa9SH2UO4Yi/v3hEFWB/FXXoajzD6k6hoFt6XRnbYKZRRq6Ki83IYQQx5a804iTShglFKseQWu5jguUrbznp80h2IvPWo3Zs37eNmkdCmmDzozFQMEBFBQF2lKyIlYIIcSxJcFOnFTKdY+Juk+LuY537HwmP9weoaoKuYtf01Kb7pxFfyFF2tLJOs0w15Y20TV5uQkhhDi25J1GnFQeHaniha3FujjwGP3BZwFInX0VD+UvbaldR9Yma+s4ujob5jozUiNWCCHEsSfBTpw0XD9k37SLH7ZWR2z6ZzcSTu1Dy7RTeO7rW2pjACgKGUunLW2iKQoZW8fSZasTIYQQx54EO3HSeHSkTNn1ZqtAHI675wEqd30bgI4X/cm8VSYOsC2VJE4wdJX2mV669pT01gkhhDg+JNiJk0IcJ+ycqFOph7TSX1e553sAZM6+EmfDM1o+j4KCpWsoQFvKQlUha8uuQkIIIY4PCXbipBDGCdN1j4rf2v510fgOAP7hrAf4uPEZHNyW2mmqQtpUSZkGmqKwquCgqrKBnRBCiONDuhLESSFOEor1kEojnPfYJPTxiyMAXN5TRVW30MBq6TyGBjnHJGvrdGRMCjIMK4QQ4jiSHjtxUqh5ISMll6o3f7Dzhh8nSRI6HIXejMId8SagtV43RVVpS5nkHJ2+vH2UVy2EEEIsjAQ7seKFUcyeqRq7J2t486+boP7ozwG4+jQdRTkQ7OanAVnLJOvoXLyhE0VqiAkhhDjOJNiJFW+04rFvqsGeqeq8xyZxRP3RXwDw6jOamwu3GuxsQ6Era3L5ad10ZFobuhVCCCEWkwQ7saJFcUKx5vPocJmyO/8wrD+2k6heomDD89dpTCdpHk8GWjpXztI5tTvDmo7M0V62EEIIcUQk2IkVzQ9jkgTGax5BNP9GJ0noA9CVUjE0hbviU0lafJms6kiztiuNZcgQrBBCiBNDgp1Y0bwwIiFhouzSwr7ET3N3fFpLxxUshYE2h46Uha7Ky0oIIcSJIe9AYkVzg5i6FzFe9Vo6Xk3mDtfeHZ/SUruBNodC2sI2NVRZNCGEEOIEkWAnVrSKGzBRdRkr+y0dvyrYC0DGhCDReCBZP28bBejJp7F1FU1RZENiIYQQJ4wEO7FieWFEI4h4ZLhExWst2A0GuwDIWQqPJKtxW9iYOGUp2IaGoapomoQ6IYQQJ44EO7FiVd2Quh/x6EiVoLVKYvy62g3AlNnHv0fPa6mNrWlEcYymKGjSWyeEEOIEkmAnVqwgSijVfUZLLi3mOqa2PQDA3t7L+Wp0ZUttbFPDNjUytk7BMY7waoUQQoijJ8FOrFhBFLFzokbVn3//OoCoNo27+34AUpuf2/J52hyDVQWHswfzpC0pvyyEEOLEkWAnVqyqF7Jnqk7dba2/rvbIrZDEmH2nYLT1tdTGBHryDqvbUziGLludCCGEOKHkXUisWA0/ptIIcMN43mOTOKJy13cAyJz5wpbPkU9pdGYsunM2ALosnhBCCHECSbATK1bND6h4IX4Lwa7+2O2EpVEKjsYHz9vPqcrels7R15bijP482szedRLshBBCnEgS7MSKNVnzKdWDlipOVO76NgDXXaTxv5yf0q5UWjrHqpyDZagwE+wMGYoVQghxAsm7kFiRSnWf/cUGFS9gvv662Kvj7X8MgD883yRKFB6I59+Y2NIg4+gYmoqpNV9Kso+dEEKIE0mCnViRto1X2V9yWxqGbYa6hHUFhVU5lceTQerY87ZrT+kMtqdxDI2UpQHNKhRCCCHEiSLBTqw4pUbA/ukGxapHtYUVsd7QIwBcPNjcquTeeENL5ymkLdozJp2ZJ6pTSJ1YIYQQJ5IEO7Hi1LyQihtScSPq3vwT7PyxHQBctKr5crg3OaWl82QtnY6MRcbWZytOSK4TQghxIkmwEyuOF8aMV1yqboA7/0gs4fhOAM7qbg6n3hO3FuwGOjKs7Uhzak92tqdOkcFYIYQQJ5AEO7HiTFQ9pqoBY1V33mNj3yWYHgPgzG6VcpJiRzL/5sS2Cmf3Z1nXmUZTFZKkebv02AkhhDiRJNiJFcUNIsbKLjU/our68x7vj24DEvoyCl1plQfidSQtvCzSlkp7xsY2NNwgIooTFAV0VZKdEEKIE0eCnVhRJqseNS/CCyIaQTLv8U8snGgOw96ftLZwor8tjak3Xz4TVQ+AnG2ga/KSEkIIceLIu5BYUYamXaIooR6EBC1sTPy0YNfiitjB9hSGphLFCdP15srb9ox5ZBcthBBCLBL9RF+AEIulGbJ8gjim7oXzbkwMEE6PAjDecT4PxdWWg11/m42lqzSCiCQBQ1fIWPJyEkIIcWLJO5FYMeIkoRFExHGCG7bQXfckX4r/P77mn9vSsbYKXRkHx9SIouZwryFDsEIIIZaAI3o3+sxnPsO6deuwbZsLLriAn//854c89pZbbkFRlKd9PProo0d80UIcTN0LiWNAgUpj/oUTR6qQ0jE0BdvQCONmv6AsmhBCCLEULDjY/du//Rt/+qd/yl/+5V9y77338pznPIcXv/jF7Nmz57DtHnvsMYaHh2c/Tjmltb3ChGhV1W/20inAZHX+ihPQrBMLoOjWPEc+oSvnoAAZS6c+c07psRNCCLEULPjd6OMf/zh/8Ad/wBvf+EY2b97MJz7xCQYHB/nsZz972Hbd3d309vbOfmiadsQXLcTBNGZC1mTNo+LOPxQbe3WiyjgARudgy+dZ057G0FRSpkap0QyQhZRxBFcshBBCLK4FBTvf97n77ru58sor59x+5ZVXcvvttx+27XnnnUdfXx8veMEL+OlPf3rYYz3Po1wuz/kQYj4NP8IPIx4bqRC2cHxu4kEA8tkUL0xtBebfHsVQoK9gkbGM2YUTjqmSMmW6qhBCiBNvQcFuYmKCKIro6emZc3tPTw8jIyMHbdPX18fnP/95brrpJr71rW9x2mmn8YIXvICf/exnhzzPBz/4QfL5/OzH4GDrvSni5FUPQiaqHhMtVJwA6C0/BMC57R5/rX8ZWigH5hgKGcskY6tUZ3oF21KyzYkQQoil4Yi6GZSn1E1KkuRptx1w2mmncdppp81+/+xnP5u9e/fysY99jOc+97kHbfOud72Lt7/97bPfl8tlCXfisJIkoeFFTNcDyvVW+utgtdL8Y8TQ4P5kfUttUqaOY+rYpk4UJ6iqBDshhBBLx4J67Do7O9E07Wm9c2NjY0/rxTucZz3rWWzduvWQ91uWRS6Xm/MhxOEEUULNixguNai0UEoMYFAZm/36gbi1YGeaKhlLw5hZBduRtlBlRawQQoglYkHBzjRNLrjgAn784x/Puf3HP/4xF198ccuPc++999LXN3+hdSFaFScJkzWX6bpPxZ2/x04hpjo+DICjKzzYYo9d1tTJOjoHhm07pNqEEEKIJWTBQ7Fvf/vbee1rX8uFF17Is5/9bD7/+c+zZ88e3vSmNwHNYdShoSFuvPFGAD7xiU+wdu1azjjjDHzf55//+Z+56aabuOmmmxb3mYiTmhfEeGFM1Y/wWhiJ7W9s4/N31gB4/bkm743XzdtGAwbaUmiKgqoomLoq25wIIYRYUhYc7K699lomJyf567/+a4aHhznzzDP5/ve/z5o1awAYHh6es6ed7/u8853vZGhoCMdxOOOMM/je977HS17yksV7FuKk54UR0zWfME5aWhHr/vrrVH04v0/l7FMHqQapedtYOmzsyRInoKkKhiZDsEIIIZYWJUmS+fd4OMHK5TL5fJ5SqSTz7cRB7Zqo8blbtnHXrkm2TTQOe2ySxIz/3StoeAH/9dsO3obLeXvwx/Oeoyut8+bLTqErazHQlqIzazHYPn8gFEIIIY7GQnKQjCOJFWGi6uFHCRV//v66qDxOwwswNbhyg97ywomcY5JzDAxdRddULENePkIIIZYWeWcSy14cJxTrAVUvoFqfv5RYOL4TgE2dKoamtBTsNKA9Y5K1DSy9WTXFkuopQgghlhgJdmLZqwcRNS9gouJSa2GCXXb8fgDO7FYJE5WHkrXztjFV6Eo3e+wObNlo6DLHTgghxNIiwU4se1U3YH/RZboxf28dQGmo2WO3uT/D48kgHvNvWWIZCn0FG1NTUWe2OlEPsSm3EEIIcaJIgUuxrEVxwmMjFabqHg0vmvf4JImZHNoFwKd73sPX/NYqmhRSFh0ZG0A2JBZCCLFkSbATy9p4xWO86lOqB3jh/OOw4eQQsVtF0S3M7vXUWngJKEDa1jE0lYQEWPILyYUQQpykZChWLGs1P6TqBgRhjB/G8x7vDj0MgNl3CorW2t81jgaOoZOzdapugKVrmLqKpcvLRwghxNIi70xi2UqShIYfUfNDxiourUyx8/Y9AoC1anPL58naOgNtDhnboOZH2IZGb85GkTl2QgghlhgJdmLZ8sIYN4iYqnqMVlzmn2EH6v7mithNA22YtLbYIusY9Bccgigmaxk4pkY+ZRzFlQshhBDHhgQ7sWzFSdIcivXCllbExoFHdWocgG+v+Vf+Qv+Xls5TSJm0Z0x0VSVt6eQdCXVCCCGWJgl2YtlKEqj7ESMlF7eFihPB5F4SoDOl0JNWeLCFjYktFbqzNh1pC8tQMXUVXVbFCiGEWKIk2IllK4hiSnWf4WkXt4VR1Xj/Q0BzY2JFUdjSwsbEGUujJ2+RMnUco1lpQrY7EUIIsVRJsBPLVhQneEFMNQjnnV8X+y7lX30DgJds1HETg+1J/7znSNk6/QUHx1SJZxbd2lIjVgghxBIl+9iJZa3iBdRb2Ji4fMdNuJUSa/IKf/JMk0eSNYQt/PrnHZPVbWlURSEBHFObrRUrhBBCLDXS9SCWrThJ2DPZoOEdfn5d5FYp//pbAHz0ChtbV9gSr23pHF1pi1VtDqVGgKIosnBCCCHEkibBTixblUbIZNUlmmdf4qg8RhJ6FByNV57e7KV7MFk37+NrQH+bzUjZxQ8TLF2hINucCCGEWMIk2Illa7oeMNbi/nUAthbPbiq8JZ4/2NkGtKdNKm6EosCm3hyGJi8ZIYQQS5e8S4lla1+xTqkeLbhyq5foPJ4MzHucrqmYuoaiwPquNFkZhhVCCLHESbATy1IUJ+ydrlP1W6se8WSPJYMtLZywdA1DVejN2/Tm7SO5TCGEEOK4kmAnlqXpus94xcULWh2IfcJDLS6cyFgGhbRJT86mK2Mt+DxCCCHE8SbbnYhlac9Ujd2Tdfyw9YHY8aTAi73/h9/ir33K0lnbkWZ1e2p2bp4QQgixlEmwE8uOF0aMljzqXkzcQq5LopntUFSdR5I1LZ8nb+ucM5BHk0oTQgghlgkZihXLTs2LKDcC3CBoaUVs7NUBUK1Uy+ewNBjsSGEZ8rePEEKI5UOCnVh2al7IdMOn5rW2cCJ2q8DCgp2hqQwUHGQEVgghxHIiwU4sO1UvpOJGVL15diYGkjDA//W/AqAXels+R9rUaUubMrdOCCHEsiLBTiw703Wfhh9S8w9fSgygeOuXKY/sod1RuP2FD3OVemdL5+jMGqQt2bdOCCHE8iLBTiwrfhhT9SImqx5ecPgeu8b2O6nc9W0AvvybNmcXGkwm2ZbO05tzsA15eQghhFhe5J1LLCthHOOHMaPlBv48I7G1h28F4I8uMLj6NIM4UXg4WdvSeTKOTtqUhRNCCCGWFwl2YlmJ4oSq67O/1Jj32CRurpk9vav5a7496afO/BUkdAUylsmajvTRXawQQghxnEmwE8tKHMPOiSojJW/Bbbe02FtnGwpZS6c7J9UmhBBCLC8S7MSy4ochjw+X8RZeSYwt8bqWjjM1jf6CjSorYoUQQiwzEuzEslJyQ6YaAa0XEnvCgy0Gu7yjM1BIYery8hBCCLG8yDuXWFZKjYBSo7WNidOKO+f7h1ssJ5ZLWfQW5p+LJ4QQQiw1EuzEsrK3WKPamH//OoBsXAZAUxS2x31Umb/yhK5Am6PTnpY97IQQQiw/EuzEslH1Qkr1kIrbWrCLKxMA9GUVtiQtzq/TFdZ1pcnI5sRCCCGWIQl2YlmI44ShYoPxsjvv/nUHVCvNHrvVeZUt8dqW2mQsjb68gyHz64QQQixDsgOrWBYqbkjDj9hdrNFKrkviiIlKs2fv287LuCM+u6XzdOVsLF2XFbFCCCGWJQl2YlkI4pgwjql7LQ7D+g2YWTt7o/lKlGT+oVUF6MvZpC0NQ5MeOyGEEMuPvHuJZSFOEpIEhibrLR2feM3jFN1E0VqbL2frkHcM8o7MrxNCCLE8SbATy0IYJRTrHsPl+UuJAcT+TLAznZbPoasqhqZRSEmwE0IIsTxJsBPLwp7JGvftmabRYiUxLWnudaeoWsvnsA0Nx9TJ2DJDQQghxPIkwU4saW4Q8fD+Eo+PVtk/3aC1rYkTvmp8EIAcNXqZbKlV1tawDRXHkGAnhBBieZJgJ5asOE7YOVFjvOpR9UKKNa+lUmIDygSaXwXAUXzqWPO2UYG0ZaAqCqYuK2KFEEIsTxLsxJJV8ULCKIEEUqbKvqnWFk6cqezkC/c0+/bOH0xRJjNvG0cHy9AwdY20KXPshBBCLE8S7MSSVZ6pCauQ8NBQmWK9tYHYgeqDfG1L89jnP+v0ltrYhkba0LF0hazMsRNCCLFMSbATS1KSJJTdgISEx8eqjFU8al7UUtvH772LMIbL1mr4vee11MYwVGxLpS1toqoyFCuEEGJ5kmAnlqQgSohjCKKY/cUGFTcgaGWCHQl7948B8JozDbYka1s6n4pC2tRZ25E64msWQgghTjQJdmJJCqJm4bDJqk/djyk1/JZKifUzyWNjPgBn96g8GK9r6XyGprK6I8Xazvnn4wkhhBBLlQQ7sSQdCHb7inUqXkDNb62U2Eb3IYarza69fGc302TnbaMBHRmTwbY0GUvm1wkhhFi+JNiJJSmMm+HMC2KKdY9GizVinZG7AdjYrrLT2NBSG12F9rRFR9rE0uUlIYQQYvmSdzGxJMVJM9hN1wMqjQivtQl21PZtBeCSQY0tLQ7DWrpK2tZJ2zq6Ji8JIYQQy5e8i4klKY5hsuoy3QhoBBFBKxPsSNg91Fw4ccmgxpaktWCnaiq2rtEmNWKFEEIscxLsxJJUcQNKbkAUN7c4aWmjkyTmzpHml07fBrbEa1s6l6qAY+h0pM0julYhhBBiqZCZ4mLJqXkhbhBTagSAQhi2Nr8urBbxXA8Ulb/M/T8U5u+BU4GUqdOZM8na0mMnhBBieZMeO7HkTNV8/CiCRCGJYbrRWsWJYHw3AEb7KhS9tZCmKpB3dLozlsyvE0IIsezJO5lYcrwwIowTkgSCOMJtbYIdYWUCAL3Q2/K5TK1ZI7YrK8OwQgghlj8JdmJJiiMIo5iqFxK0VkmMxKsBoFrpls9j6hq2oVFwJNgJIYRY/iTYiSUpjCMafsh0I2hp4UQX0/xm+CMA1llloLXtUWxDJWPqmLJ/nRBCiBVA3s3EkhPGCRPVgFIjYKLSaKnNWeoOtOooAFdltwNKS+00VcU2dWxTO9LLFUIIIZYMCXZiSUmShLoXsmuyyr7pBp7f2vy6M5VdbBlrHut0rmqpjQ7kHIPOtMlAIXWklyyEEEIsGRLsxJLihTG7JuoMTzeouT7VFkuJnaHs4KHx5qBt0HlaS21MHfK2wdrONIasiBVCCLECyLuZWFIafsTeYp26HxFG0GKuQ594nKoPjg6jhbNaauOYOhnboDNjoaqtDd0KIYQQS5kEO7GkVL2A0bJLzQtJlIRWcl03Re7aNgnA5et0tiintHQux9Tozlmc3p87iisWQgghlg4JdmJJeXBfmbIbEkdJy8Ow56jb+e9tzWMv2ZhjnLaW2tm6xpn9OXpy9hFfrxBCCLGUSLATS0bVC9g9VYM4QdNUpuutVZw4U9nOr/Y159d1r21tfp0B5B2TrqyFIytihRBCrBAS7MSSUWmEzd46JUFVEypuaz12q+uP4kXNDU7Gc6e31CZlKWRsnTWdmaO4YiGEEGJpkWAnloypukfDC4nCBDeMqbmtbE2ckK/sAKA/q/Cg2tr8uoxj0pu3KKRaqykrhBBCLAcS7MSSMVb28aIYBYWGF9LKQOwaZZSJUh2A1XmVLfG6ls6VtQzyKZOUqR/FFQshhBBLiwQ7sWSMll2iKMHQoNziMKxGzLdG+wEY6MxQZv46sRrQmTHpztikDJlfJ4QQYuWQYCeWhCRJmKi6hHGMpqstlxLbkfTz3dEeAG5pv6alNpoKGdtgoN2R/euEEEKsKDIOJZaEqhtS9SKiBOpuSMVNWmqXJAneyDYAlK4NLbXRVOhIGXRkrCO+XiGEEGIpkh47sSRM1X3CKMbzQ/YV6y1tTAwQTu0jKo+BpmP1b2qpjW1o5NImWVv+rhFCCLGySLATS8JY2WW6HlDzw5Y3JgZo7LgbAHvwLFSztY2Gs5aBpqikZeGEEEKIFUaCnTjhvDBi92QdN4ypugFe3Mo2J3CJ+iC9+34CQG5da/VhAdK2hq5CSjYmFkIIscJIsBMnXLkRUqz7eH4EKDRaXBH7UvWXrI72AvDy7MMttWmuiLXI2oZUnBBCCLHiSLATJ1yp7jNWdgmTBD+M8FsciT1f3Tr79e64p6U2pg5tKZusY2DrEuyEEEKsLBLsxAkVxQkjZY+xqoeughfFePH87fJUOUUd4sDa2V20FuwcUydtaXRnLdnqRAghxIojwU6cUK4fsnuyhhc0K06ELYQ6gPNmeuuqfvP7Sb21YGfrKh0Zk95cawsthBBCiOVEgp04YZIkYfdUg4obEsUJqqpQcf2W2l4wE+zKXrPPTrHmrzihAClLpztn0542j/i6hRBCiKVKgp04YaZqPuVGgBuGKECl4dPwW1sRe77SDHbTMxsZqy0EO02BrKXTnbGwpJSYEEKIFUiCnThhJms+bhChKwp+FDNR9QhbyHUaEeeq26j5CUPlZrDT893ztjM1yDkm7RkT25BffSGEECuPvLuJE6LiBnhBTCOMaAQxdT9kuh7gtzDHbpOyl7Ti8fB4TAJoqTxaKj9vu1zKZKBgk7Z0LFkRK4QQYgWSYCdOiGItIIoTNFVhuuFTqnvUgxaHYdXHAdgy1jze6FrTUjvH1OjKWRLqhBBCrFgS7MQJ4YURUZxgqAqluk/Njwmj1pbEXjAT7HZON4/XC/3zttGAvG3QlbUwNfm1F0IIsTLJO5w4IcI4ISHBDUKqXoQfxgQtbkzcSCxKSYq9B+bX5brmbWNqMNieIm2ZKLJ9nRBCiBVKgp04IaI4IUlgpOwSRDGNIKLFXMe7wj/kXO/zfLu4AQCthWCXtnT6CzaGpkiwE0IIsWJJsBPHXZI0Q13FDRiZ9omimKDFYdgD4gRKo0MAGO2r5j2+kDZxDB1TU1El2QkhhFihJNiJ4y5OICFh52QNL4wI4oS4tXUTs8KpIWK3gqJbmD0b5j2+M93cu842NDQpJSaEEGKFkmAnjrs4SRgtudTc5gKKKE7wk/nbPZm772EAzL5TUDT9sMeaCmRsDUNTMHVVhmKFEEKsWBLsxHEXJwkl10dRwNRVxsqNltpZ+LxK+ykblCHqD98CgL3mnHnb2QZkbIMwAkNTsaXqhBBCiBXq8F0dQhwDSQJBmOCFETsnahTd1sZhz1B28RHjCzw+GXHanhooKpmzXjBvO9vQaE9ZZG2dfMogZxtH+xSEEEKIJUl67MRxF8Uxfpiwe6LG/lKDsJVyEzyxf90X7g4AcNZfgJ6bv5RYyjIwdYXOjEl/3jnyCxdCCCGWOAl24rireRF1P2Sq3qwV2+q6iQvUrURxwr882Ax2mXOuaqmdY+rYhsa6rjSOKcOwQgghVi4JduK4K7sBbhjjRzGuF9Faf13CBerj/GJPxHA1wbRtnHUXtNTSNjR68jaDbamjuWwhhBBiyZNgJ46rIIopN0JqbkDNCym7QUvtBpUxupQSX98y01t3yrNQ9PnnyqlAT86kJ2fjmDKlVAghxMom73TiuCm7AfumGgRRTNWPqDQC3LC1fU4uULYCcMf+5sCttvGSltqZKnRmHboy9pFdtBBCCLGMSLATx1wcJwyXXaaqPgCGpqArUKwHLQ7DwvlqM9iV3GYQVFOFltp15kz6cjZZW37VhRBCrHzybieOqShO2DFexQ2aEa4za5IkCdvHK9RaXA0LT6yILXvN71WrtdWtXRmHrKOTtuRXXQghxMonc+zEMTVd93GDGE1VWNuZoi/vMFXz2TZepdViE2kabFL28NhExHi92UpLt83bzgCytkHGMkjJalghhBAnAQl24piK4mYQyzk6WdsgjGJ+/vg4XtB6b9056nY0JeFvftkcynU2XoSWys/bzrZU0rZGf8GWYCeEEOKkIMFOHFMzuQ5VUUiShIeGyzw6UsYLWw92A8o4eyoKX7m/uSI298xXtNTO1FU6UiZrO9MoUiBWCCHESUCCnTimGkFzFauuKbhBzO6JGnum6gSt7koMfCO6nAsf+C38CNr7BrFWnd5SO1NTWdOZpjNtHcmlCyGEEMuOBDtxzLhBRNUNAcg7BjUvZF+xxv7pRsurYQ+oDTUXT0QbnttS75sGFFImp3Rn0DX5NRdCCHFykHc8ccyMV5pLWPOOQZLA9vEKd+0qMl1vbVPiJ/OGHgHAGmitt66Q0ukvOFiGzK0TQghx8pBgJ46ZUqMZ4DqzJkPTDYaKDfYWFzYMCxCWRonK46CoWH2nttTGNjXa0yamJsFOCCHEyUOCnTgm4jghSQ58DXUvYrLm4oXxgoZhn6M+gLbjZwBYqzahmq3tX6eh0JWxWNMp9WGFEEKcPGTXVnFMxMkTu9QV680h2ZGST6URtvwYNh7/aHyM39pVZg/Qs35z620NnU19OTozsnBCCCHEyUN67MQxEc0EO0WBUiPEDSN2T9Vo+K0HuwvVxzEJ+OmuZpt43cUttdOB9ozBmg7prRNCCHFykWAnjgl/Zp86XVOI44S9UzVGSy7uAubXXaJuYbKRMFNiFrVzfUvtdB36CjadWXuhly2EEEIsaxLsxDFxYANiQ1MYr3oMTbmMlBsLeoxL1C3sLTV7/tIpB0U3Wmpn6Rp9eYe2VGvHCyGEECuFBDtxTBzosYuihHIj5PHREtO11odh81Q5U9nFvSPNLj4t191y26yts7YjhaZKtQkhhBAnFwl24pg4UCN2ouYTxQnDpQZhMk+jJ3m2+jBRHPPBXzTHYdVTn9dy2/68w9rODJYuW50IIYQ4uUiwE8dEOBPsJiseQ8U65UbIAnIdl6hbuPH+gG1TMbmUSfaCq1tqlzJgXWea0/tyR3DVQgghxPIm252IYyKKY7wgouKF7BivUVnAalhoBruX3N7srTv/4ovZ2eL+dRnL4IxVOdKW/GoLIYQ4+UiPnTgmvDCm5AYoCky7PuWa33LbfiboDIZ5bLI5T696+itbaqcAKUvjonXtLdWTFUIIIVYaCXZi0QVRTBzDdM0nCCKGijXqC+iwu0TbwsPjzUUTPVmNcWdtS+0sDTZ0Zcg6simxEEKIk5MEO7HovDAmSRJqfsSD+8tMVv0Fza9bp4zw0Fizt66rs6Pldpausb4zg6FJb50QQoiTk0xEEosujGKqXkjdD9kxVsX1F7ArMfCR8NX4JR/4BtPZ9bS6ttWxNDZ2Z3AMWQ0rTm5RFBEEwYm+DCFEiwzDQNMW571Lgp1YdEEUM1H1GJpuMFH18BaW6wCozTQqmT20t9imYJuc1pcjbcqvtTg5JUnCyMgI09PTJ/pShBALVCgU6O3tPeo54vIOKBZdsRYwWnaZqHhM1nziI3iM2K0BoFrpltsMtNsUHBNVNiYWJ6kDoa67u5tUKiWLiIRYBpIkoV6vMzY2BkBfX99RPZ4EO7HoKm5Iqe7jhSEN/0hiHQQTuwHQ8z0tHW8AazrTtKXNIzqfEMtdFEWzoa6jo/W5qUKIE89xmlt6jY2N0d3dfVTDsrJ4Qiy6RhhS8SL2TdZZyChsjipXqXfihCW8ka0AWAObW2qbdjQuWd9J3pH6sOLkdGBOXSqVOsFXIoQ4Egdeu0c7P1Z67MSiiuME148YKTfYN91YUNvL1Pv5pPlpbh1JuCwKUVMF9EJrXdKdaYsNPdkjuWQhVhQZfhVieVqs16702IlFVQ8iRkse+4t13IUVm+AF2r0AbJ9s/rVi9qxv+Rd9oM2mPSXDsEIIIU5uEuzEoto3VefRkTLlerigRRMGIZer9wGwt9Tc9U7PdbXc/syBAlkZhhXipKIoCl/+8pdP9GUsuve9732sXbv2RF+GWKYk2IlF4wYR9+8tMlbxmKy7C2r7TPURckodgJ2l5m1atrOltim9WXFCCLEy1Go13vve93L66adj2zb5fJ7LL7+c73znOyf60oRY8iTYiUVTbgQMTbvsn67htl4aFoAr1btmv3601gxpWrqtpbZdOZvevLOwEwohlqRKpcKll17KV77yFf7qr/6KRx99lNtuu42LL76Ya665hhtuuOFEXyKe553oSxDikCTYiUUzUfEYKjYYLrksZHqdQsyV2hPBbshthrRW97Db3JNlXWfr+90JIZauv/qrv+KRRx7h5ptv5jWveQ1r167lzDPP5P3vfz/ve9/7eO9738u99947e/z09DSvfvWryWQydHV18Vd/9VfE8RMTQb797W9z3nnnkUqlKBQKXHTRRXPa79ixg1e+8pW0tbVRKBS44ooruP/++2fvv+WWW1AUhe9///tcdtllOI7DRz7yEdatW8d73vOeOdeeJAnr16/n3e9+9+xt3/jGNzjvvPOwbZu1a9fytre9jVqtNnu/53m8+c1vJp/P09bWxh//8R9LcBRHRYKdWDQP7Jtm12SFygJXTZynbKNXKQIQJQoTXnP/HtWaf9sGBTitLyf71wlxEEmSUKvVTthHkiykSnTzev/5n/+Z17zmNWzYsOFp97/jHe/Atm2++tWvzt52/fXXc+GFF3LPPffw4Q9/mL/5m7/h7//+7wEYHR3lt37rt7j22mvZsmULv/rVr3jb296Grjc3hBgbG+OSSy6hs7OTW2+9lV//+tds2rSJyy67jNHR0Tnnvu6663jrW9/Kww8/zOte9zpe97rXceONN855jj/72c/YuXMnr3/96wH46le/yh/90R/xtre9jYceeogbb7yRm2++mTe+8Y2zbf78z/+cf//3f+fLX/4yv/rVr0ilUnz6059e0M9NiCeT7U7Eoqh6IXumGoxXfBZYGpYXaXfOfv2DykbcyeZfy3que962jgFrO9NYutSHFeKp6vU6mcyJm39arVZJp1vvTR8fH2dqaoozzzzzoPc7jsPGjRt57LHHZm+78soreec73wnAqaeeysMPP8zHPvYxrrvuOoaGhgiCgNe85jWsXr0agE2bNs22/exnP8uqVav43Oc+N3vbJz/5Sb7//e/z1a9+dfZxAd71rndxzTXXzH7/+te/nhtuuIFbb72Vyy67DICvfOUrXHrppWzcuBGA97znPdxwww287nWvA2DDhg186lOf4nnPex5///d/j+M4fPazn+Vv//ZvefnLXw7Axz72MW655RYmJiZa/rkJ8WTSYycWxXjZZaLmUnEDFvg3Oi/Rfj373d/e70AUYvaegtE5OG/rzozJmg5ZOCHESnCg9+tw2xw9tRfw4osvnvP9pZdeyr59+yiXy5xzzjlceeWVnHHGGbzsZS/j7/7u79i7d+/ssXfccQf3338/mUxm9iObzbJr1y62bt0653Gf+cxnzvl+/fr1XHrppdx4441AM0R/85vf5A1veAPQDKm7du3iz/7sz+Y8/otf/GIAtm7dyvbt2/E876DPQYgjJT124qgFYcxjoxVGpz3q3sK6685VtjOgNP8yjWL4xb3bAMic+6KW2q9uz5Bz5NdYiINJpVJUq9UTev6F6Orqor29nQcffPCg97uuy44dO7jiiitmbztcCNQ0jR/84Afceeed/OQnP+Gb3/wmf/7nf843vvENrr76auI45rLLLuOzn/3s09rmcrk53x+s5/H1r389b3vb2/jUpz7FTTfdRBRFvOpVrwKYnef38Y9/fM71HrBq1Soef/zxeZ+DEAsl74jiqCRJwtaxClU3ZHexRriw7jqySp2t8SpOUYf4xNY+vOJjKKZDevNz522rA+s6UxiadDwLcTCKoixoKPREU1WV3/md3+Hzn/887373u1m3bt2c+z/+8Y/TaDR47WtfO3vbbbfdxlvf+tY5369atWo2mCmKwkUXXcRFF13EX/zFX/CiF72If/zHf+Tqq6/mwgsv5Etf+hL9/f1HVIrtVa96FW9961v51re+xVe+8hWuueYastlmBZyenh4GBwd57LHHePOb33zQ9hs3bsQ0TW677TbOPvvs2dtvv/32BV+LEAdIsBNHLEkS9hUbjJZdHtg3Tc0LiRYY7H4en80V/kc5RdnHvbd/DIDsOS9CNeffviTnKFy+qZesLRsTC7FS3HDDDdxyyy284AUv4AMf+ADPfvazqVarfP3rX+eDH/wg119/Peedd97s8T/60Y/4+Mc/ztVXX81tt93Gpz/9ad7//vcDzYB08803c9VVV9Hb28vWrVt54IEHZhc3/O///b/54he/yG/+5m/ynve8h8HBQfbt28cPfvADrrrqKp7znOcc9lqz2Swvf/nL+djHPsaDDz7Ij370ozn3v//97+f3f//36ejo4OUvfzmGYfDoo4/yX//1X3zhC18gnU7zpje9ife+97309fWxefNmvvjFL/Loo4/S3t6+yD9ZcbKQYCeO2HDJZftYlW1jNUZLDaJ4ganuSbbsbzC5ZxuoGtkLX9pSm1N68nRlbbK2/BoLsVLk83luv/12PvKRj/C+972PnTt3YlkW559/PjfddBO/+Zu/Oef497znPdx22228+93vxnEcrrvuOq677rrZx/rlL3/Jpz/9aYrFIr29vfz2b/8273vf+4Bmr9ovf/lL/vIv/5JXvOIVlEolent7ufTSS+nv72/pet/whjdwxRVXMDg4yOWXXz7nvte+9rXkcjk+9KEP8cEPfhBN09iwYQMve9nLZo/50Ic+hOu6s2Hz2muv5S1veQtf+9rXjvAnKE52SrLQ9egnQLlcJp/PUyqVnjbvQZwYbhDx6HCFnRM19k/X+Mkjo2wbq1FZ4By7A8a//WHqj/6c9BmX0/kb75j3eFuDl58/wB88ZwMbu2XxhBCu67Jz507WrVuHbdsn+nKEEAt0uNfwQnKQTE4SR2Sy5pMkCVEcsXuyTtkNcY8w1AXTI9Qfuw2A3EXXzHN0U3fWZlNvDtuQX2EhhBDiAHlXFAsWxQnFmk8QxWwfr7G/2GC05BIs4DGuVm/no/rnOFfZRuXO/4Akxl53AWb3uvkbA2s7U/TkbUxdfoWFEEKIA2RykliwqheSJM1eu7IbsHWshOfH8zd8kjfoP+QCdStnTf+UM+9vAJB7Zmu9dTrQ35YiY+lYmmxMLIQQQhwgwU4sXNLco2m03ODR4TKT9WhBtWE3KXu4QN1KnCT80X+5RFGMs/5C7NVnz98YSFkwUHBwTA1FOuyEEEKIWfK2KBYkiGKGSw0eG61wz+4iO8ZrhAvrrOM12s0A/NO9AT/bHaEYFu1XvrnlTTr7C2kyjoEpvXVCCCHEHBLsxIKMVzymaj67J2s8vL9M1V1IXx2kcHm59gvGajF/9mMXgMKlv4Oe72mpvQr05mxSRjPUyX7tQgghxBNkKFYsiBdE7Juu8ehImYmqT7DAzXKu1n5JVmnwph+6FF2wetaRvfA35284w9IV1nVlyDnNTYll8YQQQgjxBHlXFC2reiH3D5W49dEJHhkqUfUX1lsH8DvaT/jhtpB/fTBEUaDtqreiqK0PqRbSBp1pm0LKRFHAlHJiQgghxCzpsRMtieOYe3YXuWvHFLsnqtSCmGiBc+vOUnZwtrqTP/6ZB8DgBZej9J3ScnsVyNkG3XkDS1cxNFWKZwshhBBPIt0dYl5VL2TL/jL7inWKDZ9aEBHFCQstWfIa7WbiJOHekeZGxuG5r1pQe12D03pyrO/KoqsqmiqhTghxYu3atQtFUbjllltO9KUsmi9/+ctz/mi+5ZZbUBSFXbt2LerjimNDgp04JC+M2D1ZY+d4jVI9oOpGTFR8ijWP+gL3rStQ4WXabeyaTqgHoGkaeltrtRgPyNk6L9jUxYauZgkx+f9BiJXlDW94A4qioCgKmqYxMDDAa1/7Wvbu3bto51i7du1srdjFMDg4yPDwMBdffPGiPeZSc/HFFzM8PMzg4GBLxx8q7F577bUMDw8fgysUTybBThzSrok65UZzLpxpqExUXfYVa9T8mAWOwnKFdjeO4nPfTG+d3jG4oLl1AKvyDpdv7sGfGQNWJdkJseI8+9nPZnh4mL179/JP//RP3H777Vx99dXE8UL/1zn2PM9D0zR6e3sxTfOoH2sxLebjmaZJb28v2lFuMeU4Dr29vYt0VeJQJNiJg3KDCD+MURRY05Fix1iVbeNV6n604H3rAP49uoyXe9fzxW1tAJgDZy6ovanA+evacUyd8UrzP6ycLVNEhVhpDoSI/v5+rrjiCq6//nruv/9+tm3bBsDXv/51zjrrLCzLoq+vj+uuu45GozHb/qGHHuKqq66iUCiQSqXYtGkTX/3qVwE488wz2b17N9dff/1sz+CB4cUdO3bwyle+kra2NgqFAldccQX333//7OMeGI78/ve/z2WXXYbjOHz0ox89aO/U9u3bednLXkY+nyedTvPCF76Q++67b/b+A23++Z//mZe+9KVkMhne8pa3HPTncWD48tZbb+Xss8/Gtm3OPvtsfvrTn7b0eDfffDOXXnopjuPQ39/PG97wBsbHx2fbJknCu9/9brq7u8lkMrz61a+mWCzOuYaDDcVu376dV73qVXR0dOA4DmeccQbf+MY3mJiYYN26ZmnIyy+/HEVRWLt27ZznAlCtVslkMnzpS1+ac65arUYmk+GLX/zi7G2f/vSn2bx5M7Ztc8opp3DDDTcQBAspYnlykWAnDqoysz9dytS4Z1eRHz88yo6xMsVGuOC5dQfcE2/kh9uaL0Zn/QULatueNTm9L8f+6QZxDI6p0Z4+ur+QhVjpkiSh7ocn7CNJjvR/iyc4jgOA7/v86Ec/4jWveQ2vfOUreeCBB/jCF77ATTfdxB/90R/NHv/bv/3btLW1cdttt7FlyxY+8YlP0NbW/IPy1ltvZWBggHe84x0MDw/PDi+OjY1xySWX0NnZya233sqvf/1rNm3axGWXXcbo6Oic67nuuut461vfysMPP8xrX/vap12v53lceeWVTE5O8uMf/5jbb7+dfD7P85//fCYmJuYc+3/+z//h5S9/OQ888ADvete7DvtzuO666/j4xz/O3Xffzdlnn81v/MZvPG1Y86mPd8stt3D11Vdz7bXX8sADD/Cd73yH3bt387KXvWz23+aTn/wkf/M3f8OHPvQh7rnnHs4//3yuv/76w17LyMgIF198MePj4/znf/4nDz30EB/5yEcwDIOOjg7uuOMOAG666SaGh4e58847n/YYmUyGV7ziFXzlK1+Zc/s3v/lNkiThVa9qzsG+4YYb+PCHP8wHPvABHnnkET75yU/yhS98gfe85z2HvcaTmXR5iKcp1vzZXrE9k3W+/8B+HhstM1E5uq79YHIvUXkcNANr9VkLatuVsdAUdXZoeKDNkUm4QsyjEUSc/p4fnrDzP/zXV5Eyj/xtZufOnXzoQx9icHCQ0047jbe85S289KUv5b3vfS8Ap512Gp/61Ke45ppruP7661m3bh27du3ine98J2eccQYA69evn328jo4ONE0jk8nMGRL87Gc/y6pVq/jc5z43e9snP/lJvv/97/PVr36Vd77znbO3v+td7+Kaa56oa/3UBQX/+q//ytDQELfddtvsOf7lX/6FdevW8alPfWrO/L43vvGN/N7v/V5LP4sPfvCDvPCFLwTgS1/6Ej/96U/5zGc+ww033HDIx3vjG9/IH//xH/Mnf/Ins7d95StfYc2aNdx9991ceOGFfPSjH+VP/uRP+P3f/32gGQ7vuOMObrrppkNey6c//WmSJOE73/kO2WwWmPtz7urqAqC9vf2wQ6+vf/3reeELX8jOnTtne/m+8pWvcM0115DNZqnX63zoQx/i3/7t3/iN3/gNANatW8f/+3//j7e85S184AMfkPeBg5AeOzGr4UdsG6uyr9ggihNMXaHU8Nk1WaPuRYTR0T2+u+MuAOzVZ6EadsvtNJpBTp+Z3tGZsbANKScmxEr085//nEwmQyqVYv369aiqyn/8x39gGAZbtmzhsssum3P88573PJIkYcuWLQD82Z/9GX/wB3/AZZddxnvf+17uueeeec95xx13cP/995PJZGY/stksu3btYuvWrXOOfeYzn3nYx9qyZQubNm2aE2hs2+aiiy7iwQcfXNBjPdmTF2eYpskznvEMHnroocM+3h133MGnPvWpOc/r9NNPB2Dr1q2Uy2WGhoaetvDj0ksvPey13H333TzrWc+aDXVH6vLLL2f16tWzQ+W7d+/mlltu4Q1veAPQHFav1+tce+21c57DH/3RH1GtVhkZGTmq869U0mMnCKOYkbJLsdYcJlUU6M5ZGCr866+L7J6s0QhCFprrBpQxPqB/kY+Hv8V9yUYaM8HOWX/hgh6nI61xSneWVW0pHFOjJ2ct8EqEODk5hsbDf33VCT3/Ql144YX8y7/8y+yihANDsYdyoMfmwOd3v/vd/M7v/A4/+MEPuPnmm/ngBz/IO9/5Tj7wgQ8c8jHiOOayyy7js5/97NPuy+Vyc75Pp9OHvZ7DDT8/tXdpvseaz3yPF8cx73znO2eD0pP19PTMLkg5kl6vxegpUxSF1772tdx444285z3v4cYbb2RwcJDLL78cYPb6vv71r7N58+antT/QMyjmkh67k1wUJ2wbr86GukLK4LTeLO0pk+89MMK9e4pM1QIWWBIWgHfo/85ztQf5T+s9/HnyRdy9DwMLn1/XkbXZ2JPFNjQG22UIVohWKYpCytRP2MeRvFYdx2Hjxo2sW7fuaaHujDPOeNoWGge+PzD0Cv9/e/ceF3WVP378NQPMcBkcULkNIuIlDUhzI2+5eam87MNbWpm6BZVbpqaZWpubmdomu66XbUntUWpa7c/astbv5pqaSIp4yUt5TVRQUlBRrsLcz+8PlqkRRFBIHd/Px2MeMp/P+Zw5n/fjjLz5nM85n4phwbFjx/L5558za9Ys3nnnHdc+nU6Hw+H+Z2pCQgKHDh3CZDLRunVrt1doaGid2h8fH8+RI0fcriaZzWZ27txJfHzdJo390rZt21w/W61Wdu3aVW2y80sJCQkcOHCgyjm1bt2awMBAjEYjkZGRpKenux13+fvq6s3IyKCkpKTa/ZUzhC+Pc3WSkpI4fvw4W7duZeXKlTz55JNotRWpSVxcHL6+vhw/frzac/D2lmtT1ZHE7jZ3vsSCza7w8dbQMiSAyCA/SsqtfLY7h3UHcjmVf6nOz4MFiNVk87DXz/85ZFwMAqcdra8Bn8aRta5HB7RsYsDo50PjAB16bxmCFeJ29ac//Yk1a9Ywc+ZMjh49yn/+8x/Gjx/PqFGjiImJobS0lHHjxrFp0yays7PZu3cv69atcw0/QkXSl56eTk5ODvn5+TidTsaPH49SisGDB7Nlyxays7PZunUrr732Glu2bKlTG0eOHElERASPPfaYa4h31KhRmM3mK858rY1p06axadMmDh06xOjRoykoKGDs2LE1HjNr1iy++uorJk6cyN69ezl+/Djr1q1j9OjRrqRs8uTJpKSksGLFCjIzM5k3bx4bN26ssd5x48ah0WgYNGgQW7ZsISsri6+//povv/wSqLga6O/vz/r16zl79myVWba/1KpVK+677z4mTJjAsWPHSExMdO0zGAxMmzaN6dOn849//IMff/yRgwcPsmrVKqZOnVrLyN1+JLG7jVnsDvJLLdgcTnx9vDhbbObbo+dZvu0k6cfyyc4vpchyLWtHKf7k/bHr3RFnFF8XNgfAq1HdLp0HB3jTuVVjgvx18qQJIW5zffv25cMPP+Rf//oX8fHxPPPMMwwZMoR3330XAG9vbwoKCnjmmWdo164dffv2JTQ0lE8++cRVx5tvvklhYSF33HEHISEhnDp1irCwMDIyMggLC2PYsGG0bduWUaNGkZWVhclUt4XUfX19Wb9+PUFBQTzwwAN07dqVwsJCvvnmm+saOpw/fz4TJkygY8eO7NmzhzVr1ly1bb169WLTpk0cPHiQ+++/n/bt2zNp0iQCAgLQ6ytuaZk4cSITJ05k8uTJ3H333WRkZFx1xmlYWBjp6ekEBwczcOBAYmNjmTx5smsJEi8vLxYtWsSnn35KZGQkHTt2rLG+pKQk9u7dS/fu3WndurXbvunTp7Nw4UKWLl1Khw4d6N69OwsWLHAtoSKq0qj6mI/ewIqLizEajRQVFVW530Fcu5yLZZy8UEapxYYpyI/j50s5draU/BILh88Ws/+n4mta2uQxr1T+6vOe6/1T1ql8seUIRVs/xq91J0KH1X6a+m+aNeLFh9oSHKAnIsiXpga5v06I6pjNZtfsQl/f2k9OEje3Dz74gKeeeqpelo4RN7eavsN1yYPkit1tzGJ3cMlix+inQ6upmBWrlKLUYuXE2WtL6pppzvO694eu9xsdHfnqRzNF6f8PAN8WNf/l9ku+XtC8qT/++or7KAKuY9kEIYQQ4nYgvylvY04FNocTh3KSU2AmIzOfrPxLZF8oofQaFvXW4OSv3u9i0JgBKFQBvHCiO+f//VdQTgLueojA3wyoVV1aoHljP1qHBqL3rpg04aeT++uEEEKImsgVu9uYw+nkdGE5637IY/nWbPafKebY+WtL6gCe9NpAN69Drvcvnh/Cj58tAIcNv9adadJvfK1nyRn9vAgx+tHUoKdZsB9B/vKUCSHE7ScpKUmGYUWdyBW721RhmZXvc4rYfqJiVtjFUitF5RbM17gIcZwmm2ne/3S9X+voxGdbfkRZy9BFtKXpoJfRaGt/xc1P50VIgJ7YiEYEy6PDhBBCiFqRxO42U2y2ca7IzJ6cAr4+kEtucTklZVYKym2UXcczlV/2XoVeU1HBeWVkSl5fLh18BYDGDz2H1qf2kx6MvlruDA9k2D3NaB8VfO2NEkIIIW4zktjdJpRSHD1bwqHcYo6eLWFPdgHnSswUlVspKnPU+akSlxtnm8ACFtNbu4eJtnGcTP8PKCd+bbqgj7ij1vVogZiQQH7XIZKO0Y2vs1VCCCHE7UUSu9uA06nIKSjj+58KOZlfxqn8MgovWSgx2yguv/6kDqAUf561TaKj5hi7yk2U/VixOHHQfSPqVE9YIx2x4YG0bGogQCZLCCGEEHUiiZ0HM9scXLhkpbDMSm5BOT9dLOfo2SJ+Kignv9TKhfJreE5YDRRa9qg7KD+6Hpx2fEJaoAtrVevjA3WQENOYrq2bEhkkjw4TQggh6koSOw9ktTvJuXiJvCILecVmispsHDtXzL5TBZwpKqPYrLiW50lUakQpC3wW877jd2Q446rsv3RoMwABd95f6zq1QKwpiNgII82C/WXChBBCCHENJLHzMOdLytl27CKnLpZRYrbh5aXlYkk5GccvcrrQfN3Drm00P/Guz3xaavPoqj1EovUVdql2rv2l+7/BfPIH0Gjxr0Ni5+cNUcF+RDf2p6lBj4+XrMQjhBBC1JX89ryFWewOisptnCksY1fWRT7YeoL56zNJ/fEsu7Pz2XH8PJ9/d4ov9pzh1HUmdRqcjPLayBrda7TU5gHgr7EwyGubq4wtP4eLGxYBYOw+Ep+g8FrVrQNahwfSJtxIyxADkUF+19FSIYT49WRnZ6PRaNi8efONbkq9+eCDD9xuhdm8eTMajYbs7Ox6rVc0DLlid4spLLOSX2rFbHNQZnGQW1TGj3klnMgv5djZEorLbZRbHdicCquD6xpyrdRG8xOzfZbTRXvYbfs82yP8w/EwALbCPM7/ew7KZsE3ugPGLo/Wqm4vIK5ZIC1DAmkTauCOsEC0WvniC3E7SkpKYsWKFQBotVoiIiLo1asXb731FlFRUfXyGS1atCApKYk33nijXuqLiooiNzeXxo09dxZ/t27dyM3NJSQkpFbls7OziYmJITU1lZ49e7q2Dx8+nH79+jVQK0UlSexuIWabgxP5pZSU2zh2/hLZ50s5ceESZwrKyC+2YHUobM76SeYAWmrO8LzXGoZ6bcFL8/PK5xdUIFNsY0h1dkTZrRTt+Jzi7f9C2a1oA4JoOmBKrRcjDgn0IjhAT3TTAFqFGiSpE+I217VrV1avXo3T6eTgwYOMGTOGgQMHsmfPHrTam2uQyWKxoNfrCQ+v3ehEbeqqL/VZn06nq5dz9PPzw89PRmQa2s31LbkNOZ0Kq91JubViWPVssZlTF8s4mlfMd9kXST1yjjX7fuKj7dkkrz3EvK+P8OZ/DrF0ywn+vfcnMo5dJOuCmRKbwlJPSd1vNEf5VDeTTfopPOr9rVtS97UjgX6WZFKdHSk/sZszy8ZRtPVjlN2Kvnl7wkf+BS9D7RYVbuKroXmTQFqHGOjQLIhwo289tF4IUYXNDOWFtX9V9wgrc1Htj7eWXXNTK5MIk8nEQw89xMyZM/n+++85duwYAKtWreKuu+5Cr9cTERHBxIkTKS8vdx1/8OBB+vbtS1BQEP7+/rRr144PP/wQgPj4eE6ePMnMmTPRaDRuw4snTpzgkUceITg4mKCgIB566CG+//57V72Vw5Fr166lZ8+e+Pn5MXfu3GqHYo8fP86QIUMwGo0EBATw4IMPsm/fPtf+ymM++ugjBg0ahMFgYNy4cdXGo3L4Mi0tjfbt2+Pr60v79u1JTU2tVX3ffPMN3bt3x8/PD5PJRFJSEufPn3cdq5Ri+vTphIaGYjAYePzxxykoKHBrQ3VDscePH+exxx6jSZMm+Pn5ERcXx6effkp+fj4xMTEA9OrVC41GQ4sWLdzOBaC0tBSDwcCyZcvcPuvSpUsYDAaWLl3q2vbOO+9w55134uvrS5s2bZg9ezY225VX1K+Mxz//+U8GDhyIv78/MTExrF69muLiYhITE2nUqBFRUVG89957VT7/xRdfJDIyEn9/fzp27Mhnn33mVua1114jLi6OgIAATCYTv//97zl79qxbGY1GQ0pKCk8//TRGo5GIiAimTp2Kw1EfC4zV7Jqu2C1atIi5c+eSm5tLXFwcCxcu5Le//e0Vy6elpfHSSy9x8OBBTCYTL7/8MmPGjLnmRt9KbA4nZVYH5VYHVrsTu9OJw6m4cMlKidmGzaFwOJ1YbE7MdiclZhsFl6yUmO2U2+zkl5g5U1DO2WIzZjv1subcVduMN520P7ptO+EM58/2UXzjvAen5RIX1r5F2dGK++u8DI0J7vUM/nfeX+v7J5r4e9G1VROaGnxpFRZI6zADem9Zt06IBrF1AaQl1778KyfBL8h924K7wFJUu+M7jISHF9f+82pQeYXHarWyfv16Ro4cyYwZM3j88cfJzMxkzJgxFBQUsHLlSgBGjBhBbGws6enp+Pn5cfToUez2iqWd0tLSuPvuuxk+fDhTpkwBICQkhHPnznHfffcxePBg0tLS0Ov1pKSk0LNnT44cOUJYWJirPRMnTuQvf/kLHTt2RKvVVnmOq8VioU+fPphMJjZs2IBer2fWrFn07t2bo0eP0rRpU1fZl19+mT//+c8sXLjwqs+DnThxIvPnzyciIoI5c+YwYMAAjh07RkRExBXr27x5MwMHDuQvf/kLy5cvp6ioiKlTpzJkyBC2bt2KRqPh7bffZt68eaSkpNC9e3e+/PJLZs6cWWNb8vLy6NatG7GxsXz55ZdERkZy+PBhrFYrTZo0YefOnXTq1InPP/+cbt264eVV9f92g8HAsGHDWLFiBU8//bRr+2effYZSisceewyA2bNn89577/H3v/+du+++myNHjvDcc89RVlbGnDlzamzntGnTmDt3LvPnzyc5OZnf//739OjRg4cffpjp06ezYsUKxowZQ8+ePWnTpg0AgwcPxmaz8cknn2Aymdi4cSMjR44kMDCQvn37AqDX61m0aBHR0dHk5OQwefJkRowYwaZNm9w+f+bMmbz++utMmzaNHTt2kJiYSGxsLE899VSN7b5edU7sPvnkE1588UUWLVrEfffdx7vvvkv//v05dOgQzZs3r1I+KyuL3/3ud/zhD3/go48+Ij09nbFjxxISEsKwYcPq5SRuFk6notzmcCVyZTY7FltFIudUCodSOB1wrtTM+RIzpRY7xeU2Ci9ZKSq3UWJ1YLE6sDuclFltXCizUGaG+lptzhs7kZp8YjR53KHJoa02h1jNSYZYZ2Ph5+VF9qsYDjujuFObwxFnFEsd/Vnt+C0OvFAOO+e/TMacvRc0WgITBhF030i0ev9at0MLmBr5ovf2IUDvQ4hBT5OA+huCEEJ4hqysLJKTk4mKiqJt27aMGzeOQYMGMWPGDADatm1LSkoKQ4cOZebMmcTExJCdnc2UKVOIi6tYiqlly5au+po0aYKXlxcGg8FtaHHx4sVERkayZMkS17a3336btWvX8uGHH7qSQIBXX32VoUOHut5fPqHgn//8J6dPnyY9Pd31GR9//DExMTGkpKS43ds3evToWv+SnzNnDg8++CAAy5YtIzU1lUWLFjF79uwr1jd69GjGjh3LCy+84Nq2YsUKoqOj2b17NwkJCcydO5cXXnjBlVy9/PLL7Ny5k88///yKbXnnnXdQSrFmzRoCAwMB9zhX3ovXuHHjGodwExMTefDBB8nKynJd5VuxYgVDhw4lMDCQsrIykpOT+eSTTxgwYAAAMTExvPnmm4wbN4633nqrxosJY8eO5dFHK+73nj17NsuWLSMmJoZnn30WgBkzZjBv3jw2bdpEmzZtSEtL49tvvyUvL891z+Szzz7L9u3b+cc//uFK7KZPn+76jBYtWpCSkkLnzp05c+YMJpPJtW/o0KGu2Ldu3Zrly5ezYcOGmy+xmz9/Ps888wyjR48GYOHChXz99dcsXry42ux5yZIlNG/enIULFwJw55138t133/G3v/3t5kzsLCXgrLwuplxDEkpVXFmzO5wVCZrTSZldSzEBlJjtlFhsXDLbsVvL0ZYX4HA6sDkUNrsDi9WOxeag1GrnfLGFgrJyyix2rHYnp+2BlNi9sTrA5qhI4kzk46exEAKgAQ0VbdBQ8bMPDvRY0WtsmJWOvaqN2ym00OTye6+NGLlEY00JTTRFhGiKCOei27BqpfaaE25LloCGWfYnKVV+7Fcx//vkihhc3LAYc/ZeND56wh5/C72pbZ3CqwVMQb7cE9OUxgYfWjQx0CEqCF8fuVonhIAtW7ZgMBhwOp2Ul5fTqVMnvvjiC3x8fDhw4IDbL1WAHj16oJTiwIEDxMTEMHXqVJ555hmWLVtGjx49GDx4ML/5zW9q/MydO3fy/fffYzAY3LaXl5eTmZnptq1z58411nXgwAHatWvnltD4+vrSqVMn9u/fX6e6fqlbt26un3U6Hffeey8HDx6ssb6dO3eSkZHhlrBWyszM5I477uD06dNudQN07969xsRu9+7ddOnSxZXUXatevXrRvHlzPvzwQ15//XVOnjzJ5s2b2bBhA1AxrF5WVsbw4cPdEjiHw4HZbCYvL8/tiuXlOnbs6Pq5stwvt3l7exMSEuIaRt25cyd2u73KRSqr1epKPAH+/e9/s2DBAjIzMykuLsbprLgJKjs72y2xu+eee9zqiYyMJCcnp3bBuQ51SuysViu7d+/mj3/8o9v2Pn36sG3btmqPycjIoE+fPm7b+vbty9KlS7HZbPj4+NSxyQ3nXLGZxu91xrvkdJV9GiqC9cuAnW/Sg9Wt/4rd4aTUbONciYV2RWlMLXyz1p/5uPU1tjtj3bYt0C2is/ZIrY7f52zFEOtst21NKWK0939r3YZ7tUfY5Wjntq26hYeLd66m9PuvAQ1NB71c56TO11vD/a2bMuSeSOIjjRSVOfDXe9HEIFfrhGhQ3SdBl+drX97XWHXbpP3V33tXHa9rX2A8ISGBjz/+GC8vL8LDw696s33lL/zKf6dPn86oUaNYt24d33zzDXPmzGHKlCm89dZbV6zD6XTSs2dPFi+uOnzcqFEjt/cBAQE1tqemIdXLry5dra6ruVp9TqeTKVOmkJSUVOXYsLAwV0JyLUuQ1MeyJRqNhieeeIKVK1fy+uuvs3LlSqKioujVqxeAq32rVq3izjvvrHL81Wbp/jK/qGzv5TmHRqNxfY7T6cRgMLBnz54r1rVjxw6GDh3K1KlTSU5OJjg4mOzsbPr164fVanU7Rqdz/x788rMaUp0Su/z8fBwOh9v9BlDRQfLy8qo9Ji8vr9rydrud/Pz8arNti8WCxWJxvS8uLq5LM69ZfqmVIFX7zqrVgN5bi95Hg105sRQ4sdbxJrjKq3G/pKh9G/RYq2wrxFBNyQpOpeEMTTjhjOCIas4hZzQ7nFW/MJeznsuicPNyAIIf+AP+rWv/lyZAUz9v2jcPYmDHSPrFmcgpqLi5OlAvE7OFaHA+vhWv61FdstcA/Pz8aN26dbX74uLi2Lx5My+++KJrW+WkhcqhV6gYFhw7dixjx44lOTmZOXPmuBI7nU5X5Qb2hIQEli1bhslkwt+/9reVVCc+Pp5FixaRl5fnumpnNpvZuXMnzz333DXXu23bNvr37w9UXGTZtWvXVYf0EhISOHDgwBXjCRVXkdLT0xk0aJBrW3p6+lXrXbJkCSUlJdVetatMaGozUSApKYk333yTrVu3snLlSp588knX7Oe4uDh8fX05fvw4AwcOvGpd1yshIYGSkhJKS0u5++67qy2zdetWgoKCSE7++Z7V7du3N3jb6uKafqtenqkrpWrM3qsrX932SnPmzLnqzZsNoYlBh1cdlttoFuzH452isDsVhWVWDp4uwngqCA7U7ngnGny14O2smBRRmeJZlTcW5Y1rCJSfkz2FBjteWPDBrHScU1VnoJ5TQay0P0QRAVxUgVxQRvJpxBnVhDOqKVbqfpVUFxpD4z5jsV08TaOEQVc/APAF9HotLZr606ttOGGN9HRoFoxWqyHIX4dWo6GR381zxVYIcXP705/+RP/+/Zk5cyYjRozg6NGjjB8/nlGjRhETE0NpaSmvvPIKw4YNo2XLlhQUFLBu3TpiY38eFWnZsiXp6enk5OTg5+dH48aNGT9+PEuXLmXw4MG8/vrrREVF8dNPP7Fu3Tr69u1b4+TAy40cOZLZs2fz2GOP8be//c01ecJsNl9x5mttTJs2zbW0SnJyMgUFBYwdO7bGY2bNmkWfPn2YOHEiSUlJNGrUiMzMTD777DMWLFhAYGAgkydP5rXXXiM2NpZu3bqxZs0aNm7cWGO948aN491332XQoEHMmjWLZs2acfToUcrLyxkyZAhhYWH4+/uzfv164uPj0el0BAdXv1pCq1atuO+++5gwYQLHjh0jMTHRtc9gMDBt2jSmT5+Ol5cXffr0wW63s3//fnbv3s3cuXPrHsga9O7dmwcffJBHHnmEuXPn0qFDBwoKCsjIyMDHx4fnnnuOdu3acfHiRZYsWULfvn357rvvePPN2o/S/SpUHVgsFuXl5aVWr17ttn3ChAnq/vvvr/aY3/72t2rChAlu21avXq28vb2V1Wqt9hiz2ayKiopcr5ycHAWooqKiujT32pQVKFV28X//FihVXqhUeZFS5uL/vUqUspRWvGzmqsc7HErZrf972ZRy2P/3cijldDZ8+4UQt6Xy8nJ16NAhVV5efqObcs0SExNVjx49aizz0Ucfqbi4OOXj46NCQ0PVuHHjVGlpqVKqIgYjRoxQLVq0UHq9XoWEhKhHH31UnTx50nX8rl27VMeOHZWvr68CVFZWllJKqezsbDVq1CgVEhKidDqdat68uRo5cqQ6duyYUkqp1NRUt/KVsrKyFKBSU1Nd244ePaoGDhyoDAaD8vPzU71791a7d++u8ZgrWb58uQLUpk2bVFxcnNLpdCouLk5t2LChVvV9++236oEHHlAGg0H5+/urdu3aqQkTJiiLxaKUUsrhcKhXX31VNWnSRPn7+6thw4ap+fPnq1+mB9Wde2Zmpnr44YeV0WhUvr6+Ki4uTn366aeu/R988IFq0aKF8vLyUtHR0W7ncrn33ntPAap79+7VxuD9999XHTp0UHq9XgUFBalOnTqplJSUK8bsSvEA1PLly922RUdHqxkzZrjel5WVqT/+8Y+qRYsWysfHR4WFham+ffu6xXvGjBkqPDxc+fr6qh49eqivvvqqyudV91lX6981fYeLiopqnQdp/teAWuvcuTP33HMPixYtcm2LjY1l8ODB1U6eeOWVV/i///s/Dh065Nr2/PPPs2/fPjIyMmr1mcXFxRiNRoqKiqrc7yCEEKJiuK9ydqGvr6wJ6Sk++OADnnrqqasuhyJufTV9h+uSB9V5geKXXnqJ999/n2XLlnH48GEmTZrEqVOnXOvSvfrqqzz55JOu8mPGjOHkyZO89NJLHD58mGXLlrF06VK36eNCCCGEEOL61fkeu+HDh3PhwgVmzZpFbm4u8fHxrF27lujoaAByc3M5deqUq3xMTAxr165l0qRJvPPOO5hMJt5+++2bc6kTIYQQQohbWJ2HYm8EGYoVQoiayVCsELe2GzYUK4QQQgghbk6S2AkhhBBCeAhJ7IQQwoP8GivbCyHqX319d2XZfyGE8AA6nQ6tVsuZM2cICQlBp9PVy2OfhBANSymF1Wrl/PnzaLXaKo8iqytJ7IQQwgNotVpiYmLIzc3lzJkzN7o5Qog68vf3p3nz5q5Hql0rSeyEEMJD6HQ6mjdvjt1ur9VzOoUQNwcvLy+8vb3r5Sq7JHZCCOFBNBoNPj4++PjIc5iFuB3J5AkhhBBCCA8hiZ0QQgghhIeQxE4IIYQQwkNIYieEEEII4SFuickTlY+zLS4uvsEtEUIIIYT4dVXmP5X5UE1uicSupKQEgKioqBvcEiGEEEKIG6OkpASj0VhjGY2qTfp3gzmdTs6cOUNgYKCspH4NiouLiYqKIicnh0aNGt3o5ngciW/Dkvg2PIlxw5L4NqzbIb5KKUpKSjCZTFddwPiWuGKn1Wpp1qzZjW7GLa9Ro0Ye2+lvBhLfhiXxbXgS44Yl8W1Ynh7fq12pqySTJ4QQQgghPIQkdkIIIYQQHkISu9uAXq9nxowZ6PX6G90UjyTxbVgS34YnMW5YEt+GJfF1d0tMnhBCCCGEEFcnV+yEEEIIITyEJHZCCCGEEB5CEjshhBBCCA8hid0t6I033kCj0bi9wsPDXfuVUrzxxhuYTCb8/Pzo2bMnBw8edKvDYrHwwgsv0LRpUwICAhg0aBA//fTTr30qN41vv/2WgQMHYjKZ0Gg0fPnll2776yumBQUFPPHEExiNRoxGI0888QSFhYUNfHY33tXim5SUVKVPd+nSxa2MxPfK5syZw7333ktgYCChoaEMGTKEH3/80a2M9OFrV5v4Sh++PosXL6Z9+/autei6du3Kf//7X9d+6b+1J4ndLSouLo7c3FzXa//+/a59f/3rX5k/fz4pKSns2rWL8PBwHnroIdej2QBefPFFvvjiC1atWsXWrVspLS1lwIABOByOG3E6N9ylS5fo0KEDKSkp1e6vr5iOHDmSffv2sW7dOtatW8e+fft44oknGvz8brSrxRegX79+bn167dq1bvslvleWlpbGuHHj2L59Oxs2bMBut9OnTx8uXbrkKiN9+NrVJr4gffh6NGvWjOTkZL777ju+++47evfuzeDBg13Jm/TfOlDiljNjxgzVoUOHavc5nU4VHh6ukpOTXdvMZrMyGo1qyZIlSimlCgsLlY+Pj1q1apWrzOnTp5VWq1Xr1q1r0LbfCgD1xRdfuN7XV0wPHTqkALV9+3ZXmYyMDAWoI0eONPBZ3Twuj69SSiUmJqrBgwdf8RiJb92cO3dOASotLU0pJX24vl0eX6WkDzeE4OBg9f7770v/rSO5YneLyszMxGQyERMTw+OPP86JEycAyMrKIi8vjz59+rjK6vV6evTowbZt2wDYvXs3NpvNrYzJZCI+Pt5VRvysvmKakZGB0Wikc+fOrjJdunTBaDRK3IHNmzcTGhrKHXfcwR/+8AfOnTvn2ifxrZuioiIAGjduDEgfrm+Xx7eS9OH64XA4WLVqFZcuXaJr167Sf+tIErtbUOfOnVm5ciVff/017733Hnl5eXTr1o0LFy6Ql5cHQFhYmNsxYWFhrn15eXnodDqCg4OvWEb8rL5impeXR2hoaJX6Q0NDb/u49+/fn48//phNmzYxb948du3aRe/evbFYLIDEty6UUrz00kt0796d+Ph4QPpwfaouviB9uD7s378fg8GAXq9nzJgxfPHFF8TGxkr/rSPvG90AUXf9+/d3/XzXXXfRtWtXWrVqxYoVK1w362o0GrdjlFJVtl2uNmVuZ/UR0+rKS9xh+PDhrp/j4+NJSEggOjqar776iqFDh17xOIlvVePHj+eHH35g69atVfZJH75+V4qv9OHr17ZtW/bt20dhYSGff/45iYmJpKWlufZL/60duWLnAQICArjrrrvIzMx0zY69/K+Pc+fOuf7aCQ8Px2q1UlBQcMUy4mf1FdPw8HDOnj1bpf7z589L3C8TERFBdHQ0mZmZgMS3tl544QXWrFlDamoqzZo1c22XPlw/rhTf6kgfrjudTkfr1q1JSEhgzpw5dOjQgb///e/Sf+tIEjsPYLFYOHz4MBEREcTExBAeHs6GDRtc+61WK2lpaXTr1g2Ae+65Bx8fH7cyubm5HDhwwFVG/Ky+Ytq1a1eKiorYuXOnq8yOHTsoKiqSuF/mwoUL5OTkEBERAUh8r0Ypxfjx41m9ejWbNm0iJibGbb/04etztfhWR/rw9VNKYbFYpP/W1a87V0PUh8mTJ6vNmzerEydOqO3bt6sBAwaowMBAlZ2drZRSKjk5WRmNRrV69Wq1f/9+NWLECBUREaGKi4tddYwZM0Y1a9ZMbdy4Ue3Zs0f17t1bdejQQdnt9ht1WjdUSUmJ2rt3r9q7d68C1Pz589XevXvVyZMnlVL1F9N+/fqp9u3bq4yMDJWRkaHuuusuNWDAgF/9fH9tNcW3pKRETZ48WW3btk1lZWWp1NRU1bVrVxUZGSnxraXnn39eGY1GtXnzZpWbm+t6lZWVucpIH752V4uv9OHr9+qrr6pvv/1WZWVlqR9++EFNmzZNabVatX79eqWU9N+6kMTuFjR8+HAVERGhfHx8lMlkUkOHDlUHDx507Xc6nWrGjBkqPDxc6fV6df/996v9+/e71VFeXq7Gjx+vGjdurPz8/NSAAQPUqVOnfu1TuWmkpqYqoMorMTFRKVV/Mb1w4YIaNWqUCgwMVIGBgWrUqFGqoKDgVzrLG6em+JaVlak+ffqokJAQ5ePjo5o3b64SExOrxE7ie2XVxRZQy5cvd5WRPnztrhZf6cPX7+mnn1bR0dFKp9OpkJAQ9cADD7iSOqWk/9aFRimlfr3rg0IIIYQQoqHIPXZCCCGEEB5CEjshhBBCCA8hiZ0QQgghhIeQxE4IIYQQwkNIYieEEEII4SEksRNCCCGE8BCS2AkhhBBCeAhJ7IQQQgghPIQkdkIIUQ2NRoNGo7nRzRBCiDqRxE4IIYQQwkNIYieEEEII4SEksRNCCCGE8BCS2AkhhBBCeAhJ7IQQQgghPIQkdkIIIYQQHkISOyGEEEIIDyGJnRBCCCGEh5DETgghhBDCQ0hiJ4QQQgjhISSxE0IIIYTwEJLYCSGEEEJ4CEnshBBCCCE8hPeNboAQQtzMunTpcsV9kyZNYvjw4b9ia4QQomaS2AkhRA127NhxxX25ubm/YkuEEOLqJLETQohqKKVudBOEEKLO5B47IYQQQggPIYmdEEIIIYSHkMROCCGEEMJDSGInhBBCCOEhJLETQgghhPAQktgJIYQQQngISeyEEEIIITyEJHZCCCGEEB5CEjshhBBCCA8hiZ0QQgghhIeQxE4IIYQQwkNIYieEEEII4SEksRNCCCGE8BD/H/Xa9FaEn5PVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "axs = az.plot_ppc(\n", + " idata_d,\n", + " # data_pairs={\"L\":\"L\"},\n", + " var_names=[\"L\"],\n", + " kind=\"cumulative\",\n", + " # backend_kwargs=dict(sharey=True),\n", + ")\n", + "fig = plt.gcf()\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "plots.plot_posterior_predictive(\n", + " identifier=\"peak_fit_double_normal\",\n", + " time=timeseries_d[0],\n", + " intensity=timeseries_d[1],\n", + " path=path_result,\n", + " idata=idata_d,\n", + " discarded=False,\n", + ")\n", + "\n", + "plots.plot_posterior(\n", + " identifier=\"peak_fit_double_normal\",\n", + " time=timeseries_d[0],\n", + " intensity=timeseries_d[1],\n", + " path=path_result,\n", + " idata=idata_d,\n", + " discarded=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: 2024-10-13T15:50:13.319852+02:00\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -idu" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pp_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.15" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb b/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb index 5fc93d0..0ec543b 100644 --- a/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb +++ b/docs/source/notebooks/Create_validation_plot_from_raw_data.ipynb @@ -11,18 +11,13 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import arviz as az\n", "import json\n", "import numpy as np\n", "import pandas\n", - "import pymc as pm\n", "from matplotlib import pyplot as plt\n", "from pathlib import Path" ] @@ -31,16 +26,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 1) Preparation of evaluation of synthetic data (test 1)" + "# Preparation of evaluation of synthetic data (test 1)" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "with open('test1_all_data.txt', 'r') as file:\n", + "with open(Path(\"./paper raw data/test1_all_data.txt\"), \"r\") as file:\n", " all_data = json.loads(file.read())" ] }, @@ -48,16 +43,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 2) Prepartion of border-line cases normal vs. skew normal (test 2)" + "# Prepartion of border-line cases normal vs. skew normal (test 2)" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ - "df = pandas.read_excel(\"test2_summary.xlsx\")\n", + "df = pandas.read_excel(Path(\"./paper raw data/test2_summary.xlsx\"))\n", "df_normal = df[(df.loc[:, \"model\"] == \"normal\") & (df.loc[:, \"Unnamed: 0\"].isin([\"area\", \"height\"]))]\n", "df_normal.reset_index(inplace=True)\n", "df_skew = df[(df.loc[:, \"model\"] == \"skew_normal\") & (df.loc[:, \"Unnamed: 0\"].isin([\"area\", \"height\"]))]\n", @@ -78,16 +73,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 3) Prepartion of comparison to MultiQuant (test 3)" + "# Prepartion of comparison to MultiQuant (test 3)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "df_comparison_total = pandas.read_excel(\"test3_df_comparison.xlsx\")\n", + "df_comparison_total = pandas.read_excel(Path(\"./paper raw data/test3_df_comparison.xlsx\"))\n", "df_comparison_single = df_comparison_total[~df_comparison_total[\"PP experiment\"].isin([23, 24])]\n", "df_comparison_double = df_comparison_total[df_comparison_total[\"PP experiment\"].isin([23, 24])]" ] @@ -96,12 +91,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 4) Plotting in one graph (for PeakPerformance paper)" + "# Plotting in one graph (for PeakPerformance paper)" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -224,14 +219,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2024-10-11T17:56:34.996952+02:00\n", + "Last updated: 2024-10-13T15:10:41.315414+02:00\n", "\n" ] } diff --git a/docs/source/notebooks/Processing_test_1_raw_data.ipynb b/docs/source/notebooks/Processing_test_1_raw_data.ipynb index 5518ff1..e29fcba 100644 --- a/docs/source/notebooks/Processing_test_1_raw_data.ipynb +++ b/docs/source/notebooks/Processing_test_1_raw_data.ipynb @@ -1,51 +1,45 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Process raw data from synthetic tests" + ] + }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import arviz as az\n", - "import json\n", "import numpy as np\n", "import pandas\n", - "import pymc as pm\n", "from matplotlib import pyplot as plt\n", "from pathlib import Path" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "raw_data_files = [\n", - " \"Normal model_normal data_noise level 0.6.xlsx\",\n", - " \"Normal model_normal data_noise level 1.2.xlsx\",\n", - " \"Normal model_skew normal data_noise level 0.6.xlsx\",\n", - " \"Skew normal model_skew normal data_noise level 0.6.xlsx\",\n", - " \"Skew normal model_skew normal data_noise level 1.2.xlsx\",\n", - " \"Skew normal model_normal data_noise level 0.6.xlsx\",\n", + " Path(\"./paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 0.6.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 1.2.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Normal model_skew normal data_noise level 0.6.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 0.6.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 1.2.xlsx\"),\n", + " Path(\"./paper raw data/synthetic data sets for validation/Skew normal model_normal data_noise level 0.6.xlsx\"),\n", "]\n", "\n", "parameters = [\"mean\", \"std\", \"area\", \"height\", \"alpha\", \"baseline_intercept\", \"baseline_slope\"]" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prepare data in df_results" - ] - }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -149,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -159,9 +153,9 @@ "model: normal, data: normal, noise level: 0.6\n", "model: normal, data: normal, noise level: 1.2\n", "model: normal, data: skew normal, noise level: 0.6\n", - "model: skew normal, data: normal, noise level: 0.6\n", "model: skew normal, data: skew normal, noise level: 0.6\n", - "model: skew normal, data: skew normal, noise level: 1.2\n" + "model: skew normal, data: skew normal, noise level: 1.2\n", + "model: skew normal, data: normal, noise level: 0.6\n" ] } ], @@ -180,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -191,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -221,14 +215,6 @@ " 0.1425229338854569,\n", " 0.029251994462966387,\n", " 0.02178598822049324]],\n", - " 'normal data, skew normal model': [[0.9993873333333333,\n", - " 1.145324094260921,\n", - " 1.0038603930164334,\n", - " 1.0021702322498285],\n", - " [0.025492314214288193,\n", - " 0.06460165579288266,\n", - " 0.0295645094605588,\n", - " 0.022277250178015084]],\n", " 'skew normal data, skew normal model': [[1.0003276666666665,\n", " 1.0178059537564914,\n", " 0.9995769654521169,\n", @@ -244,10 +230,18 @@ " [0.029588612507556917,\n", " 0.13828870506270582,\n", " 0.050852728197426554,\n", - " 0.03782158437972263]]}" + " 0.03782158437972263]],\n", + " 'normal data, skew normal model': [[0.9993873333333333,\n", + " 1.145324094260921,\n", + " 1.0038603930164334,\n", + " 1.0021702322498285],\n", + " [0.025492314214288193,\n", + " 0.06460165579288266,\n", + " 0.0295645094605588,\n", + " 0.022277250178015084]]}" ] }, - "execution_count": 6, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -275,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -284,7 +278,7 @@ "dict_keys(['normal data, normal model', 'normal data (higher noise), normal model', 'skew normal data, normal model', 'skew normal data, skew normal model', 'skew normal data (higher noise), skew normal model', 'normal data, skew normal model'])" ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -297,7 +291,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -309,14 +303,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2024-10-11T18:34:57.629742+02:00\n", + "Last updated: 2024-10-13T15:03:43.532805+02:00\n", "\n" ] } diff --git a/docs/source/notebooks/paper raw data/exemplary results raw data/A1t1R1Part2_110_109.9_110.1.npy b/docs/source/notebooks/paper raw data/exemplary results raw data/A1t1R1Part2_110_109.9_110.1.npy new file mode 100644 index 0000000..6c91a49 Binary files /dev/null and b/docs/source/notebooks/paper raw data/exemplary results raw data/A1t1R1Part2_110_109.9_110.1.npy differ diff --git a/docs/source/notebooks/paper raw data/exemplary results raw data/A2t2R1Part1_132_85.9_86.1.npy b/docs/source/notebooks/paper raw data/exemplary results raw data/A2t2R1Part1_132_85.9_86.1.npy new file mode 100644 index 0000000..c16ea55 Binary files /dev/null and b/docs/source/notebooks/paper raw data/exemplary results raw data/A2t2R1Part1_132_85.9_86.1.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..2ba5cea Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..f8a995e Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..648dbf8 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..122983c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..52f52ce Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..dfd1ff5 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..7f137f1 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..39220ce Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..13543b2 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..b0d6b32 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A1t1R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..dfb433e Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..0cc6d6b Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..052c26d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..164cb2d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..9ec74ef Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..0e17215 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..41fc4a7 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..193c1f6 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..bb5cf1d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..de23f36 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A2t2R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..6fd7be0 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..767f871 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..6d9b982 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..c542c29 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..279d505 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..fed5500 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..217cea4 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..9c1fe10 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..086f0a4 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..836e038 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A3t3R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..fca93ef Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..0b3ebc6 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..b6e9e04 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..b49886c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..3a2736f Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..8a3f8ca Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..e1cdbab Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..c866413 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..418ec32 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..75fc1a8 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A4t4R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..3ecccaf Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..8ae19c3 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..0106ba3 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..fe86857 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..cc38749 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..5f8a8cb Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..b1e1259 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..5429295 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..a61594c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..354afa3 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A5t5R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..af6a163 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..c1de8d7 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..198f04a Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..b313a6e Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..d093610 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..8fc7af5 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..25d6856 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..fbc97dc Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..3c0b2e5 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..19d7f2f Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A6t6R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..ad499ad Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..db8a9f9 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..1b299f4 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..f32bbf0 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..24a5e84 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..f6c297a Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..c62cf98 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..0bec3c7 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..273324f Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..a8d6bcd Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A7t7R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..5c68b1c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..41e2477 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..deaebae Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..a95197c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..f6b8d13 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..6f45e19 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..dad2640 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..8d5f112 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..54a5214 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..804add7 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/A8t8R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..51a5119 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..d04de93 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..4b9865e Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..9db17a1 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..cf33837 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..714b356 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..f9efab6 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..3cc1689 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..10647f8 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..924edca Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B1t1R2Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..07aa19b Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..75a9b12 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..224c605 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..cb1bb4d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..fe82861 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..b2d6ea9 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..65c3d29 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..a476d11 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..d5a33b8 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..08831b1 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B7t7R2Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..430a38d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..22e691d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..70a659c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..9cb050c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..6a8a6cd Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..4730615 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..38df74e Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..572d9a2 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..6d32eb2 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..3eb3bfc Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/B8t8R2Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..7062c07 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..a5d0d6c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..4e418b4 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..f7dad1d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..9b48d91 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..93e312d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..48e4c03 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..d17f893 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..0d09f29 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..f57a6b8 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C1t1R3Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..a0c5b13 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..f2a156b Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..938639a Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..b9e4e0b Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..351e2e1 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..d93bf7c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..622641d Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..69dc4cd Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..1beb0c0 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..4119966 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/C8t8R3Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..233c1bc Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..f05898e Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..e95018f Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..3ed9bd2 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..0c8e68f Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..5a18912 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..6ac7c5f Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..18b559f Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..c475b54 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..9956709 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/D5t13R1Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..b512110 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..9cf4ffd Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..de007b7 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..0a558b0 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..2246284 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..458768c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..2c84ce2 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..6b12a85 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..461168c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..b569a05 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/E5t13R2Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_23_85.8_86.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_23_85.8_86.2.npy new file mode 100644 index 0000000..3dc3fb4 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_23_85.8_86.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_24_86.8_87.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_24_86.8_87.2.npy new file mode 100644 index 0000000..21c5e6c Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_24_86.8_87.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_7_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_7_83.8_84.2.npy new file mode 100644 index 0000000..c91e8f3 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_7_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_83.8_84.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_83.8_84.2.npy new file mode 100644 index 0000000..47d29cb Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_83.8_84.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_84.8_85.2.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_84.8_85.2.npy new file mode 100644 index 0000000..319ba48 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part1_8_84.8_85.2.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_14_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_14_43.9_44.3.npy new file mode 100644 index 0000000..e41cb2a Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_14_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_15_43.9_44.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_15_43.9_44.3.npy new file mode 100644 index 0000000..71b3a77 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_15_43.9_44.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_17_45.9_46.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_17_45.9_46.3.npy new file mode 100644 index 0000000..3e5f668 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_17_45.9_46.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_1_30.0_30.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_1_30.0_30.3.npy new file mode 100644 index 0000000..9d7c850 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_1_30.0_30.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_3_31.0_31.3.npy b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_3_31.0_31.3.npy new file mode 100644 index 0000000..193435f Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/F5t13R3Part2_3_31.0_31.3.npy differ diff --git a/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/Template.xlsx b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/Template.xlsx new file mode 100644 index 0000000..0d7afe3 Binary files /dev/null and b/docs/source/notebooks/paper raw data/raw data set for validation with MultiQuant/Template.xlsx differ diff --git a/docs/source/notebooks/Normal model_normal data_noise level 0.6.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 0.6.xlsx similarity index 100% rename from docs/source/notebooks/Normal model_normal data_noise level 0.6.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 0.6.xlsx diff --git a/docs/source/notebooks/Normal model_normal data_noise level 1.2.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 1.2.xlsx similarity index 100% rename from docs/source/notebooks/Normal model_normal data_noise level 1.2.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_normal data_noise level 1.2.xlsx diff --git a/docs/source/notebooks/Normal model_skew normal data_noise level 0.6.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_skew normal data_noise level 0.6.xlsx similarity index 100% rename from docs/source/notebooks/Normal model_skew normal data_noise level 0.6.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Normal model_skew normal data_noise level 0.6.xlsx diff --git a/docs/source/notebooks/Skew normal model_normal data_noise level 0.6.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_normal data_noise level 0.6.xlsx similarity index 100% rename from docs/source/notebooks/Skew normal model_normal data_noise level 0.6.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_normal data_noise level 0.6.xlsx diff --git a/docs/source/notebooks/Skew normal model_skew normal data_noise level 0.6.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 0.6.xlsx similarity index 100% rename from docs/source/notebooks/Skew normal model_skew normal data_noise level 0.6.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 0.6.xlsx diff --git a/docs/source/notebooks/Skew normal model_skew normal data_noise level 1.2.xlsx b/docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 1.2.xlsx similarity index 100% rename from docs/source/notebooks/Skew normal model_skew normal data_noise level 1.2.xlsx rename to docs/source/notebooks/paper raw data/synthetic data sets for validation/Skew normal model_skew normal data_noise level 1.2.xlsx diff --git a/docs/source/notebooks/test1_all_data.txt b/docs/source/notebooks/paper raw data/test1_all_data.txt similarity index 100% rename from docs/source/notebooks/test1_all_data.txt rename to docs/source/notebooks/paper raw data/test1_all_data.txt diff --git a/docs/source/notebooks/test2_summary.xlsx b/docs/source/notebooks/paper raw data/test2_summary.xlsx similarity index 100% rename from docs/source/notebooks/test2_summary.xlsx rename to docs/source/notebooks/paper raw data/test2_summary.xlsx diff --git a/docs/source/notebooks/test3_df_comparison.xlsx b/docs/source/notebooks/paper raw data/test3_df_comparison.xlsx similarity index 100% rename from docs/source/notebooks/test3_df_comparison.xlsx rename to docs/source/notebooks/paper raw data/test3_df_comparison.xlsx diff --git a/environment.yml b/environment.yml new file mode 100644 index 0000000..8debee2 --- /dev/null +++ b/environment.yml @@ -0,0 +1,16 @@ +name: pp_env +channels: + - conda-forge +dependencies: + - arviz + - jupyter + - matplotlib + - numba + - numpy + - nutpie + - openpyxl + - pip + - pymc + - python=3.11 + - pip: + - peak-performance