-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraws.py
214 lines (162 loc) · 5.33 KB
/
draws.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import turtle
from svg_turtle import SvgTurtle
import tkinter as tk
from math import sqrt, atan, degrees, sin, cos, radians
import cairosvg
def get_img_from_draw(channel: SvgTurtle):
channel.save_as('channel.svg')
# Ruta del archivo SVG de entrada
input_file = 'channel.svg'
# Ruta del archivo PNG de salida
output_file = "channel.png"
# Convertir SVG a PNG
cairosvg.svg2png(url=input_file, write_to=output_file, background_color="white")
def draw_Trapezoid_channel(yn, b, z):
# Dibujar el canal Trapezoid
factor = 250 / (b + (2 * (yn + 0.3) *z))
side_slope = z if z < 5 else 5
if (yn + 0.3) * factor > 130:
factor = 130 / (yn + 0.3)
elif (yn + 0.3) * factor < 40:
factor = 40 / (yn + 0.3)
channel_depth = (yn + 0.3) * factor
yn = yn * factor
angle = degrees(atan(1 / side_slope))
base_width = b * factor if b * factor < 105 else 105
top_width = base_width + 2 * (channel_depth * side_slope)
yn_top_width = base_width + 2 * (yn * side_slope)
diagonal_length = channel_depth * sqrt(1 + side_slope**2)
yn_diagonal_length = yn * sqrt(1 + side_slope**2)
turtle_obj = SvgTurtle(300, 300)
turtle_obj.hideturtle()
turtle_obj.hideturtle()
turtle_obj.penup()
turtle_obj.goto(0, -50)
turtle_obj.pendown()
turtle_obj.pensize(3)
turtle_obj.forward(base_width/2)
turtle_obj.left(angle)
turtle_obj.forward(diagonal_length)
turtle_obj.left(180 - angle)
turtle_obj.penup()
turtle_obj.forward(top_width)
turtle_obj.pendown()
turtle_obj.left(180 - angle)
turtle_obj.forward(diagonal_length)
turtle_obj.left(angle)
turtle_obj.forward(base_width/2)
turtle_obj.fillcolor('blue')
turtle_obj.begin_fill()
turtle_obj.forward(base_width/2)
turtle_obj.left(angle)
turtle_obj.forward(yn_diagonal_length)
turtle_obj.left(180 - angle)
turtle_obj.pensize(1)
turtle_obj.forward(yn_top_width)
turtle_obj.pensize(3)
turtle_obj.left(180 - angle)
turtle_obj.forward(yn_diagonal_length)
turtle_obj.left(angle)
turtle_obj.forward(base_width/2)
turtle_obj.end_fill()
return turtle_obj
# Llamar a la función para dibujar el canal Trapezoid
# draw_Trapezoid_channel(z=1.5, b=2, yn=0.542, trutle_screen=turtle_screen)
def draw_Rectangle(yn, b):
# Dibujar el canal Trapezoid
factor = 170 / b
base_width = b * factor
if (yn + 0.3) * factor > 150:
factor = 150 / (yn + 0.3)
elif (yn + 0.3) * factor < 40:
factor = 40 / (yn + 0.3)
height = (yn + 0.3) * factor
yn = yn * factor
turtle_obj = SvgTurtle(300, 300)
turtle_obj.hideturtle()
turtle_obj.penup()
turtle_obj.goto(0, -50)
turtle_obj.pendown()
turtle_obj.forward(base_width/2)
turtle_obj.left(90)
turtle_obj.forward(height)
turtle_obj.left(90)
turtle_obj.penup()
turtle_obj.forward(base_width)
turtle_obj.pendown()
turtle_obj.left(90)
turtle_obj.forward(height)
turtle_obj.left(90)
turtle_obj.forward(base_width/2)
turtle_obj.fillcolor('blue')
turtle_obj.begin_fill()
turtle_obj.forward(base_width/2)
turtle_obj.left(90)
turtle_obj.forward(yn)
turtle_obj.left(90)
turtle_obj.forward(base_width)
turtle_obj.left(90)
turtle_obj.forward(yn)
turtle_obj.left(90)
turtle_obj.forward(base_width/2)
turtle_obj.end_fill()
return turtle_obj
def draw_triangle(z, yn):
# Dibujar el canal Triangle
factor = 180 / (2 * yn * z)
if (yn + 0.2) * factor > 150:
factor = 170 / (yn + 0.3)
elif (yn + 0.3) * factor < 100:
factor = 100 / (yn + 0.3)
channel_depth = (yn + 0.2) * factor
yn = yn * factor
side_slope = z if z < 1.5 else 1.5
angle = degrees(atan(1 / side_slope))
top_width = 2 * (channel_depth * side_slope)
yn_top_width = 2 * (yn * side_slope)
diagonal_length = channel_depth * sqrt(1 + side_slope**2)
yn_diagonal_length = yn * sqrt(1 + side_slope**2)
turtle_obj = SvgTurtle(300, 300)
turtle_obj.hideturtle()
turtle_obj.hideturtle()
turtle_obj.penup()
turtle_obj.goto(0, -80)
turtle_obj.pendown()
turtle_obj.left(angle)
turtle_obj.forward(diagonal_length)
turtle_obj.left(180 - angle)
turtle_obj.penup()
turtle_obj.forward(top_width)
turtle_obj.pendown()
turtle_obj.left(180 - angle)
turtle_obj.forward(diagonal_length)
turtle_obj.fillcolor('blue')
turtle_obj.begin_fill()
turtle_obj.left(2 * angle)
turtle_obj.forward(yn_diagonal_length)
turtle_obj.left(180 - angle)
turtle_obj.forward(yn_top_width)
turtle_obj.left(180 - angle)
turtle_obj.forward(yn_diagonal_length)
turtle_obj.end_fill()
return turtle_obj
def draw_circle(diameter, angle):
diameter = 180
# Configuración inicial de Turtle
turtle_obj = SvgTurtle(300, 300)
turtle_obj.speed(100)
turtle_obj.hideturtle()
turtle_obj.penup()
turtle_obj.goto(-sin(radians(angle/2))*diameter/2,-cos(radians(angle/2))* diameter/2)
turtle_obj.pendown()
# Dibujar el círculo
turtle_obj.left(-angle/2)
turtle_obj.circle(diameter/2)
# Dibujar el semicírculo
turtle_obj.fillcolor('blue')
turtle_obj.begin_fill()
turtle_obj.circle(diameter/2, angle)
turtle_obj.end_fill()
# Finalizar el dibujo
turtle_obj.pendown()
return turtle_obj