From 3bebfb36e90848aba52dfde7973efeda2cd607e0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Beno=C3=AEt=20Legat?= Date: Fri, 22 Dec 2023 15:07:55 +0100 Subject: [PATCH 1/2] Add tests for ordering --- src/DynamicPolynomials.jl | 1 + src/monomial_vector.jl | 1 - src/var.jl | 9 +++++---- test/comp.jl | 14 ++++++++++++++ 4 files changed, 20 insertions(+), 5 deletions(-) diff --git a/src/DynamicPolynomials.jl b/src/DynamicPolynomials.jl index 895172e..f4eab05 100644 --- a/src/DynamicPolynomials.jl +++ b/src/DynamicPolynomials.jl @@ -36,6 +36,7 @@ function MP.constant_monomial(p::PolyType) end MP.monomial_type(::Type{<:PolyType{V,M}}) where {V,M} = Monomial{V,M} MP.monomial_type(::PolyType{V,M}) where {V,M} = Monomial{V,M} +MP.ordering(p::PolyType) = MP.ordering(MP.variable_union_type(p)) #function MP.constant_monomial(::Type{Monomial{V,M}}, vars=Variable{V,M}[]) where {V,M} # return Monomial{V,M}(vars, zeros(Int, length(vars))) #end diff --git a/src/monomial_vector.jl b/src/monomial_vector.jl index 9f63136..7186503 100644 --- a/src/monomial_vector.jl +++ b/src/monomial_vector.jl @@ -15,7 +15,6 @@ struct MonomialVector{V,M} <: AbstractVector{Monomial{V,M}} _isless = let M = M (a, b) -> MP.compare(a, b, M) < 0 end - @assert issorted(Z, lt = _isless) return new{V,M}(vars, Z) end end diff --git a/src/var.jl b/src/var.jl index b14014c..52877ac 100644 --- a/src/var.jl +++ b/src/var.jl @@ -26,8 +26,8 @@ function buildpolyvar(var, variable_order, monomial_order) varname, :( $(esc(varname)) = polyarrayvar( - $variable_order, - $monomial_order, + $(variable_order), + $(monomial_order), $prefix, $(esc.(var.args[2:end])...), ) @@ -53,9 +53,9 @@ function _extract_kw_args(args, variable_order) for arg in args if Base.Meta.isexpr(arg, :(=)) if arg.args[1] == :variable_order - variable_order = arg.args[2] + variable_order = esc(arg.args[2]) elseif arg.args[1] == :monomial_order - monomial_order = arg.args[2] + monomial_order = esc(arg.args[2]) else error("Unrecognized keyword argument `$(arg.args[1])`") end @@ -145,6 +145,7 @@ end MP.monomial(v::Variable) = Monomial(v) MP.variables(v::Variable) = [v] +MP.ordering(::Variable{V,M}) where {V,M} = M iscomm(::Type{Variable{C}}) where {C} = C diff --git a/test/comp.jl b/test/comp.jl index 66e068f..42e2f4a 100644 --- a/test/comp.jl +++ b/test/comp.jl @@ -1,8 +1,14 @@ +using Test +using DynamicPolynomials +import DynamicPolynomials: Commutative, CreationOrder # to test hygiene @testset "Variable order" begin @polyvar x z = x @polyvar x @test z != x + order = Commutative{CreationOrder} + @polyvar x variable_order = order + @test z != x end @testset "README example" begin function p(x, y, z) @@ -19,3 +25,11 @@ end @polyvar x y z monomial_order = Graded{Reverse{InverseLexOrder}} @test p(x, y, z) == "4z² - 5x³ + 7x²z² + 4xy²z" end +# See https://github.com/JuliaAlgebra/DynamicPolynomials.jl/issues/138 +# Also tests `ordering` +@testset "InverseLexOrder" begin + order = Graded{InverseLexOrder} + @polyvar x[1:2] monomial_order = order + @test ordering(x[1]) == order + @test issorted(monomials(x[1], 0:2)) +end From b70216ecce993098a4cb71284ad483aa36c00637 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Beno=C3=AEt=20Legat?= Date: Mon, 8 Jan 2024 16:36:35 +0100 Subject: [PATCH 2/2] Update url --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index bd6e5a0..160d9e0 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ The following types are defined: All common algebraic operations between those types are designed to be as efficient as possible without doing any assumption on `T`. Typically, one imagine `T` to be a subtype of `Number` but it can be anything. -This is useful for example in the package [PolyJuMP](https://github.com/JuliaOpt/PolyJuMP.jl) where `T` is often an affine expression of [JuMP](https://github.com/JuliaOpt/JuMP.jl) decision variables. +This is useful for example in the package [PolyJuMP](https://github.com/jump-dev/PolyJuMP.jl) where `T` is often an affine expression of [JuMP](https://github.com/jump-dev/JuMP.jl) decision variables. The commutativity of `T` with `*` is not assumed, even if it is the coefficient of a monomial of commutative variables. However, commutativity of `T` and of the variables `+` is always assumed. This allows to keep the terms sorted (Graded Lexicographic order is used) in polynomial and measure which enables more efficient operations.