From 7f4626586f864d691c476981b747d8313d085906 Mon Sep 17 00:00:00 2001 From: MikaelSlevinsky Date: Fri, 1 Nov 2024 15:14:10 -0500 Subject: [PATCH] start adding ToeplitzPlusHankel --- src/FastTransforms.jl | 4 +- src/GramMatrix.jl | 2 +- src/ToeplitzPlusHankel.jl | 319 ++++++++++++++++++++++++++++++++ test/runtests.jl | 1 + test/toeplitzplushankeltests.jl | 11 ++ 5 files changed, 335 insertions(+), 2 deletions(-) create mode 100644 src/ToeplitzPlusHankel.jl create mode 100644 test/toeplitzplushankeltests.jl diff --git a/src/FastTransforms.jl b/src/FastTransforms.jl index 5f401e0..8a3d5a3 100644 --- a/src/FastTransforms.jl +++ b/src/FastTransforms.jl @@ -125,7 +125,9 @@ include("specialfunctions.jl") include("toeplitzplans.jl") include("toeplitzhankel.jl") -include("SymmetricToeplitzPlusHankel.jl") +export ToeplitzPlusHankel + +include("ToeplitzPlusHankel.jl") # following use libfasttransforms by default for f in (:jac2jac, diff --git a/src/GramMatrix.jl b/src/GramMatrix.jl index 1c2ee6c..11d23c8 100644 --- a/src/GramMatrix.jl +++ b/src/GramMatrix.jl @@ -22,7 +22,7 @@ where ``J = \\begin{pmatrix} 0 & 1\\\\ -1 & 0\\end{pmatrix}`` and where: ```math G_{:, 1} = e_n,\\quad{\\rm and}\\quad G_{:, 2} = W_{n-1, :}X_{n-1, n} - X^\\top W_{:, n}. ``` -Fast (``{\\cal O}(n^2)``) Cholesky factorization of the Gram matrix returns the +Fast (``O(n^2)``) Cholesky factorization of the Gram matrix returns the connection coefficients between ``{\\bf P}(x)`` and the polynomials ``{\\bf Q}(x)`` orthogonal in the modified inner product, ``{\\bf P}(x) = {\\bf Q}(x) R``. """ diff --git a/src/ToeplitzPlusHankel.jl b/src/ToeplitzPlusHankel.jl new file mode 100644 index 0000000..c1aa234 --- /dev/null +++ b/src/ToeplitzPlusHankel.jl @@ -0,0 +1,319 @@ +struct ToeplitzPlusHankel{T, S, P1 <: Plan{S}, P2 <: Plan{S}} <: AbstractMatrix{T} + tc::Vector{T} + tr::Vector{T} + h::Vector{T} + th_dft::Matrix{S} + tht_dft::Matrix{S} + temp::Matrix{S} + plan::P1 + iplan::P2 + size::NTuple{2, Int} +end + +# enforces tr[1] == tc[1] +function ToeplitzPlusHankel(tc::Vector{T}, tr::Vector{T}, h::Vector{T}) where T + m = length(tc) + n = length(tr) + @assert length(h) == m+n-1 + tr[1] = tc[1] + mn = m+n + S = promote_type(float(T), Complex{Float32}) + th_dft = Matrix{S}(undef, mn, 2) + copyto!(th_dft, 1, tc, 1, m) + th_dft[m+1, 1] = zero(T) + copyto!(th_dft, m+2, Iterators.reverse(tr), 1, n-1) + copyto!(th_dft, mn+1, h, n, m) + th_dft[m+1, 2] = zero(T) + copyto!(th_dft, mn+m+2, h, 1, n-1) + tht_dft = Matrix{S}(undef, mn, 2) + copyto!(tht_dft, 1, tr, 1, n) + tht_dft[n+1, 1] = zero(T) + copyto!(tht_dft, n+2, Iterators.reverse(tc), 1, m-1) + copyto!(tht_dft, mn+1, h, m, n) + tht_dft[n+1, 2] = zero(T) + copyto!(tht_dft, mn+n+2, h, 1, m-1) + + plan = plan_fft!(th_dft, 1) + plan*th_dft + plan*tht_dft + temp = zeros(S, mn, 2) + iplan = inv(plan) + + ToeplitzPlusHankel{T, S, typeof(plan), typeof(iplan)}(tc, tr, h, th_dft, tht_dft, temp, plan, iplan, (m, n)) +end + +# A ChebyshevGramMatrix isa (symmetric positive-definite) ToeplitzPlusHankel matrix. +function ToeplitzPlusHankel(G::ChebyshevGramMatrix) + n = size(G, 1) + ToeplitzPlusHankel(G.μ[1:n]/2, G.μ[1:n]/2, G.μ/2) +end + +size(A::ToeplitzPlusHankel) = A.size +getindex(A::ToeplitzPlusHankel, i::Integer, j::Integer) = (i ≥ j ? A.tc[i-j+1] : A.tr[j-i+1]) + A.h[i+j-1] + +# A view of a T+H is also T+H. +function getindex(A::ToeplitzPlusHankel, ir::UnitRange{Int}, jr::UnitRange{Int}) + fir, lir = first(ir), last(ir) + fjr, ljr = first(jr), last(jr) + if fir ≥ fjr + tc = A.tc[fir-fjr+1:lir-fjr+1] + tr = [A.tc[fir-fjr+1:-1:max(1, fir-ljr+1)]; A.tr[2:ljr-fir+1]] + else + tc = [A.tr[fjr-fir+1:-1:max(1, fjr-lir+1)]; A.tc[2:lir-fjr+1]] + tr = A.tr[fjr-fir+1:ljr-fir+1] + end + ToeplitzPlusHankel(tc, tr, A.h[fir+fjr-1:lir+ljr-1]) +end + + +# y ← A x α + y β +function mul!(y::StridedVector{T}, A::ToeplitzPlusHankel{T}, x::StridedVector{T}, α::S, β::S) where {T <: Real, S <: Real} + m, n = size(A) + @assert m == length(y) + @assert n == length(x) + mn = m+n + th_dft = A.th_dft + temp = A.temp + plan = A.plan + iplan = A.iplan + + copyto!(temp, 1, x, 1, n) + copyto!(temp, mn+1, Iterators.reverse(x), 1, n) + @inbounds for j in n+1:mn + temp[j, 1] = zero(T) + temp[j, 2] = zero(T) + end + plan*temp + temp .*= th_dft + iplan*temp + + if iszero(β) + @inbounds @simd for i in 1:m + y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) + end + else + @inbounds @simd for i in 1:m + y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) + β*y[i] + end + end + return y +end + +# y ← A' x α + y β +function mul!(y::StridedVector{T}, A::Adjoint{T, <:ToeplitzPlusHankel{T}}, x::StridedVector{T}, α::S, β::S) where {T <: Real, S <: Real} + m, n = size(A) + @assert m == length(y) + @assert n == length(x) + mn = m+n + AP = A.parent + tht_dft = AP.tht_dft + temp = AP.temp + plan = AP.plan + iplan = AP.iplan + + copyto!(temp, 1, x, 1, n) + copyto!(temp, mn+1, Iterators.reverse(x), 1, n) + @inbounds for j in n+1:mn + temp[j, 1] = zero(T) + temp[j, 2] = zero(T) + end + plan*temp + temp .*= tht_dft + iplan*temp + + if iszero(β) + @inbounds @simd for i in 1:m + y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) + end + else + @inbounds @simd for i in 1:m + y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) + β*y[i] + end + end + return y +end + + +# C ← A B α + C β +function mul!(C::StridedMatrix{T}, A::ToeplitzPlusHankel{T}, B::StridedMatrix{T}, α::S, β::S) where {T <: Real, S <: Real} + m, n = size(A) + @assert m == size(C, 1) + @assert n == size(B, 1) + p = size(B, 2) + if size(C, 2) != p + throw(DimensionMismatch("input and output matrices must have same number of columns")) + end + + th_dft = A.th_dft + TC = promote_type(float(T), Complex{Float32}) + temp = zeros(TC, m+n, 2p) + plan = plan_fft!(temp, 1) + + for k in 1:p + copyto!(view(temp, :, 2k-1), 1, view(B, :, k), 1, n) + copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(B, :, k)), 1, n) + end + plan*temp + for k in 1:p + vt = view(temp, :, 2k-1:2k) + vt .*= th_dft + end + plan\temp + + if iszero(β) + @inbounds for k in 1:p + for i in 1:m + C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + end + end + else + @inbounds for k in 1:p + for i in 1:m + C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[i, k] + end + end + end + return C +end + +# Morally equivalent to mul!(C', B', A', α, β)' with StridedMatrix replaced by AbstractMatrix below +function mul!(C::StridedMatrix{T}, A::StridedMatrix{T}, B::ToeplitzPlusHankel{T}, α::S, β::S) where {T <: Real, S <: Real} + n, m = size(B) + @assert m == size(C, 2) + @assert n == size(A, 2) + p = size(A, 1) + if size(C, 1) != p + throw(DimensionMismatch("input and output matrices must have same number of rows")) + end + + tht_dft = B.tht_dft + TC = promote_type(float(T), Complex{Float32}) + temp = zeros(TC, m+n, 2p) + plan = plan_fft!(temp, 1) + + for k in 1:p + copyto!(view(temp, :, 2k-1), 1, view(A, k, :), 1, n) + copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(A, k, :)), 1, n) + end + plan*temp + for k in 1:p + vt = view(temp, :, 2k-1:2k) + vt .*= tht_dft + end + plan\temp + + if iszero(β) + @inbounds for k in 1:p + for i in 1:m + C[k, i] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + end + end + else + @inbounds for k in 1:p + for i in 1:m + C[k, i] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[k, i] + end + end + end + return C +end + +# C ← A' B α + C β +function mul!(C::StridedMatrix{T}, A::Adjoint{T, <:ToeplitzPlusHankel{T}}, B::StridedMatrix{T}, α::S, β::S) where {T <: Real, S <: Real} + m, n = size(A) + @assert m == size(C, 1) + @assert n == size(B, 1) + p = size(B, 2) + if size(C, 2) != p + throw(DimensionMismatch("input and output matrices must have same number of columns")) + end + + tht_dft = A.parent.tht_dft + TC = promote_type(float(T), Complex{Float32}) + temp = zeros(TC, m+n, 2p) + plan = plan_fft!(temp, 1) + + for k in 1:p + copyto!(view(temp, :, 2k-1), 1, view(B, :, k), 1, n) + copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(B, :, k)), 1, n) + end + plan*temp + for k in 1:p + vt = view(temp, :, 2k-1:2k) + vt .*= tht_dft + end + plan\temp + + if iszero(β) + @inbounds for k in 1:p + for i in 1:m + C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + end + end + else + @inbounds for k in 1:p + for i in 1:m + C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[i, k] + end + end + end + return C +end + +# Estimate the Frobenius norm of the Toeplitz-plus-Hankel matrix by working with the symbols. +function normest(A::ToeplitzPlusHankel{T}) where T + m, n = size(A) + tc = A.tc + tr = A.tr + h = A.h + ret1 = zero(T) + ret2 = zero(T) + if m == min(m, n) + for i = 1:m + ret1 += (m+1-i)*abs2(tc[i]) + end + for i = 2:n-m + ret1 += m*abs2(tr[i]) + end + for i = n-m+1:n + ret1 += (n-i)*abs2(tr[i]) + end + for i = 1:m + ret2 += i*abs2(h[i]) + end + for i = m+1:n + ret2 += m*abs2(h[i]) + end + for i = n+1:m+n-1 + ret2 += (m+n-i)*abs2(h[i]) + end + else + for i = 1:n + ret1 += (n+1-i)*abs2(tr[i]) + end + for i = 2:m-n + ret1 += n*abs2(tc[i]) + end + for i = m-n+1:m + ret1 += (m-i)*abs2(tc[i]) + end + for i = 1:n + ret2 += i*abs2(h[i]) + end + for i = n+1:m + ret2 += n*abs2(h[i]) + end + for i = m+1:m+n-1 + ret2 += (m+n-i)*abs2(h[i]) + end + end + sqrt(ret1) + sqrt(ret2) +end + +normest(A::Symmetric{T, <: ToeplitzPlusHankel{T}}) where T = normest(parent(A)) +normest(A::Hermitian{T, <: ToeplitzPlusHankel{T}}) where T = normest(parent(A)) + +function normest(A::ChebyshevGramMatrix{T}) where T + n = size(A, 1) + normest(A[1:n, 1:n]) +end diff --git a/test/runtests.jl b/test/runtests.jl index 7561df0..36c95de 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -10,5 +10,6 @@ include("gaunttests.jl") include("hermitetests.jl") include("toeplitzplanstests.jl") include("toeplitzhankeltests.jl") +include("toeplitzplushankeltests.jl") include("grammatrixtests.jl") include("arraystests.jl") diff --git a/test/toeplitzplushankeltests.jl b/test/toeplitzplushankeltests.jl new file mode 100644 index 0000000..9a2130a --- /dev/null +++ b/test/toeplitzplushankeltests.jl @@ -0,0 +1,11 @@ +using FastTransforms, LinearAlgebra, Test + +@testset "ToeplitzPlusHankel" begin + n = 128 + for T in (Float32, Float64) + μ = FastTransforms.chebyshevmoments1(T, 2n-1) + G = ChebyshevGramMatrix(μ) + TpH = ToeplitzPlusHankel(G) + @test TpH ≈ G + end +end