diff --git a/test/Demo.jl b/test/Demo.jl index 9a36a4c..4adf1a0 100644 --- a/test/Demo.jl +++ b/test/Demo.jl @@ -54,7 +54,7 @@ function demo() initial_state = mortar([[-1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0]]) # both players want to reach a goal position at (0, 1)) context = [0.0, 1.0, 0.0, 1.0] - joint_strategy = solve_trajectory_game!(solver, game, initial_state; context) + initial_joint_strategy = solve_trajectory_game!(solver, game, initial_state; context) # to demonstrate the differentiability, let us use gradient descent to find # goal positions that minimize each players' control effort @@ -72,10 +72,6 @@ function demo() end end - # we can quickly visualize the solution - GLMakie.plot(game.env; color=:lightgray) |> display - GLMakie.plot!(joint_strategy) - context_estimate = context number_of_gradient_steps = 100 learning_rate = 1e-2 @@ -84,6 +80,18 @@ function demo() context_estimate -= learning_rate * ∇context end + final_joint_strategy = solve_trajectory_game!(solver, game, initial_state; context=context_estimate) + + # visualize the solution... + # ...for the initial context estimate + figure = GLMakie.Figure() + GLMakie.plot(figure[1, 1], game.env; axis=(; aspect=GLMakie.DataAspect(), title="Game solution for initial context estimate")) + GLMakie.plot!(figure[1, 1], initial_joint_strategy) + # ...and the optimized context estimate + GLMakie.plot(figure[1, 2], game.env; axis=(; aspect=GLMakie.DataAspect(), title="Game solution for optimized context estimate")) + GLMakie.plot!(figure[1, 2], final_joint_strategy) + display(figure) + # trivially, we find that we can minimize each player's control input by setting # their goal positions to the initial positions @show (context_estimate - initial_state[[1, 2, 5, 6]])