From d8d69ec4f1ad0ab22e876c025e559b093752342f Mon Sep 17 00:00:00 2001 From: Carlo Lucibello Date: Wed, 27 Nov 2024 19:11:34 +0100 Subject: [PATCH] add buildkite workflow (#526) --- .buildkite/pipeline.yml | 25 +++++++++++ GNNGraphs/test/test_utils.jl | 6 +++ GraphNeuralNetworks/Project.toml | 27 ------------ GraphNeuralNetworks/docs/src/dev.md | 44 ++++++++++++++++--- .../src/GraphNeuralNetworks.jl | 4 +- GraphNeuralNetworks/test/Project.toml | 15 +++++++ .../test/examples/node_classification_cora.jl | 3 +- GraphNeuralNetworks/test/layers/conv.jl | 5 +++ GraphNeuralNetworks/test/runtests.jl | 6 ++- GraphNeuralNetworks/test/test_module.jl | 15 ++++--- README.md | 23 +++++----- 11 files changed, 119 insertions(+), 54 deletions(-) create mode 100644 .buildkite/pipeline.yml create mode 100644 GraphNeuralNetworks/test/Project.toml diff --git a/.buildkite/pipeline.yml b/.buildkite/pipeline.yml new file mode 100644 index 000000000..dfa94fc4e --- /dev/null +++ b/.buildkite/pipeline.yml @@ -0,0 +1,25 @@ +steps: + - label: "GNN CUDA" + plugins: + - JuliaCI/julia#v1: + version: "1" + - JuliaCI/julia-coverage#v1: + dirs: + - GraphNeuralNetworks/src + command: | + julia --color=yes --depwarn=yes --project=GraphNeuralNetworks/test -e ' + import Pkg + dev_pkgs = Pkg.PackageSpec[] + for pkg in ("GNNGraphs", "GNNlib", "GraphNeuralNetworks") + push!(dev_pkgs, Pkg.PackageSpec(path=pkg)); + end + Pkg.develop(dev_pkgs) + Pkg.add(["CUDA", "cuDNN"]) + Pkg.test("GraphNeuralNetworks")' + agents: + queue: "juliagpu" + cuda: "*" + env: + GNN_TEST_CUDA: "true" + GNN_TEST_CPU: "false" + timeout_in_minutes: 60 diff --git a/GNNGraphs/test/test_utils.jl b/GNNGraphs/test/test_utils.jl index 56e298311..4f076bf56 100644 --- a/GNNGraphs/test/test_utils.jl +++ b/GNNGraphs/test/test_utils.jl @@ -1,6 +1,12 @@ using ChainRulesTestUtils, FiniteDifferences, Zygote, Adapt, CUDA CUDA.allowscalar(false) +# Using this until https://github.com/JuliaDiff/FiniteDifferences.jl/issues/188 is fixed +function FiniteDifferences.to_vec(x::Integer) + Integer_from_vec(v) = x + return Int[x], Integer_from_vec +end + function ngradient(f, x...) fdm = central_fdm(5, 1) return FiniteDifferences.grad(fdm, f, x...) diff --git a/GraphNeuralNetworks/Project.toml b/GraphNeuralNetworks/Project.toml index dabc74ac5..4131bc9a6 100644 --- a/GraphNeuralNetworks/Project.toml +++ b/GraphNeuralNetworks/Project.toml @@ -6,10 +6,8 @@ version = "0.6.22" [deps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c" -Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196" GNNGraphs = "aed8fd31-079b-4b5a-b342-a13352159b8c" GNNlib = "a6a84749-d869-43f8-aacc-be26a1996e48" -Graphs = "86223c79-3864-5bf0-83f7-82e725a168b6" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54" MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" @@ -18,41 +16,16 @@ Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" Reexport = "189a3867-3050-52da-a836-e630ba90ab69" Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" -[weakdeps] -CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" - [compat] -CUDA = "4, 5" ChainRulesCore = "1" Flux = "0.14" -Functors = "0.4.1" GNNGraphs = "1.0" GNNlib = "0.2" -Graphs = "1.12" LinearAlgebra = "1" MLUtils = "0.4" MacroTools = "0.5" NNlib = "0.9" -Pkg = "1" Random = "1" Reexport = "1" Statistics = "1" -TestItemRunner = "1.0.5" julia = "1.10" - -[extras] -Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" -ChainRulesTestUtils = "cdddcdb0-9152-4a09-a978-84456f9df70a" -DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" -FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000" -Graphs = "86223c79-3864-5bf0-83f7-82e725a168b6" -InlineStrings = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48" -MLDatasets = "eb30cadb-4394-5ae3-aed4-317e484a6458" -Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" -SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" -Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" -TestItemRunner = "f8b46487-2199-4994-9208-9a1283c18c0a" -Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" - -[targets] -test = ["Test", "TestItemRunner", "Pkg", "MLDatasets", "Adapt", "DataFrames", "InlineStrings", "SparseArrays", "Graphs", "Zygote", "FiniteDifferences", "ChainRulesTestUtils"] diff --git a/GraphNeuralNetworks/docs/src/dev.md b/GraphNeuralNetworks/docs/src/dev.md index f67fac0cf..6a0da262c 100644 --- a/GraphNeuralNetworks/docs/src/dev.md +++ b/GraphNeuralNetworks/docs/src/dev.md @@ -1,10 +1,10 @@ # Developer Notes -## Develop and Managing the Monorepo -### Development Enviroment +## Development Enviroment GraphNeuralNetworks.jl is package hosted in a monorepo that contains multiple packages. -The GraphNeuralNetworks.jl package depends on GNNGraphs.jl, also hosted in the same monorepo. +The GraphNeuralNetworks.jl package depends on GNNGraphs.jl and GNNlib.jl, also hosted in the same monorepo. +In order ```julia pkg> activate . @@ -12,19 +12,51 @@ pkg> activate . pkg> dev ./GNNGraphs ``` -### Add a New Layer +## Add a New Layer To add a new graph convolutional layer and make it available in both the Flux-based frontend (GraphNeuralNetworks.jl) and the Lux-based frontend (GNNLux), you need to: + 1. Add the functional version to GNNlib 2. Add the stateful version to GraphNeuralNetworks 3. Add the stateless version to GNNLux 4. Add the layer to the table in docs/api/conv.md -### Versions and Tagging +We suggest to start with implementing a self-contained Flux layer in GraphNeuralNetworks.jl, add the corresponding tests, and then when everything is working, move the implementation of the forward pass to GNNlib.jl. At this point, you can add the stateless version to GNNLux.jl. + +It could also be convenient to use the `@structdef` macro from [Autostruct.jl](https://github.com/CarloLucibello/AutoStructs.jl) to simultaneously generate the struct and the constructor for the layer. +For example, the Flux implementation of [`MEGNetConv`](@ref) layer can be written as follows: + +```julia +using Flux, GraphNeuralNetworks, AutoStructs + +@structdef function MEGNetConv(ch::Pair{Int, Int}; aggr = mean) + nin, nout = ch + ϕe = Chain(Dense(3nin, nout, relu), + Dense(nout, nout)) + + ϕv = Chain(Dense(nin + nout, nout, relu), + Dense(nout, nout)) + + return MEGNetConv(ϕe, ϕv, aggr) +end + +Flux.@layer MEGNetConv + +function (l::MEGNetConv)(g::AbstractGraph, x::AbstractMatrix, e::AbstractMatrix) + ē = apply_edges(g, xi = x, xj = x, e = e) do xi, xj, e + l.ϕe(vcat(xi, xj, e)) + end + xᵉ = aggregate_neighbors(g, l.aggr, ē) + x̄ = l.ϕv(vcat(x, xᵉ)) + return x̄, ē +end +``` + +## Versions and Tagging Each PR should update the version number in the Porject.toml file of each involved package if needed by semnatic versioning. For instance, when adding new features GNNGraphs could move from "1.17.5" to "1.18.0-DEV". The "DEV" will be removed when the package is tagged and released. Pay also attention to updating the compat bounds, e.g. GraphNeuralNetworks might require a newer version of GNNGraphs. -### Generate Documentation Locally +## Generate Documentation Locally For generating the documentation locally ``` cd docs diff --git a/GraphNeuralNetworks/src/GraphNeuralNetworks.jl b/GraphNeuralNetworks/src/GraphNeuralNetworks.jl index fd1c77767..c8df337c8 100644 --- a/GraphNeuralNetworks/src/GraphNeuralNetworks.jl +++ b/GraphNeuralNetworks/src/GraphNeuralNetworks.jl @@ -6,11 +6,9 @@ using Flux using Flux: glorot_uniform, leakyrelu, GRUCell, batch using MacroTools: @forward using NNlib -using NNlib: scatter, gather using ChainRulesCore -using Reexport +using Reexport: @reexport using MLUtils: zeros_like -using Graphs: Graphs using GNNGraphs: COO_T, ADJMAT_T, SPARSE_T, check_num_nodes, check_num_edges, diff --git a/GraphNeuralNetworks/test/Project.toml b/GraphNeuralNetworks/test/Project.toml new file mode 100644 index 000000000..5e554715c --- /dev/null +++ b/GraphNeuralNetworks/test/Project.toml @@ -0,0 +1,15 @@ +[deps] +ChainRulesTestUtils = "cdddcdb0-9152-4a09-a978-84456f9df70a" +FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000" +Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c" +Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196" +GraphNeuralNetworks = "cffab07f-9bc2-4db1-8861-388f63bf7694" +Graphs = "86223c79-3864-5bf0-83f7-82e725a168b6" +MLDatasets = "eb30cadb-4394-5ae3-aed4-317e484a6458" +Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" +Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" +SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" +Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" +Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" +TestItemRunner = "f8b46487-2199-4994-9208-9a1283c18c0a" +Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" diff --git a/GraphNeuralNetworks/test/examples/node_classification_cora.jl b/GraphNeuralNetworks/test/examples/node_classification_cora.jl index 9a424a26d..54241d50f 100644 --- a/GraphNeuralNetworks/test/examples/node_classification_cora.jl +++ b/GraphNeuralNetworks/test/examples/node_classification_cora.jl @@ -108,7 +108,8 @@ end # module TrainingExampleModule.train_many() end -@testitem "training example GPU" setup=[TrainingExampleModule] tags=[:gpu] begin +@testitem "training example GPU" setup=[TestModule, TrainingExampleModule] tags=[:gpu] begin + using .TestModule # for loading gpu packages using .TrainingExampleModule TrainingExampleModule.train_many(use_gpu = true) end diff --git a/GraphNeuralNetworks/test/layers/conv.jl b/GraphNeuralNetworks/test/layers/conv.jl index 88c6282fb..2167cf47a 100644 --- a/GraphNeuralNetworks/test/layers/conv.jl +++ b/GraphNeuralNetworks/test/layers/conv.jl @@ -101,6 +101,7 @@ end k = 2 l = ChebConv(D_IN => D_OUT, k) for g in TEST_GRAPHS + has_isolated_nodes(g) && continue g.graph isa AbstractSparseMatrix && continue @test size(l(g, g.x)) == (D_OUT, g.num_nodes) test_gradients(l, g, g.x, rtol = RTOL_LOW, test_gpu = true, compare_finite_diff = false) @@ -377,6 +378,7 @@ end l = CGConv((D_IN, edim) => D_OUT, tanh, residual = false, bias = true) for g in TEST_GRAPHS g.graph isa AbstractSparseMatrix && continue + g = GNNGraph(g, edata = rand(Float32, edim, g.num_edges)) @test size(l(g, g.x, g.e)) == (D_OUT, g.num_nodes) test_gradients(l, g, g.x, g.e, rtol = RTOL_HIGH, test_gpu = true, compare_finite_diff = false) end @@ -432,6 +434,7 @@ end l = MEGNetConv(D_IN => D_OUT, aggr = +) for g in TEST_GRAPHS g.graph isa AbstractSparseMatrix && continue + g = GNNGraph(g, edata = rand(Float32, D_IN, g.num_edges)) y = l(g, g.x, g.e) @test size(y[1]) == (D_OUT, g.num_nodes) @test size(y[2]) == (D_OUT, g.num_edges) @@ -462,6 +465,7 @@ end l = GMMConv((D_IN, ein_channel) => D_OUT, K = K) for g in TEST_GRAPHS g.graph isa AbstractSparseMatrix && continue + g = GNNGraph(g, edata = rand(Float32, ein_channel, g.num_edges)) y = l(g, g.x, g.e) test_gradients(l, g, g.x, g.e, rtol = RTOL_HIGH, test_gpu = true, compare_finite_diff = false) end @@ -585,6 +589,7 @@ end bias_qkv = true) for g in TEST_GRAPHS g.graph isa AbstractSparseMatrix && continue + g = GNNGraph(g, edata = rand(Float32, ein, g.num_edges)) @test size(l(g, g.x, g.e)) == (D_IN * heads, g.num_nodes) test_gradients(l, g, g.x, g.e, rtol = RTOL_LOW, test_gpu = true, compare_finite_diff = false) end diff --git a/GraphNeuralNetworks/test/runtests.jl b/GraphNeuralNetworks/test/runtests.jl index e3ca04f88..649eaeaf2 100644 --- a/GraphNeuralNetworks/test/runtests.jl +++ b/GraphNeuralNetworks/test/runtests.jl @@ -4,12 +4,16 @@ using TestItemRunner ## for how to run the tests within VS Code. ## See test_module.jl for the test infrastructure. -## Uncomment below to change the default test settings +## Uncomment below and in test_module.jl to change the default test settings # ENV["GNN_TEST_CPU"] = "false" # ENV["GNN_TEST_CUDA"] = "true" # ENV["GNN_TEST_AMDGPU"] = "true" # ENV["GNN_TEST_Metal"] = "true" +# The only available tag at the moment is :gpu +# Tests not tagged with :gpu are considered to be CPU tests +# Tests tagged with :gpu should run on all GPU backends + if get(ENV, "GNN_TEST_CPU", "true") == "true" @run_package_tests filter = ti -> :gpu ∉ ti.tags end diff --git a/GraphNeuralNetworks/test/test_module.jl b/GraphNeuralNetworks/test/test_module.jl index abd54b84c..a2cca1952 100644 --- a/GraphNeuralNetworks/test/test_module.jl +++ b/GraphNeuralNetworks/test/test_module.jl @@ -3,9 +3,11 @@ using GraphNeuralNetworks using Test using Statistics, Random -using Flux, Functors +using Flux +using Functors: fmapstructure_with_path using Graphs -using ChainRulesTestUtils, FiniteDifferences, Zygote, Adapt +using ChainRulesTestUtils, FiniteDifferences +using Zygote using SparseArrays using Pkg @@ -16,22 +18,23 @@ using Pkg # ENV["GNN_TEST_Metal"] = "true" if get(ENV, "GNN_TEST_CUDA", "false") == "true" - Pkg.add(["CUDA", "cuDNN"]) + # Pkg.add(["CUDA", "cuDNN"]) using CUDA CUDA.allowscalar(false) end if get(ENV, "GNN_TEST_AMDGPU", "false") == "true" - Pkg.add("AMDGPU") + # Pkg.add("AMDGPU") using AMDGPU AMDGPU.allowscalar(false) end if get(ENV, "GNN_TEST_Metal", "false") == "true" - Pkg.add("Metal") + # Pkg.add("Metal") using Metal Metal.allowscalar(false) end -# from Bse + +# from Base export mean, randn, SparseArrays, AbstractSparseMatrix # from other packages diff --git a/README.md b/README.md index acbccf28b..7a44c102d 100644 --- a/README.md +++ b/README.md @@ -7,27 +7,30 @@ ![](https://github.com/JuliaGraphs/GraphNeuralNetworks.jl/actions/workflows/ci.yml/badge.svg) [![codecov](https://codecov.io/gh/JuliaGraphs/GraphNeuralNetworks.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaGraphs/GraphNeuralNetworks.jl) -This is the monorepository for the GraphNeuralNetworks project, bringing together all code into a unified structure to facilitate code sharing and reusability across different project components. It contains the following packages: +Libraries for deep learning on graphs in Julia, using either [Flux.jl](https://fluxml.ai/Flux.jl/stable/) or [Lux.jl](https://lux.csail.mit.edu/stable/) as backend framework. -- `GraphNeuralNetwork.jl`: Package that contains stateful graph convolutional layers based on the machine learning framework [Flux.jl](https://fluxml.ai/Flux.jl/stable/). This is the fronted package for Flux users. It depends on GNNlib.jl, GNNGraphs.jl, and Flux.jl packages. +This monorepo contains the following packages: -- `GNNLux.jl`: Package that contains stateless graph convolutional layers based on the machine learning framework [Lux.jl](https://lux.csail.mit.edu/stable/). This is fronted package for Lux users. It depends on GNNlib.jl, GNNGraphs.jl, and Lux.jl packages. +- `GraphNeuralNetworks.jl`: Graph convolutional layers based on the deep learning framework [Flux.jl](https://fluxml.ai/Flux.jl/stable/). This is the fronted package for Flux users. -- `GNNlib.jl`: Package that contains the core graph neural network layers and utilities. It depends on GNNGraphs.jl and GNNlib.jl packages and serves for code base for GraphNeuralNetwork.jl and GNNLux.jl packages. +- `GNNLux.jl`: Graph convolutional layers based on the deep learning framework [Lux.jl](https://lux.csail.mit.edu/stable/). This is the fronted package for Lux users. This package is still under development and it is not yet registered. -- `GNNGraphs.jl`: Package that contains the graph data structures and helper functions for working with graph data. It depends on Graphs.jl package. +- `GNNlib.jl`: Contains the message passing framework based on the gather/scatter mechanism or on + sparse matrix multiplication. It also contained the shared implementation for the layers of the two fronted packages. This package is not meant to be used directly by the user, but its functionalities + are used and re-exported by the fronted packages. +- `GNNGraphs.jl`: Package that contains the graph data structures and helper functions for working with graph data. It depends on Graphs.jl package. -Among its general features: +Both `GraphNeuralNetworks.jl` and `GNNLux.jl` enjoy several features: -* Implements common graph convolutional layers both in stateful and stateless form. -* Supports computations on batched graphs. +* Implement common graph convolutional layers. +* Support computations on batched graphs. * Easy to define custom layers. -* CUDA support. +* CUDA and AMDGPU support. * Integration with [Graphs.jl](https://github.com/JuliaGraphs/Graphs.jl). * [Examples](https://github.com/JuliaGraphs/GraphNeuralNetworks.jl/tree/master/GraphNeuralNetworks/examples) of node, edge, and graph level machine learning tasks. -* Heterogeneous and temporal graphs. +* Heterogeneous and temporal graphs support. ## Installation