-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathiobuffer.jl
989 lines (876 loc) · 37 KB
/
iobuffer.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
# This file is a part of Julia. License is MIT: https://julialang.org/license
# IOBuffer is a Memory{UInt8} backed IO type for in-memory IO.
# Here, u represents used bytes (already read), X represents bytes still to read,
# - represents bytes uninitialized data but which can be written to later.
# . represents bytes before offset, which the buffer will not touch, until
# a write operation happens.
# .....uuuuuuuuuuuuuXXXXXXXXXXXXX------------
# | | | | | |
# | offset ptr size | maxsize
# 1 lastindex(data)
# N.B: `mark` does not correspond to any index in the buffer. Instead, it stores
# the mark at virtual offset in the buffer.
# AFTER COMPACTION
# XXXXXXXXXXXXX--------------------------
# || | | | |
# |1 ptr size | maxsize
# | lastindex(data)
# offset (set to zero)
# * The underlying array is always 1-indexed
# * The IOBuffer has full control (ownership) of the underlying array, only when
# buffer.write == true.
# * Unreachable data can be deleted in the buffer's data, shifting the whole thing to the left
# to make room for more data, without replacing or resizing data.
# This can be done only if the buffer is not seekable
mutable struct GenericIOBuffer{T<:AbstractVector{UInt8}} <: IO
# T should support: getindex, setindex!, length, copyto!, similar, size and (optionally) resize!
data::T
# The user can take control of `data` out of this struct. When that happens, instead of eagerly allocating
# a new array, we set `.reinit` to true, and then allocate a new one when needed.
# If reinit is true, the buffer is writable, and offset_or_compacted and size is zero. See `take!`
reinit::Bool
readable::Bool
writable::Bool
# If not seekable, implementation is free to destroy (compact) data before ptr, unless
# it can be recovered using the mark by using `reset`.
# If it IS seekable, the user may always recover any data in 1:size by seeking,
# so no data can be destroyed.
# Non-seekable IOBuffers can only be constructed with `PipeBuffer`, which are writable,
# readable and append.
seekable::Bool
# If true, write new data to the index size+1 instead of the index ptr.
append::Bool
# Last index of `data` that has been written to. Data in size+1:end has not yet been used,
# and may contain arbitrary values.
# This value is always in 0 : lastindex(data)
size::Int
# When the buffer is resized, or a new buffer allocated, this is the maximum size of the buffer.
# A new GenericIOBuffer may be constructed with an existing data larger than `maxsize`.
# When that happensm we must make sure to not have more than `maxsize` bytes in the buffer,
# else reallocating will lose data. So, never write to indices > `maxsize + get_offset(io)`
# This value is always in 0:typemax(Int).
maxsize::Int
# Data is read/written from/to ptr, except in situations where append is true, in which case
# data is still read from ptr, but written to size+1.
# This value is always in offset + 1 : size+1
ptr::Int
# This field has two distinct meanings:
# If the value is positive, it encodes an offset of the start of the data in `data`.
# This is used if the buffer is instantiated from a Vector with non-zero memory offset.
# Then, the IOBuffer stores the underlying memory, and so the first data in the buffer
# is not at index 1.
# If the value is negative, then `-io.offset_or_compacted` gets the number of compacted
# bytes. That's the number of unused bytes deleted from a non-seekable stream to make space.
# We need to keep track of it in order to make `mark` and `position` etc work, that is,
# we need to know the virtual position of the mark even when an arbitrary number
# of unused bytes has been deleted due to compaction.
# Since compaction will move data in the buffer and thereby zero the offset, either the
# offset or the number of compacted bytes will be zero at any point, so both can be
# stored in one field.
# If offset: Value is always in 0:lastindex(data)
# If compacted: Value is in typemin(Int):0
offset_or_compacted::Int
# The mark is -1 if not set, else the zero-indexed virtual position of ptr in the buffer.
# Due to compaction and offset, this value is not an index into the buffer, but may be translated
# to an index.
# This value is in -1:typemax(Int)
mark::Int
# Unsafe constructor which does not do any checking
global function _new_generic_iobuffer(
::Type{T},
data::T,
readable::Bool,
writable::Bool,
seekable::Bool,
append::Bool,
maxsize::Int,
) where T<:AbstractVector{UInt8}
len = Int(length(data))::Int
return new{T}(data, false, readable, writable, seekable, append, len, maxsize, 1, 0, -1)
end
end
function GenericIOBuffer{T}(
data::T,
readable::Bool,
writable::Bool,
seekable::Bool,
append::Bool,
maxsize::Integer,
truncate::Bool,
) where T<:AbstractVector{UInt8}
require_one_based_indexing(data)
mz = Int(maxsize)::Int
len = Int(length(data))::Int
if !truncate && mz < len
throw(ArgumentError("maxsize must not be smaller than data length"))
end
buf = _new_generic_iobuffer(T, data, readable, writable, seekable, append, mz)
if truncate
buf.size = buf.offset_or_compacted
end
buf
end
const IOBuffer = GenericIOBuffer{Memory{UInt8}}
function GenericIOBuffer(data::T, readable::Bool, writable::Bool, seekable::Bool, append::Bool,
maxsize::Integer, truncate::Bool) where T<:AbstractVector{UInt8}
GenericIOBuffer{T}(data, readable, writable, seekable, append, maxsize, truncate)
end
# For this method, we use the underlying Memory of the vector. Therefore, we need to set the,
# ptr and size accordingly, so the buffer only uses the part of the memory that the vector does.
function GenericIOBuffer(data::Vector{UInt8}, readable::Bool, writable::Bool, seekable::Bool, append::Bool,
maxsize::Integer, truncate::Bool)
ref = data.ref
mem = ref.mem
offset = memoryrefoffset(ref) - 1
# The user may pass a vector of length <= maxsize, but where the underlying memory
# is larger than maxsize. Don't throw an error in that case.
mz = Int(maxsize)::Int
if !truncate && mz < length(data)
throw(ArgumentError("maxsize must not be smaller than data length"))
end
buf = _new_generic_iobuffer(Memory{UInt8}, mem, readable, writable, seekable, append, mz)
buf.offset_or_compacted = offset
buf.ptr = offset + 1
if truncate
buf.size = offset
else
buf.size = length(data) + offset
end
return buf
end
get_offset(io::GenericIOBuffer) = max(0, io.offset_or_compacted)
get_compacted(io::GenericIOBuffer) = max(0, -io.offset_or_compacted)
# allocate Vector{UInt8}s for IOBuffer storage that can efficiently become Strings
StringMemory(n::Integer) = unsafe_wrap(Memory{UInt8}, _string_n(n))
StringVector(n::Integer) = wrap(Array, StringMemory(n))
# IOBuffers behave like Files. They are typically readable and writable. They are seekable. (They can be appendable).
"""
IOBuffer([data::AbstractVector{UInt8}]; keywords...)::IOBuffer
Create an in-memory I/O stream, which may optionally operate on a pre-existing array.
It may take optional keyword arguments:
- `read`, `write`, `append`: restricts operations to the buffer; see `open` for details.
- `truncate`: truncates the buffer size to zero length.
- `maxsize`: specifies a size beyond which the buffer may not be grown.
- `sizehint`: suggests a capacity of the buffer (`data` must implement `sizehint!(data, size)`).
When `data` is not given, the buffer will be both readable and writable by default.
!!! warning "Passing `data` as scratch space to `IOBuffer` with `write=true` may give unexpected behavior"
Once `write` is called on an `IOBuffer`, it is best to consider any
previous references to `data` invalidated; in effect `IOBuffer` "owns"
this data until a call to `take!`. Any indirect mutations to `data`
could lead to undefined behavior by breaking the abstractions expected
by `IOBuffer`. If `write=true` the IOBuffer may store data at any
offset leaving behind arbitrary values at other offsets. If `maxsize > length(data)`,
the IOBuffer might re-allocate the data entirely, which
may or may not be visible in any outstanding bindings to `array`.
# Examples
```jldoctest
julia> io = IOBuffer();
julia> write(io, "JuliaLang is a GitHub organization.", " It has many members.")
56
julia> String(take!(io))
"JuliaLang is a GitHub organization. It has many members."
julia> io = IOBuffer(b"JuliaLang is a GitHub organization.")
IOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=35, maxsize=Inf, ptr=1, mark=-1)
julia> read(io, String)
"JuliaLang is a GitHub organization."
julia> write(io, "This isn't writable.")
ERROR: ArgumentError: ensureroom failed, IOBuffer is not writeable
julia> io = IOBuffer(UInt8[], read=true, write=true, maxsize=34)
IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=34, ptr=1, mark=-1)
julia> write(io, "JuliaLang is a GitHub organization.")
34
julia> String(take!(io))
"JuliaLang is a GitHub organization"
julia> length(read(IOBuffer(b"data", read=true, truncate=false)))
4
julia> length(read(IOBuffer(b"data", read=true, truncate=true)))
0
```
"""
function IOBuffer(
data::AbstractVector{UInt8};
read::Union{Bool,Nothing}=nothing,
write::Union{Bool,Nothing}=nothing,
append::Union{Bool,Nothing}=nothing,
truncate::Union{Bool,Nothing}=nothing,
maxsize::Integer=typemax(Int),
sizehint::Union{Integer,Nothing}=nothing)
if sizehint !== nothing
sizehint!(data, sizehint)
end
flags = open_flags(read=read, write=write, append=append, truncate=truncate)
buf = GenericIOBuffer(data, flags.read, flags.write, true, flags.append, maxsize, flags.truncate)
return buf
end
function IOBuffer(;
read::Union{Bool,Nothing}=true,
write::Union{Bool,Nothing}=true,
append::Union{Bool,Nothing}=nothing,
truncate::Union{Bool,Nothing}=true,
maxsize::Integer=typemax(Int),
sizehint::Union{Integer,Nothing}=nothing,
)
mz = Int(maxsize)::Int
if mz < 0
throw(ArgumentError("negative maxsize"))
end
size = if sizehint !== nothing
# Allow negative sizehint, just like `sizehint!` does
min(mz, max(0, Int(sizehint)::Int))
else
min(mz, 32)
end
flags = open_flags(read=read, write=write, append=append, truncate=truncate)
# A common usecase of IOBuffer is to incrementally construct strings. By using StringMemory
# as the default storage, we can turn the result into a string without copying.
buf = _new_generic_iobuffer(Memory{UInt8}, StringMemory(size), flags.read, flags.write, true, flags.append, mz)
buf.size = 0
return buf
end
# PipeBuffers behave somewhat more like Unix Pipes (than Files). They are typically readable and writable, they act appendable, and are not seekable.
# However, they do not support stream notification, so for that there is the BufferStream wrapper around this.
"""
PipeBuffer(data::AbstractVector{UInt8}=UInt8[]; maxsize::Integer = typemax(Int))
An [`IOBuffer`](@ref) that allows reading and performs writes by appending.
Seeking and truncating are not supported.
See [`IOBuffer`](@ref) for the available constructors.
If `data` is given, creates a `PipeBuffer` to operate on a data vector,
optionally specifying a size beyond which the underlying `Array` may not be grown.
"""
PipeBuffer(data::AbstractVector{UInt8}=Memory{UInt8}(); maxsize::Int = typemax(Int)) =
GenericIOBuffer(data, true, true, false, true, maxsize, false)
PipeBuffer(maxsize::Integer) = (x = PipeBuffer(StringMemory(maxsize), maxsize = maxsize); x.size = 0; x)
# Internal method where truncation IS supported
function _truncated_pipebuffer(data::AbstractVector{UInt8}=Memory{UInt8}(); maxsize::Int = typemax(Int))
buf = PipeBuffer(data)
buf.size = get_offset(buf)
buf.maxsize = maxsize
buf
end
_similar_data(b::GenericIOBuffer, len::Int) = similar(b.data, len)
_similar_data(b::IOBuffer, len::Int) = StringMemory(len)
# Note: Copying may change the value of the position (and mark) for un-seekable streams.
# However, these values are not stable anyway due to compaction.
function copy(b::GenericIOBuffer{T}) where T
if b.reinit
# If buffer is used up, allocate a new size-zero buffer
# Reinit implies writable, and that ptr, size, offset and mark are already the default values
return typeof(b)(_similar_data(b, 0), b.readable, b.writable, b.seekable, b.append, b.maxsize, false)
elseif b.writable
# Else, we just copy the reachable bytes. If buffer is seekable, all bytes
# after offset are reachable, since they can be seeked to
used_span = get_used_span(b)
compacted = first(used_span) - get_offset(b) - 1
len = length(used_span)
data = copyto!(_similar_data(b, len), view(b.data, used_span))
ret = typeof(b)(data, b.readable, b.writable, b.seekable, b.append, b.maxsize, false)
ret.size = len
# Copying data over implicitly compacts, and may add compaction
ret.offset_or_compacted = -get_compacted(b) - compacted
ret.ptr = b.ptr - first(used_span) + 1
ret.mark = b.mark
return ret
else
# When the buffer is just readable, they can share the same data, so we just make
# a shallow copy of the IOBuffer struct.
# Use internal constructor because we want to allow b.maxsize to be larger than data,
# in case that is the case for `b`.
ret = _new_generic_iobuffer(T, b.data, b.readable, b.writable, b.seekable, b.append, b.maxsize)
ret.offset_or_compacted = b.offset_or_compacted
ret.ptr = b.ptr
ret.mark = b.mark
return ret
end
end
show(io::IO, b::GenericIOBuffer) = print(io, "IOBuffer(data=UInt8[...], ",
"readable=", b.readable, ", ",
"writable=", b.writable, ", ",
"seekable=", b.seekable, ", ",
"append=", b.append, ", ",
"size=", b.size - get_offset(b), ", ",
"maxsize=", b.maxsize == typemax(Int) ? "Inf" : b.maxsize, ", ",
"ptr=", b.ptr - get_offset(b), ", ",
"mark=", b.mark, ")")
@noinline function _throw_not_readable()
# See https://github.com/JuliaLang/julia/issues/29688.
throw(ArgumentError("read failed, IOBuffer is not readable"))
end
function unsafe_read(from::GenericIOBuffer, p::Ptr{UInt8}, nb::UInt)
from.readable || _throw_not_readable()
avail = bytesavailable(from) % UInt
adv = min(avail, nb)
unsafe_read!(p, from.data, from.ptr, adv)
from.ptr += adv
if nb > avail
throw(EOFError())
end
nothing
end
function unsafe_read!(dest::Ptr{UInt8}, src::AbstractVector{UInt8}, so::Integer, nbytes::UInt)
for i in 1:nbytes
unsafe_store!(dest, @inbounds(src[so+i-1]), i)
end
end
# Note: Currently, CodeUnits <: DenseVector, which makes this union redundant w.r.t
# DenseArrayType{UInt8}, but this is a bug, and may be removed in future versions
# of Julia. See #54002
const DenseBytes = Union{
<:DenseArrayType{UInt8},
CodeUnits{UInt8, <:Union{String, SubString{String}}},
}
function unsafe_read!(dest::Ptr{UInt8}, src::DenseBytes, so::Integer, nbytes::UInt)
GC.@preserve src unsafe_copyto!(dest, pointer(src, so), nbytes)
nothing
end
const MultiByteBitNumberType = Union{
Type{UInt16},
Type{Int16},
Type{UInt32},
Type{Int32},
Type{UInt64},
Type{Int64},
Type{UInt128},
Type{Int128},
Type{Float16},
Type{Float32},
Type{Float64},
}
function load_from_array(T::MultiByteBitNumberType, data::AbstractArray{UInt8}, from::Int)
x = if T <: AbstractFloat
uinttype(T)(0)
else
unsigned(T)(0)
end
for i in 0:sizeof(x)-1
x |= typeof(x)(data[from + i]) << (8 * i)
end
reinterpret(T, ltoh(x))
end
function peek(from::GenericIOBuffer, T::MultiByteBitNumberType)
from.readable || _throw_not_readable()
avail = bytesavailable(from)
nb = sizeof(T)
if nb > avail
throw(EOFError())
end
return load_from_array(T, from.data, from.ptr)
end
# This method can use a pointer, since the underlying buffer is dense
# and memory backed
function peek(from::GenericIOBuffer{<:MutableDenseArrayType}, T::MultiByteBitNumberType)
from.readable || _throw_not_readable()
avail = bytesavailable(from)
nb = sizeof(T)
if nb > avail
throw(EOFError())
end
GC.@preserve from begin
ptr::Ptr{T} = pointer(from.data, from.ptr)
x = unsafe_load(ptr)
end
return x
end
function read(from::GenericIOBuffer, T::MultiByteBitNumberType)
x = peek(from, T)
from.ptr += sizeof(T)
return x
end
@inline function read(from::GenericIOBuffer, ::Type{UInt8})
from.readable || _throw_not_readable()
ptr = from.ptr
size = from.size
if ptr > size
throw(EOFError())
end
@inbounds byte = from.data[ptr]::UInt8
from.ptr = ptr + 1
return byte
end
function peek(from::GenericIOBuffer, ::Type{UInt8})
from.readable || _throw_not_readable()
if from.ptr > from.size
throw(EOFError())
end
return from.data[from.ptr]::UInt8
end
read(from::GenericIOBuffer, ::Type{Ptr{T}}) where {T} = convert(Ptr{T}, read(from, UInt))
isreadable(io::GenericIOBuffer) = io.readable
iswritable(io::GenericIOBuffer) = io.writable
# Number of bytes that can be read from the buffer, if you seek to the start first.
filesize(io::GenericIOBuffer) = (io.seekable ? io.size - get_offset(io) : bytesavailable(io))
# Number of bytes that can be read from the buffer.
bytesavailable(io::GenericIOBuffer) = io.size - io.ptr + 1
# TODO: Document that position for an unmarked and unseekable stream is invalid (and make it error?)
function position(io::GenericIOBuffer)
# Position is zero-indexed, but ptr is one-indexed, hence the -1
io.ptr - io.offset_or_compacted - 1
end
function skip(io::GenericIOBuffer, n::Integer)
skip(io, clamp(n, Int))
end
function skip(io::GenericIOBuffer, n::Int)
# In both cases, the result will never go to before the first position,
# nor beyond the last position, and will not throw an error unless the stream
# is not seekable and try to skip a negative number of bytes.
if signbit(n)
# Skipping a negative number of bytes is equivalent to seeking backwards.
seekto = clamp(widen(position(io)) + widen(n), Int)
seek(io, seekto) # Does error checking
else
# Don't use seek in order to allow a non-seekable IO to still skip bytes.
# Handle overflow.
maxptr = io.size + 1
io.ptr = n > maxptr || io.ptr - n > maxptr ? maxptr : io.ptr + n
io
end
end
function seek(io::GenericIOBuffer, n::Integer)
seek(io, clamp(n, Int))
end
function translate_seek_position(io::GenericIOBuffer, n::Int)
# If there is an offset (the field F is positive), then there are F unused bytes at the beginning
# of the data, and we need to seek to n + F + 1. (Also compensate for `seek` being zero-
# indexed)
# If bytes has been compacted (field F is negative), then F bytes has been deleted from
# the buffer, and a virtual position n means a position n + F in the data.
# Remember that F is negative, so n + F is subtracting from n. So we also end up with
# n + F + 1.
clamp(widen(n) + widen(io.offset_or_compacted) + widen(1), Int)
end
function seek(io::GenericIOBuffer, n::Int)
if !io.seekable
ismarked(io) || throw(ArgumentError("seek failed, IOBuffer is not seekable and is not marked"))
n == io.mark || throw(ArgumentError("seek failed, IOBuffer is not seekable and n != mark"))
end
# TODO: REPL.jl relies on the fact that this does not throw (by seeking past the beginning or end
# of an GenericIOBuffer), so that would need to be fixed in order to throw an error here
max_ptr = io.size + 1
min_ptr = get_offset(io) + 1
io.ptr = clamp(translate_seek_position(io, n), min_ptr, max_ptr)
return io
end
function seekend(io::GenericIOBuffer)
io.ptr = io.size+1
return io
end
# Resize the io's data to `new_size`, which must not be > io.maxsize.
# Use `resize!` if the data supports it, else reallocate a new one and
# copy the old data over.
# If not `exact` and resizing is not supported, overallocate in order to
# prevent excessive resizing.
function _resize!(io::GenericIOBuffer, new_size::Int, exact::Bool)
old_data = io.data
if applicable(resize!, old_data, new_size)
resize!(old_data, new_size)
else
new_size = exact ? new_size : min(io.maxsize, overallocation(new_size))
used_span = get_used_span(io)
deleted = first(used_span) - 1
compacted = deleted - get_offset(io)
new_data = _similar_data(io, new_size)
io.data = new_data
iszero(new_size) && return io
len_used = length(used_span)
iszero(len_used) || copyto!(new_data, 1, old_data, first(used_span), len_used)
# Copying will implicitly compact, and so compaction must be updated
io.offset_or_compacted = -get_compacted(io) - compacted
io.ptr -= deleted
io.size = len_used
end
return io
end
function truncate(io::GenericIOBuffer, n::Integer)
io.writable || throw(ArgumentError("truncate failed, IOBuffer is not writeable"))
# Non-seekable buffers can only be constructed with `PipeBuffer`, which is explicitly
# documented to not be truncatable.
io.seekable || throw(ArgumentError("truncate failed, IOBuffer is not seekable"))
n < 0 && throw(ArgumentError("truncate failed, n bytes must be ≥ 0, got $n"))
n > io.maxsize && throw(ArgumentError("truncate failed, $(n) bytes is exceeds IOBuffer maxsize $(io.maxsize)"))
n = Int(n)::Int
offset = get_offset(io)
current_size = io.size - offset
if io.reinit
# If reinit, we don't need to truncate anything but just reinitializes
# the buffer with zeros. Mark, ptr and offset has already been reset.
io.data = fill!(_similar_data(io, n), 0x00)
io.reinit = false
io.size = n
elseif n < current_size
# Else, if we need to shrink the iobuffer, we simply change the pointers without
# actually shrinking the underlying storage, or copying data.
# Clear the mark if it points to data that has now been deleted.
if translate_seek_position(io, io.mark) > n+offset
io.mark = -1
end
io.size = n + offset
io.ptr = min(io.ptr, n + offset + 1)
elseif n > current_size
if n + offset > io.maxsize
compact!(io)
end
_resize!(io, n + get_offset(io), false)
fill!(view(io.data, io.size + 1:min(length(io.data), n + get_offset(io))), 0x00)
io.size = min(length(io.data), n + get_offset(io))
end
return io
end
# Ensure that the buffer has room for at least `nshort` more bytes, except when
# doing that would exceed maxsize.
@inline ensureroom(io::GenericIOBuffer, nshort::Int) = ensureroom(io, UInt(nshort))
@inline function ensureroom(io::GenericIOBuffer, nshort::UInt)
# If the IO is not writable, we call the slow path only to error.
# If reinit, the data has been handed out to the user, and the IOBuffer
# no longer controls it, so we need to allocate a new one.
if !io.writable || io.reinit
return ensureroom_reallocate(io, nshort)
end
# The fast path here usually checks there is already room, then does nothing.
# When append is true, new data is added after io.size, not io.ptr
existing_space = min(lastindex(io.data), io.maxsize + get_offset(io)) - (io.append ? io.size : io.ptr - 1)
if existing_space < nshort % Int
# Outline this function to make it more likely that ensureroom inlines itself
return ensureroom_slowpath(io, nshort, existing_space)
end
return io
end
# Throw error (placed in this function to outline it) or reinit the buffer
@noinline function ensureroom_reallocate(io::GenericIOBuffer, nshort::UInt)
io.writable || throw(ArgumentError("ensureroom failed, IOBuffer is not writeable"))
io.data = _similar_data(io, min(io.maxsize, nshort % Int))
io.reinit = false
io.offset_or_compacted = -get_compacted(io)
return io
end
# Here, we already know there is not enough room at the end of the io's data.
@noinline function ensureroom_slowpath(io::GenericIOBuffer, nshort::UInt, available_bytes::Int)
reclaimable_bytes = first(get_used_span(io)) - 1
# Avoid resizing and instead compact the buffer, only if we gain enough bytes from
# doing so (at least 32 bytes and 1/8th of the data length). Also, if we would have
# to resize anyway, there would be no point in compacting, so also check that.
if (
reclaimable_bytes ≥ 32 &&
reclaimable_bytes ≥ length(io.data) >>> 3 &&
(reclaimable_bytes + available_bytes) % UInt ≥ nshort
)
compact!(io)
return io
end
desired_size = length(io.data) + Int(nshort) - available_bytes
if desired_size > io.maxsize
# If we can't fit all the requested data in the new buffer, we need to
# fit as much as possible, so we must compact
if !iszero(reclaimable_bytes)
desired_size -= compact!(io)
end
# Max out the buffer size if we want more than the buffer size
if length(io.data) < io.maxsize
_resize!(io, io.maxsize, true)
end
else
# Else, we request only the requested size, but set `exact` to `false`,
# in order to overallocate to avoid growing the buffer by too little
_resize!(io, desired_size, false)
end
return io
end
# Get the indices in data which cannot be deleted
function get_used_span(io::IOBuffer)
# A seekable buffer can recover data before ptr
return if io.seekable
get_offset(io) + 1 : io.size
# If non-seekable, the mark can be used to recover data before ptr,
# so data at the mark and after must also be saved
elseif io.mark > -1
min(io.ptr, translate_seek_position(io, io.mark)) : io.size
else
io.ptr : io.size
end
end
# Delete any offset, and also compact data if buffer is not seekable.
# Return the number of bytes deleted
function compact!(io::GenericIOBuffer)::Int
offset = get_offset(io)
used_span = get_used_span(io)
deleted = first(used_span) - 1
compacted = deleted - offset
iszero(deleted) && return 0
data = io.data
copyto!(data, 1, data, deleted + 1, length(used_span))
io.offset_or_compacted = -get_compacted(io) - compacted
io.ptr -= deleted
io.size -= deleted
return deleted
end
eof(io::GenericIOBuffer) = (io.ptr - 1 >= io.size)
function closewrite(io::GenericIOBuffer)
io.writable = false
nothing
end
@noinline function close(io::GenericIOBuffer{T}) where T
if io.writable && !io.reinit
_resize!(io, 0, true)
end
io.readable = false
io.writable = false
io.seekable = false
io.size = 0
io.maxsize = 0
io.ptr = 1
io.mark = -1
io.offset_or_compacted = -get_compacted(io)
nothing
end
isopen(io::GenericIOBuffer) = io.readable || io.writable || io.seekable || bytesavailable(io) > 0
"""
take!(b::IOBuffer)
Obtain the contents of an `IOBuffer` as an array. Afterwards, the `IOBuffer` is reset to its initial state.
# Examples
```jldoctest
julia> io = IOBuffer();
julia> write(io, "JuliaLang is a GitHub organization.", " It has many members.")
56
julia> String(take!(io))
"JuliaLang is a GitHub organization. It has many members."
```
"""
function take!(io::GenericIOBuffer)
io.mark = -1
if io.seekable
# If the buffer is seekable, then the previously consumed bytes from ptr+1:size
# must still be output, as they are not truly gone.
# Hence, we output all bytes from 1:io.size
offset = get_offset(io)
nbytes = io.size - offset
data = copyto!(StringVector(nbytes), 1, io.data, offset + 1, nbytes)
else
# Else, if not seekable, bytes from 1:ptr-1 are truly gone and should not
# be output. Hence, we output `bytesavailable`, which is ptr:size
nbytes = bytesavailable(io)
data = read!(io, StringVector(nbytes))
end
if io.writable
io.reinit = true
io.ptr = 1
io.size = 0
io.offset_or_compacted = 0
end
return data
end
# This method is specialized because we know the underlying data is a Memory, so we can
# e.g. wrap directly in an array without copying. Otherwise the logic is the same as
# the generic method
function take!(io::IOBuffer)
io.mark = -1
if io.seekable
nbytes = filesize(io)
if nbytes == 0 || io.reinit
data = StringVector(0)
elseif io.writable
data = wrap(Array, memoryref(io.data, get_offset(io) + 1), nbytes)
else
data = copyto!(StringVector(nbytes), 1, io.data, get_offset(io) + 1, nbytes)
end
else
nbytes = bytesavailable(io)
if nbytes == 0
data = StringVector(0)
elseif io.writable
data = wrap(Array, memoryref(io.data, io.ptr), nbytes)
else
data = read!(io, data)
end
end
if io.writable
io.reinit = true
io.ptr = 1
io.size = 0
io.offset_or_compacted = 0
end
return data
end
"""
_unsafe_take!(io::IOBuffer)
This simply returns the raw resized `io.data`, with no checks to be
sure that `io` is readable etcetera, and leaves `io` in an inconsistent
state. This should only be used internally for performance-critical
`String` routines that immediately discard `io` afterwards, and it
*assumes* that `io` is writable and seekable.
It might save an allocation compared to `take!` (if the compiler elides the
Array allocation), as well as omits some checks.
"""
function _unsafe_take!(io::IOBuffer)
offset = get_offset(io)
mem = if io.size == offset
memoryref(Memory{UInt8}())
else
memoryref(io.data, offset + 1)
end
wrap(Array, mem, io.size - offset)
end
function write(to::IO, from::GenericIOBuffer)
# This would cause an infinite loop, as it should read until the end, but more
# data is being written into it continuously.
if to === from
throw(ArgumentError("Writing all content fron an IOBuffer into itself in invalid"))
else
available = bytesavailable(from)
written = GC.@preserve from unsafe_write(to, pointer(from.data, from.ptr), UInt(available))
from.ptr = from.size + 1
end
return written
end
function unsafe_write(to::GenericIOBuffer, p::Ptr{UInt8}, nb::UInt)
ensureroom(to, nb)
size = to.size
append = to.append
ptr = append ? size+1 : to.ptr
data = to.data
to_write = min(nb, (min(Int(length(data))::Int, to.maxsize + get_offset(to)) - ptr + 1) % UInt) % Int
# Dispatch based on the type of data, to possibly allow using memcpy
_unsafe_write(data, p, ptr, to_write % UInt)
# Update to.size only if the ptr has advanced to higher than
# the previous size. Otherwise, we just overwrote existing data
to.size = max(size, ptr + to_write - 1)
# If to.append, we only update size, not ptr.
if !append
to.ptr = ptr + to_write
end
return to_write
end
@inline function _unsafe_write(data::AbstractVector{UInt8}, p::Ptr{UInt8}, from::Int, nb::UInt)
for i in 0:nb-1
data[from + i] = unsafe_load(p)
p += 1
end
end
@inline function _unsafe_write(data::MutableDenseArrayType{UInt8}, p::Ptr{UInt8}, from::Int, nb::UInt)
# Calling `unsafe_copyto!` is very efficient for large arrays, but has some overhead
# for small (< 5 bytes) arrays.
# Since a common use case of IOBuffer is to construct strings incrementally, often
# one char at a time, it's crucial to be fast in the case of small arrays.
# This optimization only gives a minor 10% speed boost in the best case.
if nb < 5
@inbounds for i in UInt(1):nb
data[from + (i % Int) - 1] = unsafe_load(p, i)
end
else
GC.@preserve data begin
ptr = Ptr{UInt8}(pointer(data, from))::Ptr{UInt8}
@inline unsafe_copyto!(ptr, p, nb)
end
end
end
@inline function write(to::GenericIOBuffer, a::UInt8)
ensureroom(to, UInt(1))
ptr = (to.append ? to.size+1 : to.ptr)
# We have just ensured there is room for 1 byte, EXCEPT if we were to exceed
# maxsize. So, we just need to check that here.
if ptr > to.maxsize + get_offset(to)
return 0
else
to.data[ptr] = a
end
to.size = max(to.size, ptr)
if !to.append
to.ptr += 1
end
return sizeof(UInt8)
end
readbytes!(io::GenericIOBuffer, b::MutableDenseArrayType{UInt8}, nb=length(b)) = readbytes!(io, b, Int(nb))
function readbytes!(io::GenericIOBuffer, b::MutableDenseArrayType{UInt8}, nb::Int)
io.readable || _throw_not_readable()
to_read = min(nb, bytesavailable(io))
if length(b) < to_read
resize!(b, to_read)
end
checkbounds(b, 1:to_read)
GC.@preserve b unsafe_read(io, pointer(b), to_read)
to_read
end
read(io::GenericIOBuffer) = read!(io, StringVector(bytesavailable(io)))
# For IO buffers, all the data is immediately available.
readavailable(io::GenericIOBuffer) = read(io)
read(io::GenericIOBuffer, nb::Integer) = read!(io, StringVector(min(nb, bytesavailable(io))))
function occursin(delim::UInt8, buf::GenericIOBuffer)
return in(delim, view(buf.data, buf.ptr:buf.size))
end
function copyuntil(out::IO, io::GenericIOBuffer, delim::UInt8; keep::Bool=false)
data = view(io.data, io.ptr:io.size)
# note: findfirst + copyto! is much faster than a single loop
# except for nout ≲ 20. A single loop is 2x faster for nout=5.
nout = nread = something(findfirst(==(delim), data), length(data))
if !keep && nout > 0 && data[nout] == delim
nout -= 1
end
write(out, view(io.data, io.ptr:io.ptr+nout-1))
io.ptr += nread
return out
end
function copyline(out::GenericIOBuffer, s::IO; keep::Bool=false)
# If the data is copied into the middle of the buffer of `out` instead of appended to the end,
# and !keep, and the line copied ends with \r\n, then the copyuntil (even if keep=false)
# will overwrite one too many bytes with the new \r byte.
# Work around this by making a new temporary buffer.
# Could perhaps be done better
if !out.append && out.ptr < out.size + 1
newbuf = IOBuffer()
copyuntil(newbuf, s, 0x0a, keep=true)
v = take!(newbuf)
# Remove \r\n or \n if present
if !keep
if length(v) > 1 && last(v) == UInt8('\n')
pop!(v)
end
if length(v) > 1 && last(v) == UInt8('\r')
pop!(v)
end
end
write(out, v)
return out
else
# Else, we can just copy the data directly into the buffer, and then
# subtract the last one or two bytes depending on `keep`.
copyuntil(out, s, 0x0a, keep=true)
line = out.data
i = out.size
if keep || i == out.offset_or_compacted || line[i] != 0x0a
return out
elseif i < 2 || line[i-1] != 0x0d
i -= 1
else
i -= 2
end
out.size = i
if !out.append
out.ptr = i+1
end
return out
end
end
function _copyline(out::IO, io::GenericIOBuffer; keep::Bool=false)
data = view(io.data, io.ptr:io.size)
# note: findfirst + copyto! is much faster than a single loop
# except for nout ≲ 20. A single loop is 2x faster for nout=5.
nout = nread = something(findfirst(==(0x0a), data), length(data))::Int
# Remove the 0x0a (newline) if not keep, and also remove the 0x0d (\r) if it is there
if !keep && nout > 0 && data[nout] == 0x0a
nout -= 1
nout > 0 && data[nout] == 0x0d && (nout -= 1)
end
write(out, view(io.data, io.ptr:io.ptr+nout-1))
io.ptr += nread
return out
end
copyline(out::IO, io::GenericIOBuffer; keep::Bool=false) = _copyline(out, io; keep)
copyline(out::GenericIOBuffer, io::GenericIOBuffer; keep::Bool=false) = _copyline(out, io; keep)
# copy-free crc32c of IOBuffer:
function _crc32c(io::IOBuffer, nb::Integer, crc::UInt32=0x00000000)
nb < 0 && throw(ArgumentError("number of bytes to checksum must be ≥ 0, got $nb"))
io.readable || _throw_not_readable()
n = min(nb, bytesavailable(io))
n == 0 && return crc
crc = GC.@preserve io unsafe_crc32c(pointer(io.data, io.ptr), n, crc)
io.ptr += n
return crc
end
_crc32c(io::IOBuffer, crc::UInt32=0x00000000) = _crc32c(io, bytesavailable(io), crc)