-
Notifications
You must be signed in to change notification settings - Fork 16
/
old_index.html
556 lines (507 loc) · 22.9 KB
/
old_index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="JuliaOpt - Optimization packages for the Julia language">
<meta name="author" content="Iain Dunning">
<link rel="icon" href="favicon.ico">
<title>JuliaOpt - Optimization packages for the Julia language</title>
<!-- Bootstrap core CSS -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css">
<!-- Additional styles -->
<style>
body {
padding-top: 20px;
padding-bottom: 20px;
}
th {
background-color: #EEEEEE;
border: 1px solid #CCCCCC;
color: #555555;
padding: 8px;
text-align: center;
}
td {
border: 1px solid #CCCCCC;
padding: 5px 10px;
vertical-align: top;
}
</style>
<!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
<!-- Google Analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-44252521-2', 'juliaopt.org');
ga('send', 'pageview');
</script>
</head>
<body>
HELLO
<div class="container">
<!-- Big box at top -->
<div class="jumbotron text-center">
<img style="height: 12em; width:auto" src="/images/juliaopt.svg">
<h1>JuliaOpt</h1>
<p>
Optimization packages for the <a href="http://julialang.org">Julia language.</a>
</p>
</div>
<hr>
<!--<div class="row">
<div class="col-md-12 text-center">
<h2>JuliaOpt at <a href="http://juliacon.org">JuliaCon 2015</a></h2>
<p>
There will be a JuliaOpt talk and three-hour workshop at JuliaCon 2015, held at MIT in Cambridge, Massachusetts from June 24th-28th. <a href="http://www.eventbrite.com/e/juliacon-2015-tickets-16517619645">Tickets are on sale now!</a>.
</p>
</div>
</div>
<hr>-->
<!-- Julia & JuliaOpt-->
<a id="about"></a>
<div class="row">
<div class="col-md-6">
<h1>What is Julia?</h1>
<p>
<a href="http://julialang.org">"Julia is a high-level, high-performance dynamic programming language for technical computing"</a>. It is free (open source) and supports Windows, OSX, and Linux. It has a familiar syntax, works well with external libraries, is fast, and has advanced language features like metaprogramming that enable interesting possibilities for optimization software.
</p>
<p>
<b>Case study</b>: <a href="http://dx.doi.org/10.1287/ijoc.2014.0623">"Computing in Operations Research using Julia"</a>. <i>INFORMS Journal on Computing</i>. <a href="http://arxiv.org/abs/1312.1431">[PDF]</a>.
</p>
</div>
<div class="col-md-6">
<h1>What is JuliaOpt?</h1>
<p>
JuliaOpt is an organization that brings together packages written in Julia that are related to optimization. All JuliaOpt packages should be high-quality, documented, tested, support the main operating systems, and interact with each other.
<ul>
<li><b>Overview</b>: <a href="https://www.youtube.com/watch?v=7LNeR299q88">presentation</a> and <a href="https://www.youtube.com/watch?v=nnL7yLMVu6c">workshop</a> from JuliaCon 2015</a></li>
<li><b>Code</b>: <a href="http://github.com/JuliaOpt">github.com/JuliaOpt</a></li>
<li><b>Mailing list</b>: <a href="https://groups.google.com/forum/#!forum/julia-opt">julia-opt</a></li>
</ul>
</p>
</div>
</div>
<div class="row">
<div class="col-md-6">
<h2>Getting Started</h2>
<ol>
<li>
You can find <a href="http://julialang.org/downloads/">downloads and installation instructions for Julia</a> for your operating system on the Julia site.
</li>
<li>
To install a JuliaOpt package, simply use the <code>Pkg.add</code> command from inside Julia:<br>
<code>
julia> Pkg.update() # Get latest package info<br>
julia> Pkg.add("Optim")<br>
julia> Pkg.add("JuMP")<br>
julia> Pkg.add("Cbc") # and so on
</code>
</li>
<li>
<b>Open-source</b> solvers will automatically be downloaded and installed in your Julia package directory. If you want to use an external <b>commercial</b> solver, you will need to download those before installing the corresponding JuliaOpt package.
</li>
</ol>
</div>
<div class="col-md-6">
<h2>Examples</h2>
<div class="text-center" style="margin-bottom: 10px">
<img style="height: 4em; width:auto" src="/images/ijulialogo.png">
</div>
<p>
We have a collection of JuliaOpt examples in the form of <a href="https://jupyter.org/">Jupyter</a>/<a href="https://github.com/JuliaLang/IJulia.jl">IJulia</a> notebooks, including:
<ul>
<li><a href="/notebooks/JuMP-Sudoku.html">Solving Sudoku puzzles with JuMP</a>,
<li><a href="/notebooks/JuMP-Rocket.html">Controlling a rocket with JuMP</a>,
<li>and <a href="/notebooks/index.html">many more</a>.
</ul>
The source for these notebooks is <a href="https://github.com/JuliaOpt/juliaopt-notebooks">available here</a>.
</p>
</div>
</div>
<a id="packages"></a>
<div class="row">
<div class="col-md-12">
<h1>Overview of Packages</h1>
<p>JuliaOpt's packages can be loosely grouped into two sets. The first set are standalone Julia packages:</p>
<ul>
<li>
<strong>Optim.jl</strong>
- Implementations in Julia of standard optimization algorithms for unconstrained or box-constrained problems such as BFGS, Nelder-Mead, conjugate gradient, etc.
(<a href="https://github.com/JuliaOpt/Optim.jl">documentation/code</a>)
</li>
<li>
<strong>LsqFit.jl</strong>
- Least-squares non-linear curve fitting in Julia.
(<a href="https://github.com/JuliaOpt/LsqFit.jl">documentation/code</a>)
</li>
</ul>
<p>The second set comprises modeling languages (red), external solver interfaces (purple), and an abstraction layer over the solvers (green), primarily for constrained optimization:
<ul>
<li>
<strong>JuMP</strong>
- An algebraic modeling language for linear, quadratic, and nonlinear constrained optimization problems embedded in Julia. Generates models as quick as commercial modeling tools and supports advanced features like solver callbacks. (<a href="https://jump.readthedocs.org/en/latest/">documentation</a>, <a href="https://github.com/JuliaOpt/JuMP.jl">code</a>)
</li>
<li>
<strong>Convex.jl</strong>
- An algebraic modeling language for <a href="http://stanford.edu/~boyd/papers/disc_cvx_prog.html">disciplined convex programming</a> embedded in Julia.
(<a href="http://convexjl.readthedocs.org/">documentation</a>, <a href="https://github.com/JuliaOpt/Convex.jl">code</a>)
</li>
<li><strong>MathProgBase</strong> - A standardized interface implemented by all solvers that allows code to remain solver-agnostic. Used by JuMP and Convex.jl, but can be called by user code directly if a user doesn't want to go through a modeling language, but wishes to remain solver-independent. (<a href="http://mathprogbasejl.readthedocs.org/en/latest/">documentation</a>, <a href="https://github.com/JuliaOpt/MathProgBase.jl">code</a>)</li>
</ul>
<p>
JuliaOpt provides wrappers for a wide variety of solvers. The following table summarizes the capabilities of each solver, and also shows the problem forms supported by the two modeling languages.
</p>
<table style="text-align: center; margin-top: 20px" width="100%">
<thead>
<tr>
<th width="23%"><strong>Modeling Tool</strong></th>
<th width="9%">LP</th>
<th width="9%">MILP</th>
<th width="9%">SOCP</th>
<th width="9%">MISOCP</th>
<th width="9%">SDP</th>
<th width="9%">NLP</th>
<th width="9%">MINLP</th>
<th>Other</th>
</tr>
</thead>
<tfoot> <!-- Must appear before tbody, see W3.org -->
<tr style="text-align: left">
<td colspan="10">
<small>
<strong>Key:</strong>
<ul style="list-style: none; margin-top: 5px; margin-bottom: 5px">
<li style="margin: 0.1em 0;">LP = <a href="http://en.wikipedia.org/wiki/Linear_programming">Linear Programming</a></li>
<li style="margin: 0.1em 0;">MILP = <a href="http://en.wikipedia.org/wiki/Integer_programming">Mixed Integer LP</a></li>
<li style="margin: 0.1em 0;">SOCP = <a href="http://en.wikipedia.org/wiki/Second_order_cone_programming">Second-order cone programming</a> (includes convex <a href="http://en.wikipedia.org/wiki/Quadratic_programming">QP</a>, <a href="http://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program">QCQP</a>)</li>
<li style="margin: 0.1em 0;">MISOCP = Mixed Integer SOCP</li>
<li style="margin: 0.1em 0;">SDP = <a href="http://en.wikipedia.org/wiki/Semidefinite_programming">Semidefinite Programming</a></li>
<li style="margin: 0.1em 0;">NLP = (constrained) <a href="http://en.wikipedia.org/wiki/Nonlinear_programming">Nonlinear Programming</a> (includes general <a href="http://en.wikipedia.org/wiki/Quadratic_programming">QP</a>, <a href="http://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program">QCQP</a>)</li>
<li style="margin: 0.1em 0;">MINLP = Mixed Integer NLP</li>
</ul>
<strong>Notes:</strong>
<ol style="">
<li>Problem must be convex.</li>
</ol>
</small>
</td>
</tr>
</tfoot>
<tbody>
<tr>
<th><a href="https://github.com/JuliaOpt/JuMP.jl">JuMP</a></th>
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td>✔</td> <!-- SOCP -->
<td>✔</td> <!-- MISOCP -->
<td>✔</td> <!-- SDP -->
<td>✔</td> <!-- NLP -->
<td>✔</td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th><a href="https://github.com/cvxgrp/Convex.jl">Convex.jl</a></th>
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td>✔</td> <!-- SOCP -->
<td>✔</td> <!-- MISOCP -->
<td>✔</td> <!-- SDP -->
<td></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<thead>
<tr>
<th><strong>Solver</strong></th>
<th>LP</th>
<th>MILP</th>
<th>SOCP</th>
<th>MISOCP</th>
<th>SDP</th>
<th>NLP</th>
<th>MINLP</th>
<th>Other</th>
</tr>
</thead>
<tr>
<th>
<a href="https://projects.coin-or.org/Bonmin">Bonmin</a>
<a href="https://github.com/JuliaOpt/AmplNLWriter.jl">(via AmplNLWriter.jl)</a>
</th>
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td></td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td>✔</td> <!-- NLP -->
<td>✔</td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="https://projects.coin-or.org/Cbc">Cbc</a>
<a href="https://github.com/JuliaOpt/Cbc.jl">(.jl)</a>
</th>
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td></td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="https://projects.coin-or.org/Clp">Clp</a>
<a href="https://github.com/JuliaOpt/Clp.jl">(.jl)</a>
</th>
<td>✔</td> <!-- LP -->
<td></td> <!-- MILP -->
<td></td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="https://projects.coin-or.org/Couenne">Couenne</a>
<a href="https://github.com/JuliaOpt/AmplNLWriter.jl">(via AmplNLWriter.jl)</a>
</th>
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td></td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td>✔</td> <!-- NLP -->
<td>✔</td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/">CPLEX</a>
<a href="https://github.com/JuliaOpt/CPLEX.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/CPLEX.jl">CPLEX.jl</a></td>-->
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td>✔</td> <!-- SOCP -->
<td>✔</td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td><small>IP Callbacks</small></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="https://github.com/ifa-ethz/ecos/">ECOS</a>
<a href="https://github.com/JuliaOpt/ECOS.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/ECOS.jl">ECOS.jl</a></td>-->
<td>✔</td> <!-- LP -->
<td></td> <!-- MILP -->
<td>✔</td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="http://www.gnu.org/software/glpk/">GLPK</a>
<a href="https://github.com/JuliaOpt/GLPK.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/GLPK.jl">GLPK.jl</a></td>-->
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td></td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td><small>IP Callbacks</small></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="http://www.gurobi.com">Gurobi</a>
<a href="https://github.com/JuliaOpt/Gurobi.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/Gurobi.jl">Gurobi.jl</a></td>-->
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td>✔</td> <!-- SOCP -->
<td>✔</td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td><small>IP Callbacks</small></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="https://projects.coin-or.org/Ipopt">Ipopt</a>
<a href="https://github.com/JuliaOpt/Ipopt.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/Ipopt.jl">Ipopt.jl</a></td>-->
<td>✔</td> <!-- LP -->
<td></td> <!-- MILP -->
<td></td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td>✔</td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="http://artelys.com/en/optimization-tools/knitro">Artelys Knitro</a>
<a href="https://github.com/JuliaOpt/KNITRO.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/KNITRO.jl/">KNITRO.jl</a></td>-->
<td>✔</td> <!-- LP -->
<td>✔</td></td> <!-- MILP -->
<td></td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td>✔</td> <!-- NLP -->
<td>✔</td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="http://www.mosek.com/">Mosek</a>
<a href="https://github.com/JuliaOpt/Mosek.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/Mosek.jl">Mosek.jl</a></td>-->
<td>✔</td> <!-- LP -->
<td>✔</td> <!-- MILP -->
<td>✔</td> <!-- SOCP -->
<td>✔</td> <!-- MISOCP -->
<td>✔</td> <!-- SDP -->
<td>✔<small>1</small></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="http://ab-initio.mit.edu/nlopt">NLopt</a>
<a href="https://github.com/JuliaOpt/NLopt.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/NLopt.jl">NLopt.jl</a></td>-->
<td></td> <!-- LP -->
<td></td> <!-- MILP -->
<td></td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td></td> <!-- SDP -->
<td>✔</td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
<tr>
<th>
<a href="https://github.com/cvxgrp/scs">SCS</a>
<a href="https://github.com/JuliaOpt/SCS.jl">(.jl)</a>
</th>
<!--<td><a href="https://github.com/JuliaOpt/NLopt.jl">NLopt.jl</a></td>-->
<td>✔</td> <!-- LP -->
<td></td> <!-- MILP -->
<td>✔</td> <!-- SOCP -->
<td></td> <!-- MISOCP -->
<td>✔</td> <!-- SDP -->
<td></td> <!-- NLP -->
<td></td> <!-- MINLP -->
<td></td> <!-- Other -->
</tr>
</tbody>
</table>
</div>
</div>
<div class="row">
<div class="col-md-12">
<h3>Papers about JuliaOpt packages</h3>
<ul>
<li>I. Dunning, J. Huchette, and M. Lubin, "JuMP: A modeling language for mathematical optimization". <a href="http://www.optimization-online.org/DB_FILE/2015/04/4891.pdf">[PDF]</a></li>
<li>M. Lubin and I. Dunning, "Computing in Operations Research using Julia". <i>INFORMS Journal on Computing</i> 27(2), pages 238-248, 2015 <a href="http://dx.doi.org/10.1287/ijoc.2014.0623">[DOI]</a> <a href="http://arxiv.org/abs/1312.1431">[arXiv]</a></li>
<li>M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd, "Convex Optimization in Julia". <i>Proceedings of the 1st First Workshop for High Performance Technical Computing in Dynamic Languages</i>, IEEE Press, 2014. <a href="http://arxiv.org/abs/1410.4821">[arXiv]</a>
</li>
</ul>
<h3>JuliaOpt packages used in courses at</h3>
<ul>
<li>MIT</li>
<li>Sapienza Università di Roma</li>
<li>Stanford University</li>
<li>Universidad Carlos III de Madrid</li>
<li>Université de Liège</li>
<li>University at Buffalo</li>
<li>University of Iowa</li>
<li>University of Southern California</li>
<li>University of South Florida</li>
<li>University of Wisconsin, Madison</li>
<li>Virginia Commonwealth University</li>
</ul>
<h3>Papers using JuliaOpt packages</h3>
<ul>
<li>
R. Brandt and M. Bengtsson, "Fast-Convergent Distributed Coordinated Precoding for TDD Multicell MIMO Systems",
<i>IEEE Int. Workshop Computational Advances in Multi-Sensor Adaptive Process. (CAMSAP'15)</i>, 2015.
<a href="http://kth.diva-portal.org/smash/get/diva2:861877/FULLTEXT01.pdf">[PDF]</a>
<a href="https://github.com/rasmusbrandt/FastConvergentCoordinatedPrecoding.jl">[Code]</a>
</li>
<li>
D. Bertsimas and F. de Ruiter, "Duality in Two-stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds". 2015. <a href="http://www.optimization-online.org/DB_FILE/2015/08/5053.pdf">[PDF]</a>
</li>
<li>
E. Anderes, S. Borgwardt, and J. Miller, "Discrete Wasserstein Barycenters: Optimal Transport for Discrete Data". 2015. <a href="http://arxiv.org/abs/1507.07218">[arXiv]</a>
</li>
<li>
S. D. Gupta, J. K. Tobin, and L. Pavel, "Linear Programming Makes Railway Networks Energy-efficient". 2015. <a href="http://arxiv.org/abs/1506.08243">[arXiv]</a>
</li>
<li>
T. Rossi, R. Pozzi, and M. Testa, "A preliminary proposal to include capacity constraint in the multi-product EOQ model using hybrid systems and integer linear programming". 2015. <a href="http://dx.doi.org/10.1109/IEOM.2015.7093735">[DOI]</a>
</li>
<li>
R. Giordano, T. Broderick, and M. Jordan,
"Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes". 2015.
<a href="http://arxiv.org/abs/1506.04088">[arXiv]</a>
</li>
<li>
J. Gorham and L. Mackey,
"Measuring Sample Quality with Stein's Method". 2015.
<a href="http://arxiv.org/abs/1506.03039">[arXiv]</a>
</li>
<li>
J. Vielma, I. Dunning, J. Huchette, and M. Lubin,
"Extended Formulations in Mixed Integer Conic Quadratic Programming". 2015.
<a href="http://web.mit.edu/jvielma/www/publications/Extended-Formulations-in-Mixed-Integer-Conic.pdf">[PDF]</a>
</li>
<li>I. Dunning, V. Gupta, A. King, J. Kung, M. Lubin, and J. Silberholz, "A course on advanced software tools for Operations Research and Analytics". <i>INFORMS Transactions on Education</i> 15(2), pages 169-179, 2015. <a href="http://dx.doi.org/10.1287/ited.2014.0131">[DOI]</a> <a href="http://josilber.scripts.mit.edu/IAPEducationPaperDistribute.pdf">[PDF]</a>
</li>
<li>
J. Huchette, M. Lubin, and C. Petra.
"Parallel algebraic modeling for stochastic optimization". 2014.
<i>Proceedings of HPTCDL '14</i>.
<a href="http://www.mcs.anl.gov/~petra/papers/StochJuMP.pdf">[PDF]</a>
</li>
<li>
V. Gupta, "Data-driven models for uncertainty and behavior". 2014. <a href="http://hdl.handle.net/1721.1/91301">[PDF]</a>
</li>
</ul>
</div>
</div>
</div> <!-- /container -->
<!-- Bootstrap core JavaScript
================================================== -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
</body>
</html>