From 80f5e2a209fe63d5be3b6092bca46ba46f705619 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Wed, 13 Nov 2024 22:30:30 +0000 Subject: [PATCH] build based on 833a05c --- dev/.documenter-siteinfo.json | 2 +- dev/assets/Manifest.toml | 173 +- dev/assets/documenter.js | 302 +- dev/comparison/index.html | 2 +- dev/getting_started/index.html | 12 +- dev/index.html | 50 +- dev/manual/arrays/index.html | 2 +- dev/manual/build_function/index.html | 10 +- dev/manual/derivatives/index.html | 22 +- dev/manual/expression_manipulation/index.html | 16 +- dev/manual/faq/index.html | 2 +- dev/manual/functions/index.html | 14 +- dev/manual/groebner/index.html | 2 +- dev/manual/io/index.html | 2 +- dev/manual/limits/index.html | 2 +- dev/manual/parsing/index.html | 2 +- dev/manual/solver/index.html | 8 +- dev/manual/sparsity_detection/index.html | 12 +- dev/manual/taylor/index.html | 6 +- dev/manual/types/index.html | 2 +- dev/manual/variables/index.html | 10 +- .../{5d0769f1.svg => 652e20cc.svg} | 26414 ++++++++-------- dev/tutorials/auto_parallel/index.html | 4 +- dev/tutorials/converting_to_C/index.html | 4 +- dev/tutorials/perturbation/index.html | 2 +- 25 files changed, 13574 insertions(+), 13503 deletions(-) rename dev/tutorials/auto_parallel/{5d0769f1.svg => 652e20cc.svg} (58%) diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 0817bf643..7b2805157 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.1","generation_timestamp":"2024-11-10T19:22:30","documenter_version":"1.7.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.1","generation_timestamp":"2024-11-13T22:30:20","documenter_version":"1.8.0"}} \ No newline at end of file diff --git a/dev/assets/Manifest.toml b/dev/assets/Manifest.toml index bded4c57c..e6dcb2f4f 100644 --- a/dev/assets/Manifest.toml +++ b/dev/assets/Manifest.toml @@ -20,10 +20,10 @@ uuid = "a4c015fc-c6ff-483c-b24f-f7ea428134e9" version = "0.0.1" [[deps.AbstractAlgebra]] -deps = ["InteractiveUtils", "LinearAlgebra", "MacroTools", "Preferences", "Random", "RandomExtensions", "SparseArrays", "Test"] -git-tree-sha1 = "f2ed325e84ff435220a1dd93c421e1d8ca2e5da0" +deps = ["LinearAlgebra", "MacroTools", "Preferences", "Random", "RandomExtensions", "SparseArrays", "Test"] +git-tree-sha1 = "505ccfd5cd579ff05b4d7299759fca7a61b0fde1" uuid = "c3fe647b-3220-5bb0-a1ea-a7954cac585d" -version = "0.43.9" +version = "0.43.10" [[deps.AbstractTrees]] git-tree-sha1 = "2d9c9a55f9c93e8887ad391fbae72f8ef55e1177" @@ -159,6 +159,16 @@ git-tree-sha1 = "f21cfd4950cb9f0587d5067e69405ad2acd27b87" uuid = "62783981-4cbd-42fc-bca8-16325de8dc4b" version = "0.1.6" +[[deps.BracketingNonlinearSolve]] +deps = ["CommonSolve", "ConcreteStructs", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase"] +git-tree-sha1 = "95cb19c37ea427617e9795655667712f03058d98" +uuid = "70df07ce-3d50-431d-a3e7-ca6ddb60ac1e" +version = "1.1.0" +weakdeps = ["ForwardDiff"] + + [deps.BracketingNonlinearSolve.extensions] + BracketingNonlinearSolveForwardDiffExt = "ForwardDiff" + [[deps.Bzip2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "8873e196c2eb87962a2048b3b8e08946535864a1" @@ -177,6 +187,11 @@ git-tree-sha1 = "009060c9a6168704143100f36ab08f06c2af4642" uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" version = "1.18.2+1" +[[deps.Cassette]] +git-tree-sha1 = "f8764df8d9d2aec2812f009a1ac39e46c33354b8" +uuid = "7057c7e9-c182-5462-911a-8362d720325c" +version = "0.3.14" + [[deps.ChainRulesCore]] deps = ["Compat", "LinearAlgebra"] git-tree-sha1 = "3e4b134270b372f2ed4d4d0e936aabaefc1802bc" @@ -348,10 +363,10 @@ uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" version = "1.9.1" [[deps.DiffEqBase]] -deps = ["ArrayInterface", "ConcreteStructs", "DataStructures", "DocStringExtensions", "EnumX", "EnzymeCore", "FastBroadcast", "FastClosures", "ForwardDiff", "FunctionWrappers", "FunctionWrappersWrappers", "LinearAlgebra", "Logging", "Markdown", "MuladdMacro", "Parameters", "PreallocationTools", "PrecompileTools", "Printf", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "Setfield", "Static", "StaticArraysCore", "Statistics", "TruncatedStacktraces"] -git-tree-sha1 = "f8eefbb7e910f59087c4bb09ce670f235758ee4a" +deps = ["ArrayInterface", "ConcreteStructs", "DataStructures", "DocStringExtensions", "EnumX", "EnzymeCore", "FastBroadcast", "FastClosures", "FastPower", "ForwardDiff", "FunctionWrappers", "FunctionWrappersWrappers", "LinearAlgebra", "Logging", "Markdown", "MuladdMacro", "Parameters", "PreallocationTools", "PrecompileTools", "Printf", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "Setfield", "Static", "StaticArraysCore", "Statistics", "TruncatedStacktraces"] +git-tree-sha1 = "697abdf4af0e38199e9eabff6ccdf65255de855d" uuid = "2b5f629d-d688-5b77-993f-72d75c75574e" -version = "6.158.3" +version = "6.159.0" [deps.DiffEqBase.extensions] DiffEqBaseCUDAExt = "CUDA" @@ -464,9 +479,9 @@ version = "0.9.3" [[deps.Documenter]] deps = ["ANSIColoredPrinters", "AbstractTrees", "Base64", "CodecZlib", "Dates", "DocStringExtensions", "Downloads", "Git", "IOCapture", "InteractiveUtils", "JSON", "LibGit2", "Logging", "Markdown", "MarkdownAST", "Pkg", "PrecompileTools", "REPL", "RegistryInstances", "SHA", "TOML", "Test", "Unicode"] -git-tree-sha1 = "5a1ee886566f2fa9318df1273d8b778b9d42712d" +git-tree-sha1 = "d0ea2c044963ed6f37703cead7e29f70cba13d7e" uuid = "e30172f5-a6a5-5a46-863b-614d45cd2de4" -version = "1.7.0" +version = "1.8.0" [[deps.DomainSets]] deps = ["CompositeTypes", "IntervalSets", "LinearAlgebra", "Random", "StaticArrays"] @@ -497,9 +512,9 @@ uuid = "4e289a0a-7415-4d19-859d-a7e5c4648b56" version = "1.0.4" [[deps.EnzymeCore]] -git-tree-sha1 = "04c777af6ef65530a96ab68f0a81a4608113aa1d" +git-tree-sha1 = "e333ffd38ecffcf5c6c2dafd10788404ac46fb9f" uuid = "f151be2c-9106-41f4-ab19-57ee4f262869" -version = "0.8.5" +version = "0.8.6" weakdeps = ["Adapt"] [deps.EnzymeCore.extensions] @@ -669,6 +684,12 @@ git-tree-sha1 = "1ed150b39aebcc805c26b93a8d0122c940f64ce2" uuid = "559328eb-81f9-559d-9380-de523a88c83c" version = "1.0.14+0" +[[deps.FunctionProperties]] +deps = ["Cassette", "DiffRules"] +git-tree-sha1 = "bf7c740307eb0ee80e05d8aafbd0c5a901578398" +uuid = "f62d2435-5019-4c03-9749-2d4c77af0cbc" +version = "0.1.2" + [[deps.FunctionWrappers]] git-tree-sha1 = "d62485945ce5ae9c0c48f124a84998d755bae00e" uuid = "069b7b12-0de2-55c6-9aab-29f3d0a68a2e" @@ -958,9 +979,9 @@ version = "1.3.0" [[deps.LazyArrays]] deps = ["ArrayLayouts", "FillArrays", "LinearAlgebra", "MacroTools", "SparseArrays"] -git-tree-sha1 = "360f6039babd6e4d6364eff0d4fc9120834a2d9a" +git-tree-sha1 = "376bc148ae72e68a08f0d5d8a69e287025a37687" uuid = "5078a376-72f3-5289-bfd5-ec5146d43c02" -version = "2.2.1" +version = "2.2.2" [deps.LazyArrays.extensions] LazyArraysBandedMatricesExt = "BandedMatrices" @@ -1268,32 +1289,78 @@ uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[deps.NonlinearSolve]] -deps = ["ADTypes", "ArrayInterface", "ConcreteStructs", "DiffEqBase", "DifferentiationInterface", "FastBroadcast", "FastClosures", "FiniteDiff", "ForwardDiff", "LazyArrays", "LineSearch", "LineSearches", "LinearAlgebra", "LinearSolve", "MaybeInplace", "PrecompileTools", "Preferences", "Printf", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLJacobianOperators", "SciMLOperators", "Setfield", "SimpleNonlinearSolve", "SparseArrays", "SparseConnectivityTracer", "SparseMatrixColorings", "StaticArraysCore", "SymbolicIndexingInterface", "TimerOutputs"] -git-tree-sha1 = "4d8944f32db2b07a2bdf8477e878bcb9c9ea2308" +deps = ["ADTypes", "ArrayInterface", "BracketingNonlinearSolve", "CommonSolve", "ConcreteStructs", "DiffEqBase", "DifferentiationInterface", "FastClosures", "FiniteDiff", "ForwardDiff", "LineSearch", "LinearAlgebra", "LinearSolve", "NonlinearSolveBase", "NonlinearSolveFirstOrder", "NonlinearSolveQuasiNewton", "NonlinearSolveSpectralMethods", "PrecompileTools", "Preferences", "Reexport", "SciMLBase", "SimpleNonlinearSolve", "SparseArrays", "SparseMatrixColorings", "StaticArraysCore", "SymbolicIndexingInterface"] +git-tree-sha1 = "22f3efdd47bd18d8a26bd559fff254e6b21000fd" uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" -version = "3.15.1" +version = "4.1.0" [deps.NonlinearSolve.extensions] - NonlinearSolveBandedMatricesExt = "BandedMatrices" NonlinearSolveFastLevenbergMarquardtExt = "FastLevenbergMarquardt" NonlinearSolveFixedPointAccelerationExt = "FixedPointAcceleration" NonlinearSolveLeastSquaresOptimExt = "LeastSquaresOptim" NonlinearSolveMINPACKExt = "MINPACK" NonlinearSolveNLSolversExt = "NLSolvers" - NonlinearSolveNLsolveExt = "NLsolve" + NonlinearSolveNLsolveExt = ["NLsolve", "LineSearches"] + NonlinearSolvePETScExt = ["PETSc", "MPI"] NonlinearSolveSIAMFANLEquationsExt = "SIAMFANLEquations" NonlinearSolveSpeedMappingExt = "SpeedMapping" + NonlinearSolveSundialsExt = "Sundials" [deps.NonlinearSolve.weakdeps] - BandedMatrices = "aae01518-5342-5314-be14-df237901396f" FastLevenbergMarquardt = "7a0df574-e128-4d35-8cbd-3d84502bf7ce" FixedPointAcceleration = "817d07cb-a79a-5c30-9a31-890123675176" LeastSquaresOptim = "0fc2ff8b-aaa3-5acd-a817-1944a5e08891" + LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" MINPACK = "4854310b-de5a-5eb6-a2a5-c1dee2bd17f9" + MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" NLSolvers = "337daf1e-9722-11e9-073e-8b9effe078ba" NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" + PETSc = "ace2c81b-2b5f-4b1e-a30d-d662738edfe0" SIAMFANLEquations = "084e46ad-d928-497d-ad5e-07fa361a48c4" SpeedMapping = "f1835b91-879b-4a3f-a438-e4baacf14412" + Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4" + +[[deps.NonlinearSolveBase]] +deps = ["ADTypes", "Adapt", "ArrayInterface", "CommonSolve", "Compat", "ConcreteStructs", "DifferentiationInterface", "EnzymeCore", "FastClosures", "FunctionProperties", "LinearAlgebra", "Markdown", "MaybeInplace", "Preferences", "Printf", "RecursiveArrayTools", "SciMLBase", "SciMLJacobianOperators", "SciMLOperators", "StaticArraysCore", "SymbolicIndexingInterface", "TimerOutputs"] +git-tree-sha1 = "545e3a49c20b453a929951657f039716216cdf3c" +uuid = "be0214bd-f91f-a760-ac4e-3421ce2b2da0" +version = "1.3.2" + + [deps.NonlinearSolveBase.extensions] + NonlinearSolveBaseBandedMatricesExt = "BandedMatrices" + NonlinearSolveBaseDiffEqBaseExt = "DiffEqBase" + NonlinearSolveBaseForwardDiffExt = "ForwardDiff" + NonlinearSolveBaseLineSearchExt = "LineSearch" + NonlinearSolveBaseLinearSolveExt = "LinearSolve" + NonlinearSolveBaseSparseArraysExt = "SparseArrays" + NonlinearSolveBaseSparseMatrixColoringsExt = "SparseMatrixColorings" + + [deps.NonlinearSolveBase.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + LineSearch = "87fe0de2-c867-4266-b59a-2f0a94fc965b" + LinearSolve = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + SparseMatrixColorings = "0a514795-09f3-496d-8182-132a7b665d35" + +[[deps.NonlinearSolveFirstOrder]] +deps = ["ADTypes", "ArrayInterface", "CommonSolve", "ConcreteStructs", "DiffEqBase", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "LinearSolve", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "SciMLJacobianOperators", "Setfield", "StaticArraysCore"] +git-tree-sha1 = "dc8535cecb0f9d978019e44b7144b9e84ab85424" +uuid = "5959db7a-ea39-4486-b5fe-2dd0bf03d60d" +version = "1.0.0" + +[[deps.NonlinearSolveQuasiNewton]] +deps = ["ArrayInterface", "CommonSolve", "ConcreteStructs", "DiffEqBase", "LinearAlgebra", "LinearSolve", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "SciMLOperators", "StaticArraysCore"] +git-tree-sha1 = "066d4940938f4bb5fd1ce146e61a373f40b89d31" +uuid = "9a2c21bd-3a47-402d-9113-8faf9a0ee114" +version = "1.0.0" + +[[deps.NonlinearSolveSpectralMethods]] +deps = ["CommonSolve", "ConcreteStructs", "DiffEqBase", "LineSearch", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase"] +git-tree-sha1 = "cc97c44e396ab820401c8c404bc1fd18d4c884bd" +uuid = "26075421-4e9a-44e1-8bd1-420ed7ad02b2" +version = "1.0.0" [[deps.OffsetArrays]] git-tree-sha1 = "1a27764e945a152f7ca7efa04de513d473e9542e" @@ -1357,9 +1424,9 @@ version = "1.6.3" [[deps.OrdinaryDiffEq]] deps = ["ADTypes", "Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "EnumX", "ExponentialUtilities", "FastBroadcast", "FastClosures", "FillArrays", "FiniteDiff", "ForwardDiff", "FunctionWrappersWrappers", "InteractiveUtils", "LineSearches", "LinearAlgebra", "LinearSolve", "Logging", "MacroTools", "MuladdMacro", "NonlinearSolve", "OrdinaryDiffEqAdamsBashforthMoulton", "OrdinaryDiffEqBDF", "OrdinaryDiffEqCore", "OrdinaryDiffEqDefault", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqExplicitRK", "OrdinaryDiffEqExponentialRK", "OrdinaryDiffEqExtrapolation", "OrdinaryDiffEqFIRK", "OrdinaryDiffEqFeagin", "OrdinaryDiffEqFunctionMap", "OrdinaryDiffEqHighOrderRK", "OrdinaryDiffEqIMEXMultistep", "OrdinaryDiffEqLinear", "OrdinaryDiffEqLowOrderRK", "OrdinaryDiffEqLowStorageRK", "OrdinaryDiffEqNonlinearSolve", "OrdinaryDiffEqNordsieck", "OrdinaryDiffEqPDIRK", "OrdinaryDiffEqPRK", "OrdinaryDiffEqQPRK", "OrdinaryDiffEqRKN", "OrdinaryDiffEqRosenbrock", "OrdinaryDiffEqSDIRK", "OrdinaryDiffEqSSPRK", "OrdinaryDiffEqStabilizedIRK", "OrdinaryDiffEqStabilizedRK", "OrdinaryDiffEqSymplecticRK", "OrdinaryDiffEqTsit5", "OrdinaryDiffEqVerner", "Polyester", "PreallocationTools", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleNonlinearSolve", "SimpleUnPack", "SparseArrays", "SparseDiffTools", "Static", "StaticArrayInterface", "StaticArrays", "TruncatedStacktraces"] -git-tree-sha1 = "cd892f12371c287dc50d6ad3af075b088b6f2d48" +git-tree-sha1 = "36ce9bfc14a4b3dcf1490e80b5f1f4d35bfddf39" uuid = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" -version = "6.89.0" +version = "6.90.1" [[deps.OrdinaryDiffEqAdamsBashforthMoulton]] deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqLowOrderRK", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] @@ -1375,9 +1442,9 @@ version = "1.1.2" [[deps.OrdinaryDiffEqCore]] deps = ["ADTypes", "Accessors", "Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "EnumX", "FastBroadcast", "FastClosures", "FastPower", "FillArrays", "FunctionWrappersWrappers", "InteractiveUtils", "LinearAlgebra", "Logging", "MacroTools", "MuladdMacro", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleUnPack", "Static", "StaticArrayInterface", "StaticArraysCore", "SymbolicIndexingInterface", "TruncatedStacktraces"] -git-tree-sha1 = "5e8c500a80674850543394ce3c745b73ad51fea0" +git-tree-sha1 = "be2c628185fcf94b544fba86b9722be40c3ac305" uuid = "bbf590c4-e513-4bbe-9b18-05decba2e5d8" -version = "1.10.0" +version = "1.10.1" weakdeps = ["EnzymeCore"] [deps.OrdinaryDiffEqCore.extensions] @@ -1391,9 +1458,9 @@ version = "1.1.0" [[deps.OrdinaryDiffEqDifferentiation]] deps = ["ADTypes", "ArrayInterface", "DiffEqBase", "FastBroadcast", "FiniteDiff", "ForwardDiff", "FunctionWrappersWrappers", "LinearAlgebra", "LinearSolve", "OrdinaryDiffEqCore", "SciMLBase", "SparseArrays", "SparseDiffTools", "StaticArrayInterface", "StaticArrays"] -git-tree-sha1 = "e63ec633b1efa99e3caa2e26a01faaa88ba6cef9" +git-tree-sha1 = "8977f283a7d89c5d5c06c933467ed4af0a99f2f7" uuid = "4302a76b-040a-498a-8c04-15b101fed76b" -version = "1.1.0" +version = "1.2.0" [[deps.OrdinaryDiffEqExplicitRK]] deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "TruncatedStacktraces"] @@ -1415,9 +1482,9 @@ version = "1.2.1" [[deps.OrdinaryDiffEqFIRK]] deps = ["DiffEqBase", "FastBroadcast", "FastPower", "GenericLinearAlgebra", "GenericSchur", "LinearAlgebra", "LinearSolve", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "Polynomials", "RecursiveArrayTools", "Reexport", "RootedTrees", "SciMLOperators", "Symbolics"] -git-tree-sha1 = "5735f4c094dff311f5064d1a351da9669e4647e3" +git-tree-sha1 = "1dcf5bebc5179c1c119a7a30f99bbb93eec02d44" uuid = "5960d6e9-dd7a-4743-88e7-cf307b64f125" -version = "1.2.0" +version = "1.3.0" [[deps.OrdinaryDiffEqFeagin]] deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] @@ -1463,9 +1530,9 @@ version = "1.2.1" [[deps.OrdinaryDiffEqNonlinearSolve]] deps = ["ADTypes", "ArrayInterface", "DiffEqBase", "FastBroadcast", "FastClosures", "ForwardDiff", "LinearAlgebra", "LinearSolve", "MuladdMacro", "NonlinearSolve", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "PreallocationTools", "RecursiveArrayTools", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleNonlinearSolve", "StaticArrays"] -git-tree-sha1 = "e4be6539f4aaae8db1f29fcfdf6ef817df1f25cf" +git-tree-sha1 = "5e1b316555fa95892edc13f6a429ac784d0be4dd" uuid = "127b3ac7-2247-4354-8eb6-78cf4e7c58e8" -version = "1.2.2" +version = "1.2.4" [[deps.OrdinaryDiffEqNordsieck]] deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqTsit5", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] @@ -1499,9 +1566,9 @@ version = "1.1.0" [[deps.OrdinaryDiffEqRosenbrock]] deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "LinearSolve", "MacroTools", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static"] -git-tree-sha1 = "96b47cdd12cb4ce8f70d701b49f855271a462bd4" +git-tree-sha1 = "760a51a626d0065455847e4a3f788b07e86e5090" uuid = "43230ef6-c299-4910-a778-202eb28ce4ce" -version = "1.2.0" +version = "1.3.1" [[deps.OrdinaryDiffEqSDIRK]] deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MacroTools", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "RecursiveArrayTools", "Reexport", "SciMLBase", "TruncatedStacktraces"] @@ -1614,9 +1681,9 @@ version = "1.4.3" [[deps.Plots]] deps = ["Base64", "Contour", "Dates", "Downloads", "FFMPEG", "FixedPointNumbers", "GR", "JLFzf", "JSON", "LaTeXStrings", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "Pkg", "PlotThemes", "PlotUtils", "PrecompileTools", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "RelocatableFolders", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "TOML", "UUIDs", "UnicodeFun", "UnitfulLatexify", "Unzip"] -git-tree-sha1 = "45470145863035bb124ca51b320ed35d071cc6c2" +git-tree-sha1 = "dae01f8c2e069a683d3a6e17bbae5070ab94786f" uuid = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" -version = "1.40.8" +version = "1.40.9" [deps.Plots.extensions] FileIOExt = "FileIO" @@ -1870,9 +1937,9 @@ version = "0.6.43" [[deps.SciMLBase]] deps = ["ADTypes", "Accessors", "ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "EnumX", "Expronicon", "FunctionWrappersWrappers", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "Markdown", "PrecompileTools", "Preferences", "Printf", "RecipesBase", "RecursiveArrayTools", "Reexport", "RuntimeGeneratedFunctions", "SciMLOperators", "SciMLStructures", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface"] -git-tree-sha1 = "7527b9adb22904f0f51d8ab85d826f81ebb6f78d" +git-tree-sha1 = "f9195449e0ae7e8daf9d609c9619ecfc2369f62c" uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462" -version = "2.59.2" +version = "2.60.0" [deps.SciMLBase.extensions] SciMLBaseChainRulesCoreExt = "ChainRulesCore" @@ -1949,22 +2016,22 @@ uuid = "777ac1f9-54b0-4bf8-805c-2214025038e7" version = "1.2.0" [[deps.SimpleNonlinearSolve]] -deps = ["ADTypes", "ArrayInterface", "ConcreteStructs", "DiffEqBase", "DiffResults", "DifferentiationInterface", "FastClosures", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "MaybeInplace", "PrecompileTools", "Reexport", "SciMLBase", "Setfield", "StaticArraysCore"] -git-tree-sha1 = "44021f3efc023be3871195d8ad98b865001a2fa1" +deps = ["ADTypes", "ArrayInterface", "BracketingNonlinearSolve", "CommonSolve", "ConcreteStructs", "DifferentiationInterface", "FastClosures", "FiniteDiff", "ForwardDiff", "LineSearch", "LinearAlgebra", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "Setfield", "StaticArraysCore"] +git-tree-sha1 = "f7e2042e0b68c6bb19a0a1594839792737f51d84" uuid = "727e6d20-b764-4bd8-a329-72de5adea6c7" -version = "1.12.3" +version = "2.0.0" [deps.SimpleNonlinearSolve.extensions] SimpleNonlinearSolveChainRulesCoreExt = "ChainRulesCore" + SimpleNonlinearSolveDiffEqBaseExt = "DiffEqBase" SimpleNonlinearSolveReverseDiffExt = "ReverseDiff" SimpleNonlinearSolveTrackerExt = "Tracker" - SimpleNonlinearSolveZygoteExt = "Zygote" [deps.SimpleNonlinearSolve.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" - Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [[deps.SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] @@ -1992,26 +2059,6 @@ deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" version = "1.11.0" -[[deps.SparseConnectivityTracer]] -deps = ["ADTypes", "DocStringExtensions", "FillArrays", "LinearAlgebra", "Random", "SparseArrays"] -git-tree-sha1 = "6914df6005bab9940e2a96879a97a43e1fb1ce78" -uuid = "9f842d2f-2579-4b1d-911e-f412cf18a3f5" -version = "0.6.8" - - [deps.SparseConnectivityTracer.extensions] - SparseConnectivityTracerDataInterpolationsExt = "DataInterpolations" - SparseConnectivityTracerLogExpFunctionsExt = "LogExpFunctions" - SparseConnectivityTracerNNlibExt = "NNlib" - SparseConnectivityTracerNaNMathExt = "NaNMath" - SparseConnectivityTracerSpecialFunctionsExt = "SpecialFunctions" - - [deps.SparseConnectivityTracer.weakdeps] - DataInterpolations = "82cc6244-b520-54b8-b5a6-8a565e85f1d0" - LogExpFunctions = "2ab3a3ac-af41-5b50-aa03-7779005ae688" - NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd" - NaNMath = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" - SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b" - [[deps.SparseDiffTools]] deps = ["ADTypes", "Adapt", "ArrayInterface", "Compat", "DataStructures", "FiniteDiff", "ForwardDiff", "Graphs", "LinearAlgebra", "PackageExtensionCompat", "Random", "Reexport", "SciMLOperators", "Setfield", "SparseArrays", "StaticArrayInterface", "StaticArrays", "UnPack", "VertexSafeGraphs"] git-tree-sha1 = "b906758c107b049b6b71599b9f928d9b14e5554a" @@ -2034,9 +2081,9 @@ version = "2.23.0" [[deps.SparseMatrixColorings]] deps = ["ADTypes", "DataStructures", "DocStringExtensions", "LinearAlgebra", "Random", "SparseArrays"] -git-tree-sha1 = "670f2c8109e87d79788baef47880b946e529f1a2" +git-tree-sha1 = "76b44c879661552d64f382acf66faa29ab56b3d9" uuid = "0a514795-09f3-496d-8182-132a7b665d35" -version = "0.4.9" +version = "0.4.10" weakdeps = ["Colors"] [deps.SparseMatrixColorings.extensions] @@ -2151,9 +2198,9 @@ version = "7.7.0+0" [[deps.SymbolicIndexingInterface]] deps = ["Accessors", "ArrayInterface", "RuntimeGeneratedFunctions", "StaticArraysCore"] -git-tree-sha1 = "20cf607cafb31f922bce84d60379203e7a126911" +git-tree-sha1 = "6c6761e08bf5a270905cdd065be633abfa1b155b" uuid = "2efcf032-c050-4f8e-a9bb-153293bab1f5" -version = "0.3.34" +version = "0.3.35" [[deps.SymbolicLimits]] deps = ["SymbolicUtils"] diff --git a/dev/assets/documenter.js b/dev/assets/documenter.js index 5b2981c54..acd397b2c 100644 --- a/dev/assets/documenter.js +++ b/dev/assets/documenter.js @@ -619,176 +619,194 @@ function worker_function(documenterSearchIndex, documenterBaseURL, filters) { }; } -// `worker = Threads.@spawn worker_function(documenterSearchIndex)`, but in JavaScript! -const filters = [ - ...new Set(documenterSearchIndex["docs"].map((x) => x.category)), -]; -const worker_str = - "(" + - worker_function.toString() + - ")(" + - JSON.stringify(documenterSearchIndex["docs"]) + - "," + - JSON.stringify(documenterBaseURL) + - "," + - JSON.stringify(filters) + - ")"; -const worker_blob = new Blob([worker_str], { type: "text/javascript" }); -const worker = new Worker(URL.createObjectURL(worker_blob)); - /////// SEARCH MAIN /////// -// Whether the worker is currently handling a search. This is a boolean -// as the worker only ever handles 1 or 0 searches at a time. -var worker_is_running = false; - -// The last search text that was sent to the worker. This is used to determine -// if the worker should be launched again when it reports back results. -var last_search_text = ""; - -// The results of the last search. This, in combination with the state of the filters -// in the DOM, is used compute the results to display on calls to update_search. -var unfiltered_results = []; - -// Which filter is currently selected -var selected_filter = ""; - -$(document).on("input", ".documenter-search-input", function (event) { - if (!worker_is_running) { - launch_search(); - } -}); - -function launch_search() { - worker_is_running = true; - last_search_text = $(".documenter-search-input").val(); - worker.postMessage(last_search_text); -} - -worker.onmessage = function (e) { - if (last_search_text !== $(".documenter-search-input").val()) { - launch_search(); - } else { - worker_is_running = false; - } - - unfiltered_results = e.data; - update_search(); -}; +function runSearchMainCode() { + // `worker = Threads.@spawn worker_function(documenterSearchIndex)`, but in JavaScript! + const filters = [ + ...new Set(documenterSearchIndex["docs"].map((x) => x.category)), + ]; + const worker_str = + "(" + + worker_function.toString() + + ")(" + + JSON.stringify(documenterSearchIndex["docs"]) + + "," + + JSON.stringify(documenterBaseURL) + + "," + + JSON.stringify(filters) + + ")"; + const worker_blob = new Blob([worker_str], { type: "text/javascript" }); + const worker = new Worker(URL.createObjectURL(worker_blob)); + + // Whether the worker is currently handling a search. This is a boolean + // as the worker only ever handles 1 or 0 searches at a time. + var worker_is_running = false; + + // The last search text that was sent to the worker. This is used to determine + // if the worker should be launched again when it reports back results. + var last_search_text = ""; + + // The results of the last search. This, in combination with the state of the filters + // in the DOM, is used compute the results to display on calls to update_search. + var unfiltered_results = []; + + // Which filter is currently selected + var selected_filter = ""; + + $(document).on("input", ".documenter-search-input", function (event) { + if (!worker_is_running) { + launch_search(); + } + }); -$(document).on("click", ".search-filter", function () { - if ($(this).hasClass("search-filter-selected")) { - selected_filter = ""; - } else { - selected_filter = $(this).text().toLowerCase(); + function launch_search() { + worker_is_running = true; + last_search_text = $(".documenter-search-input").val(); + worker.postMessage(last_search_text); } - // This updates search results and toggles classes for UI: - update_search(); -}); + worker.onmessage = function (e) { + if (last_search_text !== $(".documenter-search-input").val()) { + launch_search(); + } else { + worker_is_running = false; + } -/** - * Make/Update the search component - */ -function update_search() { - let querystring = $(".documenter-search-input").val(); + unfiltered_results = e.data; + update_search(); + }; - if (querystring.trim()) { - if (selected_filter == "") { - results = unfiltered_results; + $(document).on("click", ".search-filter", function () { + if ($(this).hasClass("search-filter-selected")) { + selected_filter = ""; } else { - results = unfiltered_results.filter((result) => { - return selected_filter == result.category.toLowerCase(); - }); + selected_filter = $(this).text().toLowerCase(); } - let search_result_container = ``; - let modal_filters = make_modal_body_filters(); - let search_divider = `
`; + // This updates search results and toggles classes for UI: + update_search(); + }); - if (results.length) { - let links = []; - let count = 0; - let search_results = ""; - - for (var i = 0, n = results.length; i < n && count < 200; ++i) { - let result = results[i]; - if (result.location && !links.includes(result.location)) { - search_results += result.div; - count++; - links.push(result.location); - } - } + /** + * Make/Update the search component + */ + function update_search() { + let querystring = $(".documenter-search-input").val(); - if (count == 1) { - count_str = "1 result"; - } else if (count == 200) { - count_str = "200+ results"; + if (querystring.trim()) { + if (selected_filter == "") { + results = unfiltered_results; } else { - count_str = count + " results"; + results = unfiltered_results.filter((result) => { + return selected_filter == result.category.toLowerCase(); + }); } - let result_count = `
${count_str}
`; - search_result_container = ` + let search_result_container = ``; + let modal_filters = make_modal_body_filters(); + let search_divider = `
`; + + if (results.length) { + let links = []; + let count = 0; + let search_results = ""; + + for (var i = 0, n = results.length; i < n && count < 200; ++i) { + let result = results[i]; + if (result.location && !links.includes(result.location)) { + search_results += result.div; + count++; + links.push(result.location); + } + } + + if (count == 1) { + count_str = "1 result"; + } else if (count == 200) { + count_str = "200+ results"; + } else { + count_str = count + " results"; + } + let result_count = `
${count_str}
`; + + search_result_container = ` +
+ ${modal_filters} + ${search_divider} + ${result_count} +
+ ${search_results} +
+
+ `; + } else { + search_result_container = `
${modal_filters} ${search_divider} - ${result_count} -
- ${search_results} -
-
+
0 result(s)
+ +
No result found!
`; - } else { - search_result_container = ` -
- ${modal_filters} - ${search_divider} -
0 result(s)
-
-
No result found!
- `; - } + } - if ($(".search-modal-card-body").hasClass("is-justify-content-center")) { - $(".search-modal-card-body").removeClass("is-justify-content-center"); - } + if ($(".search-modal-card-body").hasClass("is-justify-content-center")) { + $(".search-modal-card-body").removeClass("is-justify-content-center"); + } - $(".search-modal-card-body").html(search_result_container); - } else { - if (!$(".search-modal-card-body").hasClass("is-justify-content-center")) { - $(".search-modal-card-body").addClass("is-justify-content-center"); + $(".search-modal-card-body").html(search_result_container); + } else { + if (!$(".search-modal-card-body").hasClass("is-justify-content-center")) { + $(".search-modal-card-body").addClass("is-justify-content-center"); + } + + $(".search-modal-card-body").html(` +
Type something to get started!
+ `); } + } - $(".search-modal-card-body").html(` -
Type something to get started!
- `); + /** + * Make the modal filter html + * + * @returns string + */ + function make_modal_body_filters() { + let str = filters + .map((val) => { + if (selected_filter == val.toLowerCase()) { + return `${val}`; + } else { + return `${val}`; + } + }) + .join(""); + + return ` +
+ Filters: + ${str} +
`; } } -/** - * Make the modal filter html - * - * @returns string - */ -function make_modal_body_filters() { - let str = filters - .map((val) => { - if (selected_filter == val.toLowerCase()) { - return `${val}`; - } else { - return `${val}`; - } - }) - .join(""); - - return ` -
- Filters: - ${str} -
`; +function waitUntilSearchIndexAvailable() { + // It is possible that the documenter.js script runs before the page + // has finished loading and documenterSearchIndex gets defined. + // So we need to wait until the search index actually loads before setting + // up all the search-related stuff. + if (typeof documenterSearchIndex !== "undefined") { + runSearchMainCode(); + } else { + console.warn("Search Index not available, waiting"); + setTimeout(waitUntilSearchIndexAvailable, 1000); + } } +// The actual entry point to the search code +waitUntilSearchIndexAvailable(); + }) //////////////////////////////////////////////////////////////////////////////// require(['jquery'], function($) { diff --git a/dev/comparison/index.html b/dev/comparison/index.html index 584a0585b..87b8bf0b3 100644 --- a/dev/comparison/index.html +++ b/dev/comparison/index.html @@ -1,2 +1,2 @@ -Comparison Against SymPy · Symbolics.jl

Comparison of Julia's Symbolics.jl vs SymPy for Symbolic Computation

Symbolics.jl is a symbolic modeling language for Julia, built in Julia. Its goal is very different from Sympy: it was made to support symbolic-numerics, the combination of symbolic computing with numerical methods to allow for extreme performance computing that would not be possible without modifying the model. Because of this, Symbolics.jl excels in many areas due to purposeful design decisions:

  • Performance: Symbolics.jl is built in Julia, whereas SymPy was built in Python. Thus, the performance bar for Symbolics.jl is much higher. Symbolics.jl started because SymPy was far too slow and SymEngine was far too inflexible for the projects they were doing. Performance is key to Symbolics.jl. If you find any performance issues, please file an issue.
  • build_function: lambdify is “fine” for some people, but if you're building a super fast MPI-enabled Julia/C/Fortran simulation code, having a function that hits the Python interpreter is less than optimal. By default, build_function builds fast JIT-compiled functions due to being in Julia. However, it has support for things like static arrays, non-allocating functions via mutation, fast functions on sparse matrices and arrays of arrays, etc.: all core details of doing high performance computing.
  • Parallelism: Symbolics.jl has pervasive parallelism. The symbolic simplification via SymbolicUtils.jl has built-in parallelism, Symbolics.jl builds functions that parallelize across threads. Symbolics.jl is compatible with GPU libraries like CUDA.jl.
  • Extensible: Symbolics.jl and its underlying tools are written in pure Julia. Want to add new or better simplification rules? Add some Julia code! Need to add new derivatives? Add some Julia code! You get the picture. Breaking down these barriers makes it easier for the user to tailor the program to their needs and accelerates the development of the library.
  • Deep integration with the Julia ecosystem: Symbolics.jl's integration with neural networks is not the only thing that's deep. Symbolics.jl is built with the same philosophy as other SciML packages, eschewing “monorepos” for a distributed development approach that ties together the work of many developers. The differentiation parts utilize tools from automatic differentiation libraries, all linear algebra functionality comes from tracing Julia Base itself, symbolic rewriting (simplification and substitution) comes from SymbolicUtils.jl, parallelism comes from Julia Base libraries, Dagger.jl, etc. SciML Tools like DataDrivenDiffEq.jl can reconstruct symbolic expressions from neural networks and data, while NeuralPDE.jl can automatically solve partial differential equations from symbolic descriptions using physics-informed neural networks. The list keeps going. All told, by design Symbolics.jl's development moves fast because it's effectively using the work of hundreds of Julia developers, allowing it to grow fast.
  • While Symbolics.jl has many features missing from SymPy, it does not superset SymPy's functionality. For a list of missing features, see this issue.
+Comparison Against SymPy · Symbolics.jl

Comparison of Julia's Symbolics.jl vs SymPy for Symbolic Computation

Symbolics.jl is a symbolic modeling language for Julia, built in Julia. Its goal is very different from Sympy: it was made to support symbolic-numerics, the combination of symbolic computing with numerical methods to allow for extreme performance computing that would not be possible without modifying the model. Because of this, Symbolics.jl excels in many areas due to purposeful design decisions:

  • Performance: Symbolics.jl is built in Julia, whereas SymPy was built in Python. Thus, the performance bar for Symbolics.jl is much higher. Symbolics.jl started because SymPy was far too slow and SymEngine was far too inflexible for the projects they were doing. Performance is key to Symbolics.jl. If you find any performance issues, please file an issue.
  • build_function: lambdify is “fine” for some people, but if you're building a super fast MPI-enabled Julia/C/Fortran simulation code, having a function that hits the Python interpreter is less than optimal. By default, build_function builds fast JIT-compiled functions due to being in Julia. However, it has support for things like static arrays, non-allocating functions via mutation, fast functions on sparse matrices and arrays of arrays, etc.: all core details of doing high performance computing.
  • Parallelism: Symbolics.jl has pervasive parallelism. The symbolic simplification via SymbolicUtils.jl has built-in parallelism, Symbolics.jl builds functions that parallelize across threads. Symbolics.jl is compatible with GPU libraries like CUDA.jl.
  • Extensible: Symbolics.jl and its underlying tools are written in pure Julia. Want to add new or better simplification rules? Add some Julia code! Need to add new derivatives? Add some Julia code! You get the picture. Breaking down these barriers makes it easier for the user to tailor the program to their needs and accelerates the development of the library.
  • Deep integration with the Julia ecosystem: Symbolics.jl's integration with neural networks is not the only thing that's deep. Symbolics.jl is built with the same philosophy as other SciML packages, eschewing “monorepos” for a distributed development approach that ties together the work of many developers. The differentiation parts utilize tools from automatic differentiation libraries, all linear algebra functionality comes from tracing Julia Base itself, symbolic rewriting (simplification and substitution) comes from SymbolicUtils.jl, parallelism comes from Julia Base libraries, Dagger.jl, etc. SciML Tools like DataDrivenDiffEq.jl can reconstruct symbolic expressions from neural networks and data, while NeuralPDE.jl can automatically solve partial differential equations from symbolic descriptions using physics-informed neural networks. The list keeps going. All told, by design Symbolics.jl's development moves fast because it's effectively using the work of hundreds of Julia developers, allowing it to grow fast.
  • While Symbolics.jl has many features missing from SymPy, it does not superset SymPy's functionality. For a list of missing features, see this issue.
diff --git a/dev/getting_started/index.html b/dev/getting_started/index.html index 6fcb6ae57..5c854322a 100644 --- a/dev/getting_started/index.html +++ b/dev/getting_started/index.html @@ -233,9 +233,9 @@ out = sparse(rows, cols, zeros(length(cols)), size(sj)...) # pre-allocate, and correct structure myf = eval(last(f_expr)) myf(out, rand(N)) # note that out matches the sparsity structure of sj -out
20×10 SparseArrays.SparseMatrixCSC{Float64, Int64} with 14 stored entries:
-⎡⠀⠄⠀⠁⠀⎤
-⎢⠁⠀⠀⢠⠄⎥
-⎢⡀⢀⠀⠀⠀⎥
-⎢⠐⠑⠠⠂⠀⎥
-⎣⠀⠀⠀⠈⠀⎦
+out
20×10 SparseArrays.SparseMatrixCSC{Float64, Int64} with 23 stored entries:
+⎡⠀⠠⡀⠂⢠⎤
+⎢⠀⠊⠠⠀⠀⎥
+⎢⠂⠁⢬⠀⠐⎥
+⎢⠂⢀⡀⠆⠀⎥
+⎣⠀⢠⠀⠀⠠⎦
diff --git a/dev/index.html b/dev/index.html index 2699d5eb9..d90af9bf4 100644 --- a/dev/index.html +++ b/dev/index.html @@ -7,12 +7,12 @@ year={2021} }

Feature Summary

Because Symbolics.jl is built into the Julia language and works with its dispatches, generic functions in Base Julia will work with symbolic expressions! Make matrices of symbolic expressions and multiply them: it will just work. Take the LU-factorization. Etc. Thus, see the Julia Documentation for a large list of functionality available in Symbolics.jl.

A general list of the features is:

and much more.

Extension Packages

Below is a list of known extension packages. If you would like your package to be listed here, feel free to open a pull request!

Reproducibility

The documentation of this SciML package was built using these direct dependencies,
Status `~/work/Symbolics.jl/Symbolics.jl/docs/Project.toml`
   [6e4b80f9] BenchmarkTools v1.5.0
-  [e30172f5] Documenter v1.7.0
+  [e30172f5] Documenter v1.8.0
   [0b43b601] Groebner v0.8.2
   [23fbe1c1] Latexify v0.16.5
   [2edaba10] Nemo v0.47.3
-  [1dea7af3] OrdinaryDiffEq v6.89.0
-  [91a5bcdd] Plots v1.40.8
+  [1dea7af3] OrdinaryDiffEq v6.90.1
+  [91a5bcdd] Plots v1.40.9
   [90137ffa] StaticArrays v1.9.8
   [d1185830] SymbolicUtils v3.7.2
   [0c5d862f] Symbolics v6.18.3 `~/work/Symbolics.jl/Symbolics.jl`
and using this machine and Julia version.
Julia Version 1.11.1
@@ -29,7 +29,7 @@
   JULIA_DEBUG = Documenter
A more complete overview of all dependencies and their versions is also provided.
Status `~/work/Symbolics.jl/Symbolics.jl/docs/Manifest.toml`
   [47edcb42] ADTypes v1.9.0
   [a4c015fc] ANSIColoredPrinters v0.0.1
-  [c3fe647b] AbstractAlgebra v0.43.9
+  [c3fe647b] AbstractAlgebra v0.43.10
   [1520ce14] AbstractTrees v0.4.5
   [7d9f7c33] Accessors v0.1.38
   [79e6a3ab] Adapt v4.1.1
@@ -42,7 +42,9 @@
   [e2ed5e7c] Bijections v0.1.9
   [d1d4a3ce] BitFlags v0.1.9
   [62783981] BitTwiddlingConvenienceFunctions v0.1.6
+  [70df07ce] BracketingNonlinearSolve v1.1.0
   [2a0fbf3d] CPUSummary v0.2.6
+  [7057c7e9] Cassette v0.3.14
   [d360d2e6] ChainRulesCore v1.25.0
   [fb6a15b2] CloseOpenIntervals v0.1.13
   [944b1d66] CodecZlib v0.7.6
@@ -66,17 +68,17 @@
   [864edb3b] DataStructures v0.18.20
   [e2d170a0] DataValueInterfaces v1.0.0
   [8bb1440f] DelimitedFiles v1.9.1
-  [2b5f629d] DiffEqBase v6.158.3
+  [2b5f629d] DiffEqBase v6.159.0
   [163ba53b] DiffResults v1.1.0
   [b552c78f] DiffRules v1.15.1
   [a0c0ee7d] DifferentiationInterface v0.6.22
   [31c24e10] Distributions v0.25.113
   [ffbed154] DocStringExtensions v0.9.3
-  [e30172f5] Documenter v1.7.0
+  [e30172f5] Documenter v1.8.0
   [5b8099bc] DomainSets v0.7.14
   [7c1d4256] DynamicPolynomials v0.6.0
   [4e289a0a] EnumX v1.0.4
-  [f151be2c] EnzymeCore v0.8.5
+  [f151be2c] EnzymeCore v0.8.6
   [460bff9d] ExceptionUnwrapping v0.1.10
   [d4d017d3] ExponentialUtilities v1.26.1
   [e2ba6199] ExprTools v0.1.10
@@ -91,6 +93,7 @@
   [53c48c17] FixedPointNumbers v0.8.5
   [1fa38f19] Format v1.3.7
   [f6369f11] ForwardDiff v0.10.38
+  [f62d2435] FunctionProperties v0.1.2
   [069b7b12] FunctionWrappers v1.1.3
   [77dc65aa] FunctionWrappersWrappers v0.1.3
 ⌅ [46192b85] GPUArraysCore v0.1.6
@@ -121,7 +124,7 @@
   [23fbe1c1] Latexify v0.16.5
   [10f19ff3] LayoutPointers v0.1.17
   [0e77f7df] LazilyInitializedFields v1.3.0
-  [5078a376] LazyArrays v2.2.1
+  [5078a376] LazyArrays v2.2.2
   [87fe0de2] LineSearch v0.1.4
   [d3d80556] LineSearches v7.3.0
   [7ed4a6bd] LinearSolve v2.36.2
@@ -142,20 +145,24 @@
   [d41bc354] NLSolversBase v7.8.3
   [77ba4419] NaNMath v1.0.2
   [2edaba10] Nemo v0.47.3
-⌅ [8913a72c] NonlinearSolve v3.15.1
+  [8913a72c] NonlinearSolve v4.1.0
+  [be0214bd] NonlinearSolveBase v1.3.2
+  [5959db7a] NonlinearSolveFirstOrder v1.0.0
+  [9a2c21bd] NonlinearSolveQuasiNewton v1.0.0
+  [26075421] NonlinearSolveSpectralMethods v1.0.0
   [6fe1bfb0] OffsetArrays v1.14.1
   [4d8831e6] OpenSSL v1.4.3
   [bac558e1] OrderedCollections v1.6.3
-  [1dea7af3] OrdinaryDiffEq v6.89.0
+  [1dea7af3] OrdinaryDiffEq v6.90.1
   [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.1.0
   [6ad6398a] OrdinaryDiffEqBDF v1.1.2
-  [bbf590c4] OrdinaryDiffEqCore v1.10.0
+  [bbf590c4] OrdinaryDiffEqCore v1.10.1
   [50262376] OrdinaryDiffEqDefault v1.1.0
-  [4302a76b] OrdinaryDiffEqDifferentiation v1.1.0
+  [4302a76b] OrdinaryDiffEqDifferentiation v1.2.0
   [9286f039] OrdinaryDiffEqExplicitRK v1.1.0
   [e0540318] OrdinaryDiffEqExponentialRK v1.1.0
   [becaefa8] OrdinaryDiffEqExtrapolation v1.2.1
-  [5960d6e9] OrdinaryDiffEqFIRK v1.2.0
+  [5960d6e9] OrdinaryDiffEqFIRK v1.3.0
   [101fe9f7] OrdinaryDiffEqFeagin v1.1.0
   [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1
   [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0
@@ -163,13 +170,13 @@
   [521117fe] OrdinaryDiffEqLinear v1.1.0
   [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0
   [b0944070] OrdinaryDiffEqLowStorageRK v1.2.1
-  [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.2.2
+  [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.2.4
   [c9986a66] OrdinaryDiffEqNordsieck v1.1.0
   [5dd0a6cf] OrdinaryDiffEqPDIRK v1.1.0
   [5b33eab2] OrdinaryDiffEqPRK v1.1.0
   [04162be5] OrdinaryDiffEqQPRK v1.1.0
   [af6ede74] OrdinaryDiffEqRKN v1.1.0
-  [43230ef6] OrdinaryDiffEqRosenbrock v1.2.0
+  [43230ef6] OrdinaryDiffEqRosenbrock v1.3.1
   [2d112036] OrdinaryDiffEqSDIRK v1.1.0
   [669c94d9] OrdinaryDiffEqSSPRK v1.2.0
   [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.1.0
@@ -184,7 +191,7 @@
   [b98c9c47] Pipe v1.3.0
   [ccf2f8ad] PlotThemes v3.3.0
   [995b91a9] PlotUtils v1.4.3
-  [91a5bcdd] Plots v1.40.8
+  [91a5bcdd] Plots v1.40.9
   [f517fe37] Polyester v0.7.16
   [1d0040c9] PolyesterWeave v0.2.2
   [f27b6e38] Polynomials v4.0.11
@@ -208,7 +215,7 @@
   [7e49a35a] RuntimeGeneratedFunctions v0.5.13
   [94e857df] SIMDTypes v0.1.0
   [476501e8] SLEEFPirates v0.6.43
-  [0bca4576] SciMLBase v2.59.2
+  [0bca4576] SciMLBase v2.60.0
   [19f34311] SciMLJacobianOperators v0.1.1
   [c0aeaf25] SciMLOperators v0.3.12
   [53ae85a6] SciMLStructures v1.5.0
@@ -216,13 +223,12 @@
   [efcf1570] Setfield v1.1.1
   [992d4aef] Showoff v1.0.3
   [777ac1f9] SimpleBufferStream v1.2.0
-⌅ [727e6d20] SimpleNonlinearSolve v1.12.3
+  [727e6d20] SimpleNonlinearSolve v2.0.0
   [699a6c99] SimpleTraits v0.9.4
   [ce78b400] SimpleUnPack v1.1.0
   [a2af1166] SortingAlgorithms v1.2.1
-  [9f842d2f] SparseConnectivityTracer v0.6.8
   [47a9eef4] SparseDiffTools v2.23.0
-  [0a514795] SparseMatrixColorings v0.4.9
+  [0a514795] SparseMatrixColorings v0.4.10
   [e56a9233] Sparspak v0.3.9
   [276daf66] SpecialFunctions v2.4.0
   [860ef19b] StableRNGs v1.0.2
@@ -235,7 +241,7 @@
   [2913bbd2] StatsBase v0.34.3
   [4c63d2b9] StatsFuns v1.3.2
   [7792a7ef] StrideArraysCore v0.5.7
-  [2efcf032] SymbolicIndexingInterface v0.3.34
+  [2efcf032] SymbolicIndexingInterface v0.3.35
   [19f23fe9] SymbolicLimits v0.2.2
   [d1185830] SymbolicUtils v3.7.2
   [0c5d862f] Symbolics v6.18.3 `~/work/Symbolics.jl/Symbolics.jl`
@@ -400,4 +406,4 @@
   [8e850b90] libblastrampoline_jll v5.11.0+0
   [8e850ede] nghttp2_jll v1.59.0+0
   [3f19e933] p7zip_jll v17.4.0+2
-Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m`

You can also download the manifest file and the project file.

+Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m`

You can also download the manifest file and the project file.

diff --git a/dev/manual/arrays/index.html b/dev/manual/arrays/index.html index 28b0d1eb5..e739bbd81 100644 --- a/dev/manual/arrays/index.html +++ b/dev/manual/arrays/index.html @@ -64,4 +64,4 @@ A_{2,1} A_{3,1} + A_{2,2} A_{3,2} + A_{2,3} A_{3,3} \end{equation} \]

@syms i::Int j::Int
-Symbolics.scalarize(AAt[i,j])

In general, any scalar expression which is derived from array expressions can be scalarized.

#sum(A[:,1]) + sum(A[2,:])#latexify not working
Symbolics.scalarize(sum(A[:,1]) + sum(A[2,:]))
+Symbolics.scalarize(AAt[i,j])

In general, any scalar expression which is derived from array expressions can be scalarized.

#sum(A[:,1]) + sum(A[2,:])#latexify not working
Symbolics.scalarize(sum(A[:,1]) + sum(A[2,:]))
diff --git a/dev/manual/build_function/index.html b/dev/manual/build_function/index.html index 9fcb87814..3b0d0a7d9 100644 --- a/dev/manual/build_function/index.html +++ b/dev/manual/build_function/index.html @@ -3,7 +3,7 @@ expression = Val{true}, target = JuliaTarget(), parallel=nothing, - kwargs...)

Arguments:

Keyword Arguments:

Note that not all build targets support the full compilation interface. Check the individual target documentation for details.

source

Target-Specific Definitions

Symbolics._build_functionMethod
_build_function(target::JuliaTarget, rhss::AbstractArray, args...;
+               kwargs...)

Arguments:

  • ex: The Num to compile
  • args: The arguments of the function
  • expression: Whether to generate code or whether to generate the compiled form. By default, expression = Val{true}, which means that the code for the function is returned. If Val{false}, then the returned value is compiled.

Keyword Arguments:

  • target: The output target of the compilation process. Possible options are:
    • JuliaTarget: Generates a Julia function
    • CTarget: Generates a C function
    • StanTarget: Generates a function for compiling with the Stan probabilistic programming language
    • MATLABTarget: Generates an anonymous function for use in MATLAB and Octave environments
  • parallel: The kind of parallelism to use in the generated function. Defaults to SerialForm(), i.e. no parallelism, if ex is a single expression or an array containing <= 1500 non-zero expressions. If ex is an array of > 1500 non-zero expressions, then ShardedForm(80, 4) is used. See below for more on ShardedForm. Note that the parallel forms are not exported and thus need to be chosen like Symbolics.SerialForm(). The choices are:
    • SerialForm(): Serial execution.
    • ShardedForm(cutoff, ncalls): splits the output function into sub-functions which contain at most cutoff number of output rhss. These sub-functions are called by the top-level function that buildfunction returns. This helps in reducing the compile time of the generated function.
    • MultithreadedForm(): Multithreaded execution with a static split, evenly splitting the number of expressions per thread.
  • fname: Used by some targets for the name of the function in the target space.

Note that not all build targets support the full compilation interface. Check the individual target documentation for details.

source

Target-Specific Definitions

Symbolics._build_functionMethod
_build_function(target::JuliaTarget, rhss::AbstractArray, args...;
                    conv=toexpr,
                    expression = Val{true},
                    expression_module = @__MODULE__(),
@@ -26,14 +26,14 @@
                          convert_oop = true, force_SA = false,
                          skipzeros = outputidxs===nothing,
                          fillzeros = skipzeros && !(typeof(rhss)<:SparseMatrixCSC),
-                         parallel=SerialForm(), kwargs...)

Generates a Julia function which can then be utilized for further evaluations. If expression=Val{false}, the return is a Julia function which utilizes RuntimeGeneratedFunctions.jl to be free of world-age issues.

If the rhss is a scalar, the generated function is a function with a scalar output. Otherwise, if it's an AbstractArray, the output is two functions, one for out-of-place AbstractArray output and a second which is a mutating function. The outputted functions match the given argument order, i.e., f(u,p,args...) for the out-of-place and scalar functions and f!(du,u,p,args..) for the in-place version.

Special Keyword Arguments:

  • parallel: The kind of parallelism to use in the generated function. Defaults to SerialForm(), i.e. no parallelism. Note that the parallel forms are not exported and thus need to be chosen like Symbolics.SerialForm(). The choices are:
    • SerialForm(): Serial execution.
    • ShardedForm(cutoff, ncalls): splits the output function into sub-functions which contain at most cutoff number of output rhss. These sub-functions are called by the top-level function that buildfunction returns.
    • MultithreadedForm(): Multithreaded execution with a static split, evenly splitting the number of expressions per thread.
  • conv: The conversion function of symbolic types to Expr. By default, this uses the toexpr function.
  • checkbounds: For whether to enable bounds checking inside the generated function. Defaults to false, meaning that @inbounds is applied.
  • linenumbers: Determines whether the generated function expression retains the line numbers. Defaults to true.
  • convert_oop: Determines whether the OOP version should try to convert the output to match the type of the first input. This is useful for cases like LabelledArrays or other array types that carry extra information. Defaults to true.
  • force_SA: Forces the output of the OOP version to be a StaticArray. Defaults to false, and outputs a static array when the first argument is a static array.
  • skipzeros: Whether to skip filling zeros in the in-place version if the filling function is 0.
  • fillzeros: Whether to perform fill(out,0) before the calculations to ensure safety with skipzeros.
source
Symbolics._build_functionMethod

Build function target: CTarget

function _build_function(target::CTarget, eqs::Array{<:Equation}, args...;
+                         parallel=SerialForm(), kwargs...)

Generates a Julia function which can then be utilized for further evaluations. If expression=Val{false}, the return is a Julia function which utilizes RuntimeGeneratedFunctions.jl to be free of world-age issues.

If the rhss is a scalar, the generated function is a function with a scalar output. Otherwise, if it's an AbstractArray, the output is two functions, one for out-of-place AbstractArray output and a second which is a mutating function. The outputted functions match the given argument order, i.e., f(u,p,args...) for the out-of-place and scalar functions and f!(du,u,p,args..) for the in-place version.

Special Keyword Arguments:

  • parallel: The kind of parallelism to use in the generated function. Defaults to SerialForm(), i.e. no parallelism. Note that the parallel forms are not exported and thus need to be chosen like Symbolics.SerialForm(). The choices are:
    • SerialForm(): Serial execution.
    • ShardedForm(cutoff, ncalls): splits the output function into sub-functions which contain at most cutoff number of output rhss. These sub-functions are called by the top-level function that buildfunction returns.
    • MultithreadedForm(): Multithreaded execution with a static split, evenly splitting the number of expressions per thread.
  • conv: The conversion function of symbolic types to Expr. By default, this uses the toexpr function.
  • checkbounds: For whether to enable bounds checking inside the generated function. Defaults to false, meaning that @inbounds is applied.
  • linenumbers: Determines whether the generated function expression retains the line numbers. Defaults to true.
  • convert_oop: Determines whether the OOP version should try to convert the output to match the type of the first input. This is useful for cases like LabelledArrays or other array types that carry extra information. Defaults to true.
  • force_SA: Forces the output of the OOP version to be a StaticArray. Defaults to false, and outputs a static array when the first argument is a static array.
  • skipzeros: Whether to skip filling zeros in the in-place version if the filling function is 0.
  • fillzeros: Whether to perform fill(out,0) before the calculations to ensure safety with skipzeros.
source
Symbolics._build_functionMethod

Build function target: CTarget

function _build_function(target::CTarget, eqs::Array{<:Equation}, args...;
                          conv = toexpr, expression = Val{true},
                          fname = :diffeqf,
                          lhsname=:du,rhsnames=[Symbol("RHS$i") for i in 1:length(args)],
-                         libpath=tempname(),compiler=:gcc)

This builds an in-place C function. Only works on arrays of equations. If expression == Val{false}, then this builds a function in C, compiles it, and returns a lambda to that compiled function. These special keyword arguments control the compilation:

  • libpath: the path to store the binary. Defaults to a temporary path.
  • compiler: which C compiler to use. Defaults to :gcc, which is currently the only available option.
source
Symbolics._build_functionMethod

Build function target: StanTarget

function _build_function(target::StanTarget, eqs::Array{<:Equation}, vs, ps, iv;
+                         libpath=tempname(),compiler=:gcc)

This builds an in-place C function. Only works on arrays of equations. If expression == Val{false}, then this builds a function in C, compiles it, and returns a lambda to that compiled function. These special keyword arguments control the compilation:

  • libpath: the path to store the binary. Defaults to a temporary path.
  • compiler: which C compiler to use. Defaults to :gcc, which is currently the only available option.
source
Symbolics._build_functionMethod

Build function target: StanTarget

function _build_function(target::StanTarget, eqs::Array{<:Equation}, vs, ps, iv;
                          conv = toexpr, expression = Val{true},
                          fname = :diffeqf, lhsname=:internal_var___du,
-                         rhsnames=[:internal_var___u,:internal_var___p,:internal_var___t])

This builds an in-place Stan function compatible with the Stan differential equation solvers. Unlike other build targets, this one requires (vs, ps, iv) as the function arguments. Only allowed on arrays of equations.

source
Symbolics._build_functionMethod

Build function target: MATLABTarget

function _build_function(target::MATLABTarget, eqs::Array{<:Equation}, args...;
+                         rhsnames=[:internal_var___u,:internal_var___p,:internal_var___t])

This builds an in-place Stan function compatible with the Stan differential equation solvers. Unlike other build targets, this one requires (vs, ps, iv) as the function arguments. Only allowed on arrays of equations.

source
Symbolics._build_functionMethod

Build function target: MATLABTarget

function _build_function(target::MATLABTarget, eqs::Array{<:Equation}, args...;
                          conv = toexpr, expression = Val{true},
                          lhsname=:internal_var___du,
-                         rhsnames=[:internal_var___u,:internal_var___p,:internal_var___t])

This builds an out of place anonymous function @(t,rhsnames[1]) to be used in MATLAB. Compatible with the MATLAB differential equation solvers. Only allowed on expressions, and arrays of expressions.

source

Limitations

build_function

+ rhsnames=[:internal_var___u,:internal_var___p,:internal_var___t])

This builds an out of place anonymous function @(t,rhsnames[1]) to be used in MATLAB. Compatible with the MATLAB differential equation solvers. Only allowed on expressions, and arrays of expressions.

source

Limitations

build_function

diff --git a/dev/manual/derivatives/index.html b/dev/manual/derivatives/index.html index 5687e0a75..63598a3b4 100644 --- a/dev/manual/derivatives/index.html +++ b/dev/manual/derivatives/index.html @@ -13,7 +13,7 @@ (D'~x(t)) ∘ (D'~y(t)) julia> D3 = Differential(x)^3 # 3rd order differential operator -(D'~x(t)) ∘ (D'~x(t)) ∘ (D'~x(t))source
Symbolics.expand_derivativesFunction
expand_derivatives(O; ...)
+(D'~x(t)) ∘ (D'~x(t)) ∘ (D'~x(t))
source
Symbolics.expand_derivativesFunction
expand_derivatives(O; ...)
 expand_derivatives(O, simplify; occurrences)
 

Expands derivatives within a symbolic expression O.

This function recursively traverses a symbolic expression, applying the chain rule and other derivative rules to expand any derivatives it encounters.

Arguments

  • O::Symbolic: The symbolic expression to expand.
  • simplify::Bool=false: Whether to simplify the resulting expression using SymbolicUtils.simplify.
  • occurrences=nothing: Information about the occurrences of the independent variable in the argument of the derivative. This is used internally for optimization purposes.

Examples

julia> @variables x y z k;
 
@@ -24,15 +24,15 @@
 (::Differential) (generic function with 2 methods)
 
 julia> dfx=expand_derivatives(Dx(f))
-(k*((2abs(x - y)) / y - 2z)*IfElse.ifelse(signbit(x - y), -1, 1)) / y
source
Missing docstring.

Missing docstring for is_derivative. Check Documenter's build log for details.

Note

For symbolic differentiation, all registered functions in the symbolic expression need a registered derivative. For more information, see the function registration page.

High-Level Differentiation Functions

The following functions are not exported and thus must be accessed in a namespaced way, i.e. Symbolics.jacobian.

Symbolics.derivativeFunction
derivative(O, var; simplify)
-

A helper function for computing the derivative of the expression O with respect to var.

source
Symbolics.jacobianFunction
jacobian(ops, vars; simplify, scalarize)
-

A helper function for computing the Jacobian of an array of expressions with respect to an array of variable expressions.

source
Symbolics.sparsejacobianFunction
sparsejacobian(ops, vars; simplify)
-

A helper function for computing the sparse Jacobian of an array of expressions with respect to an array of variable expressions.

source
Symbolics.sparsejacobian_valsFunction
sparsejacobian_vals(ops, vars, I, J; simplify)
-

A helper function for computing the values of the sparse Jacobian of an array of expressions with respect to an array of variable expressions given the sparsity structure.

source
Symbolics.gradientFunction
gradient(O, vars; simplify)
-

A helper function for computing the gradient of the expression O with respect to an array of variable expressions.

source
Symbolics.hessianFunction
hessian(O, vars; simplify)
-

A helper function for computing the Hessian of the expression O with respect to an array of variable expressions.

source
Symbolics.sparsehessianFunction
sparsehessian(op, vars; simplify, full)
-

A helper function for computing the sparse Hessian of an expression with respect to an array of variable expressions.

source
Symbolics.sparsehessian_valsFunction
sparsehessian_vals(op, vars, I, J; simplify)
-

A helper function for computing the values of the sparse Hessian of an expression with respect to an array of variable expressions given the sparsity structure.

source

Adding Analytical Derivatives

There are many derivatives pre-defined by DiffRules.jl. For example,

using Symbolics
+(k*((2abs(x - y)) / y - 2z)*IfElse.ifelse(signbit(x - y), -1, 1)) / y
source
Missing docstring.

Missing docstring for is_derivative. Check Documenter's build log for details.

Note

For symbolic differentiation, all registered functions in the symbolic expression need a registered derivative. For more information, see the function registration page.

High-Level Differentiation Functions

The following functions are not exported and thus must be accessed in a namespaced way, i.e. Symbolics.jacobian.

Symbolics.derivativeFunction
derivative(O, var; simplify)
+

A helper function for computing the derivative of the expression O with respect to var.

source
Symbolics.jacobianFunction
jacobian(ops, vars; simplify, scalarize)
+

A helper function for computing the Jacobian of an array of expressions with respect to an array of variable expressions.

source
Symbolics.sparsejacobianFunction
sparsejacobian(ops, vars; simplify)
+

A helper function for computing the sparse Jacobian of an array of expressions with respect to an array of variable expressions.

source
Symbolics.sparsejacobian_valsFunction
sparsejacobian_vals(ops, vars, I, J; simplify)
+

A helper function for computing the values of the sparse Jacobian of an array of expressions with respect to an array of variable expressions given the sparsity structure.

source
Symbolics.gradientFunction
gradient(O, vars; simplify)
+

A helper function for computing the gradient of the expression O with respect to an array of variable expressions.

source
Symbolics.hessianFunction
hessian(O, vars; simplify)
+

A helper function for computing the Hessian of the expression O with respect to an array of variable expressions.

source
Symbolics.sparsehessianFunction
sparsehessian(op, vars; simplify, full)
+

A helper function for computing the sparse Hessian of an expression with respect to an array of variable expressions.

source
Symbolics.sparsehessian_valsFunction
sparsehessian_vals(op, vars, I, J; simplify)
+

A helper function for computing the values of the sparse Hessian of an expression with respect to an array of variable expressions given the sparsity structure.

source

Adding Analytical Derivatives

There are many derivatives pre-defined by DiffRules.jl. For example,

using Symbolics
 @variables x y z
 f(x,y,z) = x^2 + sin(x+y) - z
f (generic function with 1 method)

f automatically has the derivatives defined via the tracing mechanism. It will do this by directly building the internals of your function and differentiating that.

However, often you may want to define your own derivatives so that way automatic Jacobian etc. calculations can utilize this information. This can allow for more succinct versions of the derivatives to be calculated to scale to larger systems. You can define derivatives for your function via the dispatch:

# `N` arguments are accepted by the relevant method of `my_function`
-Symbolics.derivative(::typeof(my_function), args::NTuple{N,Any}, ::Val{i})

where i means that it's the derivative with respect to the ith argument. args is the array of arguments, so, for example, if your function is f(x,t), then args = [x,t]. You should return an Term for the derivative of your function.

For example, sin(t)'s derivative (by t) is given by the following:

Symbolics.derivative(::typeof(sin), args::NTuple{1,Any}, ::Val{1}) = cos(args[1])
+Symbolics.derivative(::typeof(my_function), args::NTuple{N,Any}, ::Val{i})

where i means that it's the derivative with respect to the ith argument. args is the array of arguments, so, for example, if your function is f(x,t), then args = [x,t]. You should return an Term for the derivative of your function.

For example, sin(t)'s derivative (by t) is given by the following:

Symbolics.derivative(::typeof(sin), args::NTuple{1,Any}, ::Val{1}) = cos(args[1])
diff --git a/dev/manual/expression_manipulation/index.html b/dev/manual/expression_manipulation/index.html index 769aba5d4..4588c220c 100644 --- a/dev/manual/expression_manipulation/index.html +++ b/dev/manual/expression_manipulation/index.html @@ -8,7 +8,7 @@ julia> ex = x + y + sin(z) (x + y) + sin(z(t)) julia> substitute(ex, Dict([x => z, sin(z) => z^2])) -(z(t) + y) + (z(t) ^ 2)source
SymbolicUtils.simplifyFunction
simplify(x; expand=false,
+(z(t) + y) + (z(t) ^ 2)
source
SymbolicUtils.simplifyFunction
simplify(x; expand=false,
             threaded=false,
             thread_subtree_cutoff=100,
             rewriter=nothing)

Simplify an expression (x) by applying rewriter until there are no changes. expand=true applies expand in the beginning of each fixpoint iteration.

By default, simplify will assume denominators are not zero and allow cancellation in fractions. Pass simplify_fractions=false to prevent this.

source

Documentation for rewriter can be found here, using the @rule macro or the @acrule macro from SymbolicUtils.jl.

Additional Manipulation Functions

Other additional manipulation functions are given below.

Symbolics.get_variablesFunction
get_variables(e, varlist = nothing; sort::Bool = false)

Return a vector of variables appearing in e, optionally restricting to variables in varlist.

Note that the returned variables are not wrapped in the Num type.

Examples

julia> @variables t x y z(t);
@@ -22,7 +22,7 @@
 julia> Symbolics.get_variables(x - y; sort = true)
 2-element Vector{SymbolicUtils.BasicSymbolic}:
  x
- y
source
Symbolics.tosymbolFunction
tosymbol(x::Union{Num,Symbolic}; states=nothing, escape=true) -> Symbol

Convert x to a symbol. states are the states of a system, and escape means if the target has escapes like val"y(t)". If escape is false, then it will only output y instead of y(t).

Examples

julia> @variables t z(t)
+ y
source
Symbolics.tosymbolFunction
tosymbol(x::Union{Num,Symbolic}; states=nothing, escape=true) -> Symbol

Convert x to a symbol. states are the states of a system, and escape means if the target has escapes like val"y(t)". If escape is false, then it will only output y instead of y(t).

Examples

julia> @variables t z(t)
 2-element Vector{Num}:
     t
  z(t)
@@ -31,13 +31,13 @@
 Symbol("z(t)")
 
 julia> Symbolics.tosymbol(z; escape=false)
-:z
source
Symbolics.diff2termFunction
diff2term(x, x_metadata::Dict{Datatype, Any}) -> Symbolic

Convert a differential variable to a Term. Note that it only takes a Term not a Num. Any upstream metadata can be passed via x_metadata

julia> @variables x t u(x, t) z(t)[1:2]; Dt = Differential(t); Dx = Differential(x);
+:z
source
Symbolics.diff2termFunction
diff2term(x, x_metadata::Dict{Datatype, Any}) -> Symbolic

Convert a differential variable to a Term. Note that it only takes a Term not a Num. Any upstream metadata can be passed via x_metadata

julia> @variables x t u(x, t) z(t)[1:2]; Dt = Differential(t); Dx = Differential(x);
 
 julia> Symbolics.diff2term(Symbolics.value(Dx(Dt(u))))
 uˍtx(x, t)
 
 julia> Symbolics.diff2term(Symbolics.value(Dt(z[1])))
-var"z(t)[1]ˍt"
source
Symbolics.degreeFunction
degree(p, sym=nothing)

Extract the degree of p with respect to sym.

Examples

julia> @variables x;
+var"z(t)[1]ˍt"
source
Symbolics.degreeFunction
degree(p, sym=nothing)

Extract the degree of p with respect to sym.

Examples

julia> @variables x;
 
 julia> Symbolics.degree(x^0)
 0
@@ -46,7 +46,7 @@
 1
 
 julia> Symbolics.degree(x^2)
-2
source
Symbolics.coeffFunction
coeff(p, sym=nothing)

Extract the coefficient of p with respect to sym. Note that p might need to be expanded and/or simplified with expand and/or simplify.

Examples

julia> @variables a x y;
+2
source
Symbolics.coeffFunction
coeff(p, sym=nothing)

Extract the coefficient of p with respect to sym. Note that p might need to be expanded and/or simplified with expand and/or simplify.

Examples

julia> @variables a x y;
 
 julia> Symbolics.coeff(2a, x)
 0
@@ -58,9 +58,9 @@
 1
 
 julia> Symbolics.coeff(2*x*y + y, x*y)
-2
source
Missing docstring.

Missing docstring for Symbolics.replace. Check Documenter's build log for details.

Base.occursinFunction
occursin(needle::Symbolic, haystack::Symbolic)

Determine whether the second argument contains the first argument. Note that this function doesn't handle associativity, commutativity, or distributivity.

source
Symbolics.filterchildrenFunction

filterchildren(c, x) Returns all parts of x that fulfills the condition given in c. c can be a function or an expression. If it is a function, returns everything for which the function is true. If c is an expression, returns all expressions that matches it.

Examples:

@syms x
+2
source
Missing docstring.

Missing docstring for Symbolics.replace. Check Documenter's build log for details.

Base.occursinFunction
occursin(needle::Symbolic, haystack::Symbolic)

Determine whether the second argument contains the first argument. Note that this function doesn't handle associativity, commutativity, or distributivity.

source
Symbolics.filterchildrenFunction

filterchildren(c, x) Returns all parts of x that fulfills the condition given in c. c can be a function or an expression. If it is a function, returns everything for which the function is true. If c is an expression, returns all expressions that matches it.

Examples:

@syms x
 Symbolics.filterchildren(x, log(x) + x + 1)

returns [x, x]

@variables t X(t)
 D = Differential(t)
-Symbolics.filterchildren(Symbolics.is_derivative, X + D(X) + D(X^2))

returns [Differential(t)(X(t)^2), Differential(t)(X(t))]

source
Symbolics.fixpoint_subFunction
fixpoint_sub(expr, dict; operator = Nothing, maxiters = 10000)

Given a symbolic expression, equation or inequality expr perform the substitutions in dict recursively until the expression does not change. Substitutions that depend on one another will thus be recursively expanded. For example, fixpoint_sub(x, Dict(x => y, y => 3)) will return 3. The operator keyword can be specified to prevent substitution of expressions inside operators of the given type. The maxiters keyword is used to limit the number of times the substitution can occur to avoid infinite loops in cases where the substitutions in dict are circular (e.g. [x => y, y => x]).

See also: fast_substitute.

source
Symbolics.fast_substituteFunction
fast_substitute(expr, dict; operator = Nothing)

Given a symbolic expression, equation or inequality expr perform the substitutions in dict. This only performs the substitutions once. For example, fast_substitute(x, Dict(x => y, y => 3)) will return y. The operator keyword can be specified to prevent substitution of expressions inside operators of the given type.

See also: fixpoint_sub.

source
Symbolics.symbolic_to_floatFunction
symbolic_to_float(x::Union{Num, BasicSymbolic})::Union{AbstractFloat, BasicSymbolic}

If the symbolic value is exactly equal to a number, converts the symbolic value to a floating point number. Otherwise retains the symbolic value.

Examples

symbolic_to_float((1//2 * x)/x) # 0.5
+Symbolics.filterchildren(Symbolics.is_derivative, X + D(X) + D(X^2))

returns [Differential(t)(X(t)^2), Differential(t)(X(t))]

source
Symbolics.fixpoint_subFunction
fixpoint_sub(expr, dict; operator = Nothing, maxiters = 10000)

Given a symbolic expression, equation or inequality expr perform the substitutions in dict recursively until the expression does not change. Substitutions that depend on one another will thus be recursively expanded. For example, fixpoint_sub(x, Dict(x => y, y => 3)) will return 3. The operator keyword can be specified to prevent substitution of expressions inside operators of the given type. The maxiters keyword is used to limit the number of times the substitution can occur to avoid infinite loops in cases where the substitutions in dict are circular (e.g. [x => y, y => x]).

See also: fast_substitute.

source
Symbolics.fast_substituteFunction
fast_substitute(expr, dict; operator = Nothing)

Given a symbolic expression, equation or inequality expr perform the substitutions in dict. This only performs the substitutions once. For example, fast_substitute(x, Dict(x => y, y => 3)) will return y. The operator keyword can be specified to prevent substitution of expressions inside operators of the given type.

See also: fixpoint_sub.

source
Symbolics.symbolic_to_floatFunction
symbolic_to_float(x::Union{Num, BasicSymbolic})::Union{AbstractFloat, BasicSymbolic}

If the symbolic value is exactly equal to a number, converts the symbolic value to a floating point number. Otherwise retains the symbolic value.

Examples

symbolic_to_float((1//2 * x)/x) # 0.5
 symbolic_to_float((1/2 * x)/x) # 0.5
-symbolic_to_float((1//2)*√(279//4)) # 4.175823272122517
source
+symbolic_to_float((1//2)*√(279//4)) # 4.175823272122517source diff --git a/dev/manual/faq/index.html b/dev/manual/faq/index.html index be71420d1..320ec59c6 100644 --- a/dev/manual/faq/index.html +++ b/dev/manual/faq/index.html @@ -30,4 +30,4 @@ b = only(@variables($a))

\[ \begin{equation} c \end{equation} - \]

In this example, @variables($a) created a variable named c, and set this variable to b.

+ \]

In this example, @variables($a) created a variable named c, and set this variable to b.

diff --git a/dev/manual/functions/index.html b/dev/manual/functions/index.html index e1039f87c..918f466eb 100644 --- a/dev/manual/functions/index.html +++ b/dev/manual/functions/index.html @@ -41,19 +41,19 @@ \]

Note that at this time array derivatives cannot be defined.

Registration API

Symbolics.@register_symbolicMacro
@register_symbolic(expr, define_promotion = true, Ts = [Real])

Overload appropriate methods so that Symbolics can stop tracing into the registered function. If define_promotion is true, then a promotion method in the form of

SymbolicUtils.promote_symtype(::typeof(f_registered), args...) = Real # or the annotated return type

is defined for the register function. Note that when defining multiple register overloads for one function, all the rest of the registers must set define_promotion to false except for the first one, to avoid method overwriting.

Examples

@register_symbolic foo(x, y)
 @register_symbolic foo(x, y::Bool) false # do not overload a duplicate promotion rule
 @register_symbolic goo(x, y::Int) # `y` is not overloaded to take symbolic objects
-@register_symbolic hoo(x, y)::Int # `hoo` returns `Int`

See @register_array_symbolic to register functions which return arrays.

source
Symbolics.@register_array_symbolicMacro
@register_array_symbolic(expr, define_promotion = true)

Example:

# Let's say vandermonde takes an n-vector and returns an n x n matrix
+@register_symbolic hoo(x, y)::Int # `hoo` returns `Int`

See @register_array_symbolic to register functions which return arrays.

source
Symbolics.@register_array_symbolicMacro
@register_array_symbolic(expr, define_promotion = true)

Example:

# Let's say vandermonde takes an n-vector and returns an n x n matrix
 @register_array_symbolic vandermonde(x::AbstractVector) begin
     size=(length(x), length(x))
     eltype=eltype(x) # optional, will default to the promoted eltypes of x
 end

You can also register calls on callable structs:

@register_array_symbolic (c::Conv)(x::AbstractMatrix) begin
     size=size(x) .- size(c.kernel) .+ 1
     eltype=promote_type(eltype(x), eltype(c))
-end

If define_promotion = true then a promotion method in the form of

SymbolicUtils.promote_symtype(::typeof(f_registered), args...) = # inferred or annotated return type

is defined for the register function. Note that when defining multiple register overloads for one function, all the rest of the registers must set define_promotion to false except for the first one, to avoid method overwriting.

source

Direct Registration API (Advanced, Experimental)

Warn

This is a lower level API which is not as stable as the macro APIs.

In some circumstances you may need to use the direct API in order to define registration on functions or types without using the macro. This is done by directly defining dispatches on symbolic objects.

A good example of this is DataInterpolations.jl's interpolations object. On an interpolation by a symbolic variable, we generate the symbolic function (the term) for the interpolation function. This looks like:

using DataInterpolations, Symbolics, SymbolicUtils
+end

If define_promotion = true then a promotion method in the form of

SymbolicUtils.promote_symtype(::typeof(f_registered), args...) = # inferred or annotated return type

is defined for the register function. Note that when defining multiple register overloads for one function, all the rest of the registers must set define_promotion to false except for the first one, to avoid method overwriting.

source

Direct Registration API (Advanced, Experimental)

Warn

This is a lower level API which is not as stable as the macro APIs.

In some circumstances you may need to use the direct API in order to define registration on functions or types without using the macro. This is done by directly defining dispatches on symbolic objects.

A good example of this is DataInterpolations.jl's interpolations object. On an interpolation by a symbolic variable, we generate the symbolic function (the term) for the interpolation function. This looks like:

using DataInterpolations, Symbolics, SymbolicUtils
 (interp::AbstractInterpolation)(t::Num) = SymbolicUtils.term(interp, unwrap(t))

In order for this to work, it is required that we define the symtype for the symbolic type inference. This is done via:

SymbolicUtils.promote_symtype(t::AbstractInterpolation, args...) = Real

Additionally a symbolic name is required:

Base.nameof(interp::AbstractInterpolation) = :Interpolation

The derivative is defined similarly to the macro case:

function Symbolics.derivative(interp::AbstractInterpolation, args::NTuple{1, Any}, ::Val{1})
     Symbolics.unwrap(derivative(interp, Symbolics.wrap(args[1])))
-end

Inverse function registration

Symbolics.jl allows defining and querying the inverses of functions.

Symbolics.inverseFunction
inverse(f)

Given a single-input single-output function f, return its inverse g. This requires that f is bijective. If inverse is defined for a function, left_inverse and right_inverse should return inverse(f). inverse(g) should also be defined to return f.

See also: left_inverse, right_inverse, @register_inverse.

source
Symbolics.left_inverseFunction
left_inverse(f)

Given a single-input single-output function f, return its left inverse g. This requires that f is injective. If left_inverse is defined for a function, right_inverse and inverse must not be defined and should error. right_inverse(g) should also be defined to return f.

See also: inverse, right_inverse, @register_inverse.

source
Symbolics.right_inverseFunction
right_inverse(f)

Given a single-input single-output function f, return its right inverse g. This requires that f is surjective. If right_inverse is defined for a function, left_inverse and inverse must not be defined and should error. left_inverse(g) should also be defined to return f.

See also inverse, left_inverse, @register_inverse.

source
Symbolics.@register_inverseMacro
@register_inverse f g
+end

Inverse function registration

Symbolics.jl allows defining and querying the inverses of functions.

Symbolics.inverseFunction
inverse(f)

Given a single-input single-output function f, return its inverse g. This requires that f is bijective. If inverse is defined for a function, left_inverse and right_inverse should return inverse(f). inverse(g) should also be defined to return f.

See also: left_inverse, right_inverse, @register_inverse.

source
Symbolics.left_inverseFunction
left_inverse(f)

Given a single-input single-output function f, return its left inverse g. This requires that f is injective. If left_inverse is defined for a function, right_inverse and inverse must not be defined and should error. right_inverse(g) should also be defined to return f.

See also: inverse, right_inverse, @register_inverse.

source
Symbolics.right_inverseFunction
right_inverse(f)

Given a single-input single-output function f, return its right inverse g. This requires that f is surjective. If right_inverse is defined for a function, left_inverse and inverse must not be defined and should error. left_inverse(g) should also be defined to return f.

See also inverse, left_inverse, @register_inverse.

source
Symbolics.@register_inverseMacro
@register_inverse f g
 @register_inverse f g left
-@register_inverse f g right

Mark f and g as inverses of each other. By default, assume that f and g are bijective. Also defines left_inverse and right_inverse to call inverse. If the third argument is left, assume that f is injective and g is its left inverse. If the third argument is right, assume that f is surjective and g is its right inverse.

source

Symbolics.jl implements inverses for standard trigonometric and logarithmic functions, as well as their variants from NaNMath. It also implements inverses of ComposedFunctions.

+@register_inverse f g right

Mark f and g as inverses of each other. By default, assume that f and g are bijective. Also defines left_inverse and right_inverse to call inverse. If the third argument is left, assume that f is injective and g is its left inverse. If the third argument is right, assume that f is surjective and g is its right inverse.

source
Symbolics.has_inverseFunction
has_inverse(_) -> Bool
+

Check if the provided function has an inverse defined via inverse. Uses hasmethod to perform the check.

source
Symbolics.has_left_inverseFunction
has_left_inverse(_) -> Bool
+

Check if the provided function has a left inverse defined via left_inverse Uses hasmethod to perform the check.

source
Symbolics.has_right_inverseFunction
has_right_inverse(_) -> Bool
+

Check if the provided function has a left inverse defined via left_inverse Uses hasmethod to perform the check.

source

Symbolics.jl implements inverses for standard trigonometric and logarithmic functions, as well as their variants from NaNMath. It also implements inverses of ComposedFunctions.

diff --git a/dev/manual/groebner/index.html b/dev/manual/groebner/index.html index 7ea50cc91..3dec08337 100644 --- a/dev/manual/groebner/index.html +++ b/dev/manual/groebner/index.html @@ -1,2 +1,2 @@ -Groebner bases · Symbolics.jl

Groebner bases

Groebner bases use the implementation of the F4 algorithm from Groebner.jl package as its backend. We refer to the documentation of Groebner.jl, which lists some implementations details and possible use-cases of Groebner bases.

Symbolics.groebner_basisFunction
groebner_basis(polynomials)

Computes a Groebner basis of the ideal generated by the given polynomials.

This function requires a Groebner bases backend (such as Groebner.jl) to be loaded.

source
+Groebner bases · Symbolics.jl

Groebner bases

Groebner bases use the implementation of the F4 algorithm from Groebner.jl package as its backend. We refer to the documentation of Groebner.jl, which lists some implementations details and possible use-cases of Groebner bases.

Symbolics.groebner_basisFunction
groebner_basis(polynomials)

Computes a Groebner basis of the ideal generated by the given polynomials.

This function requires a Groebner bases backend (such as Groebner.jl) to be loaded.

source
diff --git a/dev/manual/io/index.html b/dev/manual/io/index.html index a838026a5..88b2f916b 100644 --- a/dev/manual/io/index.html +++ b/dev/manual/io/index.html @@ -6,4 +6,4 @@ end ex1, ex2 = build_function(f(u),u) write("function.jl", string(ex2))
898

Now we can do something like:

g = include("function.jl")
#1 (generic function with 1 method)

and that will load the function back in. Note that this can be done to save the transformation results of Symbolics.jl so that they can be stored and used in a precompiled Julia package.

Latexification

Symbolics.jl's expressions support Latexify.jl, and thus

using Latexify
-latexify(ex)

will produce LaTeX output from Symbolics models and expressions. This works on basics like Term all the way to higher primitives like ODESystem and ReactionSystem.

+latexify(ex)

will produce LaTeX output from Symbolics models and expressions. This works on basics like Term all the way to higher primitives like ODESystem and ReactionSystem.

diff --git a/dev/manual/limits/index.html b/dev/manual/limits/index.html index a8035982c..840086868 100644 --- a/dev/manual/limits/index.html +++ b/dev/manual/limits/index.html @@ -1,2 +1,2 @@ -Symbolic Limits · Symbolics.jl

Symbolic Limits

Experimental symbolic limit support is provided by the limit function, documented below. See SymbolicLimits.jl for more information and implementation details.

Symbolics.limitFunction
limit(expr, var, h[, side::Symbol])

Compute the limit of expr as var approaches h.

side indicates the direction from which var approaches h. It may be one of :left, :right, or :both. If side is :both and the two sides do not align, an error is thrown. Side defaults to :both for finite h, :left for h = Inf, and :right for h = -Inf.

expr must be composed of log, exp, constants, and the rational operators +, -, *, and /. This limitation may eventually be relaxed.

Warning

Because symbolic limit computation is undecidable, this function necessarily employs heuristics and may occasionally return wrong answers. Nevertheless, please report wrong answers as issues as we aim to have heuristics that produce correct answers in all practical cases.

source
+Symbolic Limits · Symbolics.jl

Symbolic Limits

Experimental symbolic limit support is provided by the limit function, documented below. See SymbolicLimits.jl for more information and implementation details.

Symbolics.limitFunction
limit(expr, var, h[, side::Symbol])

Compute the limit of expr as var approaches h.

side indicates the direction from which var approaches h. It may be one of :left, :right, or :both. If side is :both and the two sides do not align, an error is thrown. Side defaults to :both for finite h, :left for h = Inf, and :right for h = -Inf.

expr must be composed of log, exp, constants, and the rational operators +, -, *, and /. This limitation may eventually be relaxed.

Warning

Because symbolic limit computation is undecidable, this function necessarily employs heuristics and may occasionally return wrong answers. Nevertheless, please report wrong answers as issues as we aim to have heuristics that produce correct answers in all practical cases.

source
diff --git a/dev/manual/parsing/index.html b/dev/manual/parsing/index.html index 230e68986..c45c3740a 100644 --- a/dev/manual/parsing/index.html +++ b/dev/manual/parsing/index.html @@ -15,4 +15,4 @@ z ~ 2] all(isequal.(eqs,ex)) # true

Limitations

Symbolic-ness Tied to Environment Definitions

The parsing to a symbolic expression has to be able to recognize the difference between functions, numbers, and globals defined within one's Julia environment and those that are to be made symbolic. The way this functionality handles this problem is that it does not define anything as symbolic that is already defined in the chosen mod module. For example, f(x,y) will have f as non-symbolic if the function f (named f) is defined in mod, i.e. if isdefined(mod,:f) is true. When the symbol is defined, it will be replaced by its value. Notably, this means that the parsing behavior changes depending on the environment that it is applied.

For example:

parse_expr_to_symbolic(:(x - y),@__MODULE__) # x - y
 x = 2.0
-parse_expr_to_symbolic(:(x - y),@__MODULE__) # 2.0 - y

This is required to detect that standard functions like - are functions instead of symbolic symbols. For safety, one should create anonymous modules or other sub-environments to ensure no stray variables are defined.

Metadata is Blank

Because all the variables defined by the expressions are not defined with the standard @variables, there is no metadata that is or can be associated with any of the generated variables. Instead, they all have blank metadata, but are defined in the Real domain. Thus, the variables which come out of this parsing may not evaluate as equal to a symbolic variable defined elsewhere.

source
Missing docstring.

Missing docstring for @parse_expr_to_symbolic. Check Documenter's build log for details.

+parse_expr_to_symbolic(:(x - y),@__MODULE__) # 2.0 - y

This is required to detect that standard functions like - are functions instead of symbolic symbols. For safety, one should create anonymous modules or other sub-environments to ensure no stray variables are defined.

Metadata is Blank

Because all the variables defined by the expressions are not defined with the standard @variables, there is no metadata that is or can be associated with any of the generated variables. Instead, they all have blank metadata, but are defined in the Real domain. Thus, the variables which come out of this parsing may not evaluate as equal to a symbolic variable defined elsewhere.

source
Missing docstring.

Missing docstring for @parse_expr_to_symbolic. Check Documenter's build log for details.

diff --git a/dev/manual/solver/index.html b/dev/manual/solver/index.html index 1893bd87a..686030360 100644 --- a/dev/manual/solver/index.html +++ b/dev/manual/solver/index.html @@ -65,7 +65,7 @@ julia> Symbolics.symbolic_to_float.(roots) 1-element Vector{Complex{BigFloat}}: - -4.512941594732059759689023145584186058252768936052415430071569066192919491762214 + 3.428598090438030380369414618548038962770087500755160535832807433942464545729382imsource

One other symbolic solver is symbolic_linear_solve which is limited compared to symbolic_solve as it only solves linear equations.

Symbolics.symbolic_linear_solveFunction
symbolic_linear_solve(eq, var; simplify, check) -> Any
+ -4.512941594732059759689023145584186058252768936052415430071569066192919491762214 + 3.428598090438030380369414618548038962770087500755160535832807433942464545729382im
source

One other symbolic solver is symbolic_linear_solve which is limited compared to symbolic_solve as it only solves linear equations.

Symbolics.symbolic_linear_solveFunction
symbolic_linear_solve(eq, var; simplify, check) -> Any
 

Solve equation(s) eqs for a set of variables vars.

Assumes length(eqs) == length(vars)

Currently only works if all equations are linear. check if the expr is linear w.r.t vars.

Examples

julia> @variables x y
 2-element Vector{Num}:
  x
@@ -77,7 +77,7 @@
 julia> Symbolics.symbolic_linear_solve([x + y ~ 0, x - y ~ 2], [x, y])
 2-element Vector{Float64}:
   1.0
- -1.0
source

symbolic_solve only supports symbolic, i.e. non-floating point computations, and thus prefers equations where the coefficients are integer, rational, or symbolic. Floating point coefficients are transformed into rational values and BigInt values are used internally with a potential performance loss, and thus it is recommended that this functionality is only used with floating point values if necessary. In contrast, symbolic_linear_solve directly handles floating point values using standard factorizations.

More technical details and examples

Technical details

The symbolic_solve function uses 4 hidden solvers in order to solve the user's input. Its base, solve_univar, uses analytic solutions up to polynomials of degree 4 and factoring as its method for solving univariate polynomials. The function's solve_multipoly uses GCD on the input polynomials then throws passes the result to solve_univar. The function's solve_multivar uses Groebner basis and a separating form in order to create linear equations in the input variables and a single high degree equation in the separating variable [1]. Each equation resulting from the basis is then passed to solve_univar. We can see that essentially, solve_univar is the building block of symbolic_solve. If the input is not a valid polynomial and can not be solved by the algorithm above, symbolic_solve passes it to ia_solve, which attempts solving by attraction and isolation [2]. This only works when the input is a single expression and the user wants the answer in terms of a single variable. Say log(x) - a == 0 gives us [e^a].

Symbolics.solve_univarFunction
solve_univar(expression, x; dropmultiplicity=true)

This solver uses analytic solutions up to degree 4 to solve univariate polynomials. It first handles the special case of the expression being of operation ^. E.g. math (x+2)^{20}. We solve this by removing the int 20, then solving the poly math x+2 on its own. If the parameter mult of the solver is set to true, we then repeat the found roots of math x+2 twenty times before returning the results to the user.

Step 2 is filtering the expression after handling this special case, and then factoring it using factor_use_nemo. We then solve all the factors outputted using the analytic methods implemented in the function get_roots and its children.

Arguments

  • expr: Single symbolics Num or SymbolicUtils.BasicSymbolic expression. This is equated to 0 and then solved. E.g. expr = x+2, we solve x+2 = 0

  • x: Single symbolics variable

  • dropmultiplicity (optional): Print repeated roots or not?

Examples

source
Missing docstring.

Missing docstring for Symbolics.solve_multivar. Check Documenter's build log for details.

Symbolics.ia_solveFunction
ia_solve(lhs, var; kwargs...)

This function attempts to solve transcendental functions by first checking the "smart" number of occurrences in the input LHS. By smart here we mean that polynomials are counted as 1 occurrence. for example x^2 + 2x is 1 occurrence of x. So we abstract all occurrences of x's as polynomials. Say: log(x+1) + x^2 is seen as log(f(x)) + g(x) so there are 2 occurrences of x. If there is only 1 occurrence of x in an input expression, isolate is called.

Isolate reverses all operations applied on the occurrence of x until we have f(x) = some constant then we can solve this using our polynomial solvers.

If more than 1 occurrence of x is found, ia_solve attempts to attract the occurrences of x in order to reduce these occurrences to 1. For example, log(x+1) + log(x-1) can be converted to log(x^2 - 1) which now could be isolated using Isolate.

attract(lhs, var) currently uses 4 techniques for attraction.

  • Log addition: log(f(x)) + log(g(x)) => log(h(x))
  • Exponential simplification: a*b^(f(x)) + c*d^(g(x)) => f(x) * log(b) - g(x) * log(d) + log(-a/c). And now this is actually 1 occurrence of x since f(x) and g(x) are just multiplied by constants not wrapped in some operation.
  • Trig simplification: this bruteforces multiple trig identities and doesn't detect them before hand.
  • Polynomialization: as a last resort, attract attempts to polynomialize the expression. Say sin(x+2)^2 + sin(x+2) + 10 is converted to X^2 + X + 10, we then solve this using our polynomial solver, and afterwards, isolate sin(x+2) = the roots found by solve for X^2 + X + 10

After attraction, we check the number of occurrences again, and if its 1, we isolate, if not, we throw an error to tell the user that this is currently unsolvable by our covered techniques.

Arguments

  • lhs: a Num/SymbolicUtils.BasicSymbolic
  • var: variable to solve for.

Keyword arguments

  • warns = true: Whether to emit warnings for unsolvable expressions.
  • complex_roots = true: Whether to consider complex roots of x ^ n ~ y, where n is an integer.
  • periodic_roots = true: If true, isolate f(x) ~ y as x ~ finv(y) + n * period where is_periodic(f) == true, finv = left_inverse(f) and period = fundamental_period(f). n is a new anonymous symbolic variable.

Examples

julia> solve(a*x^b + c, x)
+ -1.0
source

symbolic_solve only supports symbolic, i.e. non-floating point computations, and thus prefers equations where the coefficients are integer, rational, or symbolic. Floating point coefficients are transformed into rational values and BigInt values are used internally with a potential performance loss, and thus it is recommended that this functionality is only used with floating point values if necessary. In contrast, symbolic_linear_solve directly handles floating point values using standard factorizations.

More technical details and examples

Technical details

The symbolic_solve function uses 4 hidden solvers in order to solve the user's input. Its base, solve_univar, uses analytic solutions up to polynomials of degree 4 and factoring as its method for solving univariate polynomials. The function's solve_multipoly uses GCD on the input polynomials then throws passes the result to solve_univar. The function's solve_multivar uses Groebner basis and a separating form in order to create linear equations in the input variables and a single high degree equation in the separating variable [1]. Each equation resulting from the basis is then passed to solve_univar. We can see that essentially, solve_univar is the building block of symbolic_solve. If the input is not a valid polynomial and can not be solved by the algorithm above, symbolic_solve passes it to ia_solve, which attempts solving by attraction and isolation [2]. This only works when the input is a single expression and the user wants the answer in terms of a single variable. Say log(x) - a == 0 gives us [e^a].

Symbolics.solve_univarFunction
solve_univar(expression, x; dropmultiplicity=true)

This solver uses analytic solutions up to degree 4 to solve univariate polynomials. It first handles the special case of the expression being of operation ^. E.g. math (x+2)^{20}. We solve this by removing the int 20, then solving the poly math x+2 on its own. If the parameter mult of the solver is set to true, we then repeat the found roots of math x+2 twenty times before returning the results to the user.

Step 2 is filtering the expression after handling this special case, and then factoring it using factor_use_nemo. We then solve all the factors outputted using the analytic methods implemented in the function get_roots and its children.

Arguments

  • expr: Single symbolics Num or SymbolicUtils.BasicSymbolic expression. This is equated to 0 and then solved. E.g. expr = x+2, we solve x+2 = 0

  • x: Single symbolics variable

  • dropmultiplicity (optional): Print repeated roots or not?

Examples

source
Missing docstring.

Missing docstring for Symbolics.solve_multivar. Check Documenter's build log for details.

Symbolics.ia_solveFunction
ia_solve(lhs, var; kwargs...)

This function attempts to solve transcendental functions by first checking the "smart" number of occurrences in the input LHS. By smart here we mean that polynomials are counted as 1 occurrence. for example x^2 + 2x is 1 occurrence of x. So we abstract all occurrences of x's as polynomials. Say: log(x+1) + x^2 is seen as log(f(x)) + g(x) so there are 2 occurrences of x. If there is only 1 occurrence of x in an input expression, isolate is called.

Isolate reverses all operations applied on the occurrence of x until we have f(x) = some constant then we can solve this using our polynomial solvers.

If more than 1 occurrence of x is found, ia_solve attempts to attract the occurrences of x in order to reduce these occurrences to 1. For example, log(x+1) + log(x-1) can be converted to log(x^2 - 1) which now could be isolated using Isolate.

attract(lhs, var) currently uses 4 techniques for attraction.

  • Log addition: log(f(x)) + log(g(x)) => log(h(x))
  • Exponential simplification: a*b^(f(x)) + c*d^(g(x)) => f(x) * log(b) - g(x) * log(d) + log(-a/c). And now this is actually 1 occurrence of x since f(x) and g(x) are just multiplied by constants not wrapped in some operation.
  • Trig simplification: this bruteforces multiple trig identities and doesn't detect them before hand.
  • Polynomialization: as a last resort, attract attempts to polynomialize the expression. Say sin(x+2)^2 + sin(x+2) + 10 is converted to X^2 + X + 10, we then solve this using our polynomial solver, and afterwards, isolate sin(x+2) = the roots found by solve for X^2 + X + 10

After attraction, we check the number of occurrences again, and if its 1, we isolate, if not, we throw an error to tell the user that this is currently unsolvable by our covered techniques.

Arguments

  • lhs: a Num/SymbolicUtils.BasicSymbolic
  • var: variable to solve for.

Keyword arguments

  • warns = true: Whether to emit warnings for unsolvable expressions.
  • complex_roots = true: Whether to consider complex roots of x ^ n ~ y, where n is an integer.
  • periodic_roots = true: If true, isolate f(x) ~ y as x ~ finv(y) + n * period where is_periodic(f) == true, finv = left_inverse(f) and period = fundamental_period(f). n is a new anonymous symbolic variable.

Examples

julia> solve(a*x^b + c, x)
 ((-c)^(1 / b)) / (a^(1 / b))
julia> solve(2^(x+1) + 5^(x+3), x)
 1-element Vector{SymbolicUtils.BasicSymbolic{Real}}:
  (-log(2) + 3log(5) - log(complex(-1))) / (log(2) - log(5))
julia> solve(log(x+1)+log(x-1), x)
@@ -91,7 +91,7 @@
 [ Info: var"##234" ϵ Ζ: e.g. 0, 1, 2...
 2-element Vector{SymbolicUtils.BasicSymbolic{Real}}:
  -2 + π*2var"##230" + asin((1//2)*(-1 + RootFinding.ssqrt(-39)))
- -2 + π*2var"##234" + asin((1//2)*(-1 - RootFinding.ssqrt(-39)))

All transcendental functions for which left_inverse is defined are supported. To enable ia_solve to handle custom transcendental functions, define an inverse or left inverse. If the function is periodic, is_periodic and fundamental_period must be defined. If the function imposes certain conditions on its input or output (for example, log requires that its input be positive) define ia_conditions!.

See also: left_inverse, inverse, is_periodic, fundamental_period, ia_conditions!.

References

source
Symbolics.ia_conditions!Function
ia_conditions!(f, lhs, rhs::Vector{Any}, conditions::Vector{Tuple})

If f is a left-invertible function, lhs and rhs[i] are univariate functions and f(lhs) ~ rhs[i] for all i in eachindex(rhss), push to conditions all the relevant conditions on lhs or rhs[i]. Each condition is of the form (sym, op) where sym is an expression involving lhs and/or rhs[i] and op is a binary relational operator. The condition op(sym, 0) is then required to be true for the equation f(lhs) ~ rhs[i] to be valid.

For example, if f = log, lhs = x and rhss = [y, z] then the condition x > 0 must be true. Thus, (lhs, >) is pushed to conditions. Similarly, if f = sqrt, rhs[i] >= 0 must be true for all i, and so (y, >=) and (z, >=) will be appended to conditions.

source
Symbolics.is_periodicFunction
is_periodic(f)

Return true if f is a single-input single-output periodic function. Return false by default. If is_periodic(f) == true, then fundamental_period(f) must also be defined.

See also: fundamental_period

source
Symbolics.fundamental_periodFunction
fundamental_period(f)

Return the fundamental period of periodic function f. Must only be called if is_periodic(f) == true.

see also: is_periodic

source

Nice examples

using Symbolics, Nemo;
+ -2 + π*2var"##234" + asin((1//2)*(-1 - RootFinding.ssqrt(-39)))

All transcendental functions for which left_inverse is defined are supported. To enable ia_solve to handle custom transcendental functions, define an inverse or left inverse. If the function is periodic, is_periodic and fundamental_period must be defined. If the function imposes certain conditions on its input or output (for example, log requires that its input be positive) define ia_conditions!.

See also: left_inverse, inverse, is_periodic, fundamental_period, ia_conditions!.

References

source
Symbolics.ia_conditions!Function
ia_conditions!(f, lhs, rhs::Vector{Any}, conditions::Vector{Tuple})

If f is a left-invertible function, lhs and rhs[i] are univariate functions and f(lhs) ~ rhs[i] for all i in eachindex(rhss), push to conditions all the relevant conditions on lhs or rhs[i]. Each condition is of the form (sym, op) where sym is an expression involving lhs and/or rhs[i] and op is a binary relational operator. The condition op(sym, 0) is then required to be true for the equation f(lhs) ~ rhs[i] to be valid.

For example, if f = log, lhs = x and rhss = [y, z] then the condition x > 0 must be true. Thus, (lhs, >) is pushed to conditions. Similarly, if f = sqrt, rhs[i] >= 0 must be true for all i, and so (y, >=) and (z, >=) will be appended to conditions.

source
Symbolics.is_periodicFunction
is_periodic(f)

Return true if f is a single-input single-output periodic function. Return false by default. If is_periodic(f) == true, then fundamental_period(f) must also be defined.

See also: fundamental_period

source
Symbolics.fundamental_periodFunction
fundamental_period(f)

Return the fundamental period of periodic function f. Must only be called if is_periodic(f) == true.

see also: is_periodic

source

Nice examples

using Symbolics, Nemo;
 @variables x;
 Symbolics.symbolic_solve(9^x + 3^x ~ 8, x)
2-element Vector{SymbolicUtils.BasicSymbolic{Real}}:
  slog(-(1//2) + (1//2)*√(33)) / slog(3)
@@ -117,4 +117,4 @@
 Out[2]= a \[Element] Reals && x > -a
 
 In[3]:= Solve[x^(x)  + 3 == 0, x]
-Out[3]= {{x -> (I \[Pi] + Log[3])/ProductLog[I \[Pi] + Log[3]]}}

References

+Out[3]= {{x -> (I \[Pi] + Log[3])/ProductLog[I \[Pi] + Log[3]]}}

References

diff --git a/dev/manual/sparsity_detection/index.html b/dev/manual/sparsity_detection/index.html index b633d6c84..17bf3706f 100644 --- a/dev/manual/sparsity_detection/index.html +++ b/dev/manual/sparsity_detection/index.html @@ -17,7 +17,7 @@ 3×2 SparseArrays.SparseMatrixCSC{Bool, Int64} with 4 stored entries: 1 ⋅ ⋅ 1 - 1 1source
jacobian_sparsity(
+ 1  1
source
jacobian_sparsity(
     f!::Function,
     output::AbstractArray,
     input::AbstractArray,
@@ -36,7 +36,7 @@
 3×2 SparseArrays.SparseMatrixCSC{Bool, Int64} with 4 stored entries:
  ⋅  1
  1  ⋅
- 1  1
source
Symbolics.hessian_sparsityFunction
hessian_sparsity(
+ 1  1
source
Symbolics.hessian_sparsityFunction
hessian_sparsity(
     expr,
     vars::AbstractVector;
     full
@@ -50,7 +50,7 @@
 julia> Symbolics.hessian_sparsity(expr, vars)
 2×2 SparseArrays.SparseMatrixCSC{Bool, Int64} with 3 stored entries:
  1  1
- 1  ⋅
source
hessian_sparsity(
+ 1  ⋅
source
hessian_sparsity(
     f::Function,
     input::AbstractVector,
     args...;
@@ -66,6 +66,6 @@
 julia> Symbolics.hessian_sparsity(f, input)
 2×2 SparseArrays.SparseMatrixCSC{Bool, Int64} with 3 stored entries:
  ⋅  1
- 1  1
source

Structure Detection

Symbolics.islinearFunction
islinear(ex, u)
-

Check if an expression is linear with respect to a list of variable expressions.

source
Symbolics.isaffineFunction
isaffine(ex, u)
-

Check if an expression is affine with respect to a list of variable expressions.

source

ADTypes.jl interface

Symbolics.SymbolicsSparsityDetectorType
SymbolicsSparsityDetector <: ADTypes.AbstractSparsityDetector

Sparsity detection algorithm based on the Symbolics.jl tracing system.

This type makes Symbolics.jl compatible with the ADTypes.jl sparsity detection framework. The following functions are implemented:

Reference

Sparsity Programming: Automated Sparsity-Aware Optimizations in Differentiable Programming, Gowda et al. (2019)

source
+ 1 1source

Structure Detection

Symbolics.islinearFunction
islinear(ex, u)
+

Check if an expression is linear with respect to a list of variable expressions.

source
Symbolics.isaffineFunction
isaffine(ex, u)
+

Check if an expression is affine with respect to a list of variable expressions.

source

ADTypes.jl interface

Symbolics.SymbolicsSparsityDetectorType
SymbolicsSparsityDetector <: ADTypes.AbstractSparsityDetector

Sparsity detection algorithm based on the Symbolics.jl tracing system.

This type makes Symbolics.jl compatible with the ADTypes.jl sparsity detection framework. The following functions are implemented:

Reference

Sparsity Programming: Automated Sparsity-Aware Optimizations in Differentiable Programming, Gowda et al. (2019)

source
diff --git a/dev/manual/taylor/index.html b/dev/manual/taylor/index.html index dff9c7451..81614c9d3 100644 --- a/dev/manual/taylor/index.html +++ b/dev/manual/taylor/index.html @@ -9,7 +9,7 @@ y[0] + (-2 + x)*y[1] + ((-2 + x)^2)*y[2] + ((-2 + x)^3)*y[3] julia> series(z, x, 2, 0:3) -z[0] + (-2 + x)*z[1] + ((-2 + x)^2)*z[2] + ((-2 + x)^3)*z[3]source
Symbolics.taylorFunction
taylor(f, x, [x0=0,] n; rationalize=true)

Calculate the n-th order term(s) in the Taylor series of f around x = x0. If rationalize, float coefficients are approximated as rational numbers (this can produce unexpected results for irrational numbers, for example).

Examples

julia> @variables x
+z[0] + (-2 + x)*z[1] + ((-2 + x)^2)*z[2] + ((-2 + x)^3)*z[3]
source
Symbolics.taylorFunction
taylor(f, x, [x0=0,] n; rationalize=true)

Calculate the n-th order term(s) in the Taylor series of f around x = x0. If rationalize, float coefficients are approximated as rational numbers (this can produce unexpected results for irrational numbers, for example).

Examples

julia> @variables x
 1-element Vector{Num}:
  x
 
@@ -23,7 +23,7 @@
 1 + (1//2)*(-1 + x) - (1//8)*((-1 + x)^2) + (1//16)*((-1 + x)^3)
 
 julia> isequal(taylor(exp(im*x), x, 0:5), taylor(exp(im*x), x, 0:5))
-true
source
Symbolics.taylor_coeffFunction
taylor_coeff(f, x[, n]; rationalize=true)

Calculate the n-th order coefficient(s) in the Taylor series of f around x = 0.

Examples

julia> @variables x y
+true
source
Symbolics.taylor_coeffFunction
taylor_coeff(f, x[, n]; rationalize=true)

Calculate the n-th order coefficient(s) in the Taylor series of f around x = 0.

Examples

julia> @variables x y
 2-element Vector{Num}:
  x
  y
@@ -32,4 +32,4 @@
 3-element Vector{Num}:
  y[0]
  y[2]
- y[4]
source
+ y[4]source diff --git a/dev/manual/types/index.html b/dev/manual/types/index.html index 01bb8a6d6..7f5eff3f8 100644 --- a/dev/manual/types/index.html +++ b/dev/manual/types/index.html @@ -5,4 +5,4 @@ z X[1:10,1:10] Z[1:10] - s
typeof(x)
Num
typeof(z)
Complex{Num}
typeof(X)
Symbolics.Arr{Num, 2}
typeof(Z)
Symbolics.Arr{Complex{Num}, 1}
typeof(s)
SymbolicUtils.BasicSymbolic{String}
+ s
typeof(x)
Num
typeof(z)
Complex{Num}
typeof(X)
Symbolics.Arr{Num, 2}
typeof(Z)
Symbolics.Arr{Complex{Num}, 1}
typeof(s)
SymbolicUtils.BasicSymbolic{String}
diff --git a/dev/manual/variables/index.html b/dev/manual/variables/index.html index b431b7ce0..82acfa4c5 100644 --- a/dev/manual/variables/index.html +++ b/dev/manual/variables/index.html @@ -28,15 +28,15 @@ (value_c(t))[1:3] julia> (t, a, b, c) -(t, :runtime_symbol_value, :value_b, :value_c)source
Symbolics.variableFunction
variable(name::Symbol, idx::Integer...; T=Real)

Create a variable with the given name along with subscripted indices with the symtype=T. When T=FnType, it creates a symbolic function.

julia> Symbolics.variable(:x, 4, 2, 0)
+(t, :runtime_symbol_value, :value_b, :value_c)
source
Symbolics.variableFunction
variable(name::Symbol, idx::Integer...; T=Real)

Create a variable with the given name along with subscripted indices with the symtype=T. When T=FnType, it creates a symbolic function.

julia> Symbolics.variable(:x, 4, 2, 0)
 x₄ˏ₂ˏ₀
 
 julia> Symbolics.variable(:x, 4, 2, 0, T=Symbolics.FnType)
-x₄ˏ₂ˏ₀⋆

Also see variables.

source
Symbolics.variablesFunction
variables(name::Symbol, indices...)

Create a multi-dimensional array of individual variables named with subscript notation. Use @variables instead to create symbolic array variables (as opposed to array of variables). See variable to create one variable with subscripts.

julia> Symbolics.variables(:x, 1:3, 3:6)
+x₄ˏ₂ˏ₀⋆

Also see variables.

source
Symbolics.variablesFunction
variables(name::Symbol, indices...)

Create a multi-dimensional array of individual variables named with subscript notation. Use @variables instead to create symbolic array variables (as opposed to array of variables). See variable to create one variable with subscripts.

julia> Symbolics.variables(:x, 1:3, 3:6)
 3×4 Matrix{Num}:
  x₁ˏ₃  x₁ˏ₄  x₁ˏ₅  x₁ˏ₆
  x₂ˏ₃  x₂ˏ₄  x₂ˏ₅  x₂ˏ₆
- x₃ˏ₃  x₃ˏ₄  x₃ˏ₅  x₃ˏ₆
source
Symbolics.EquationType
struct Equation

An equality relationship between two expressions.

Fields

  • lhs: The expression on the left-hand side of the equation.

  • rhs: The expression on the right-hand side of the equation.

source
Base.:~Method
~(lhs, rhs) -> Any
+ x₃ˏ₃  x₃ˏ₄  x₃ˏ₅  x₃ˏ₆
source
Symbolics.EquationType
struct Equation

An equality relationship between two expressions.

Fields

  • lhs: The expression on the left-hand side of the equation.

  • rhs: The expression on the right-hand side of the equation.

source
Base.:~Method
~(lhs, rhs) -> Any
 

Create an Equation out of two Num instances, or an Num and a Number.

Examples

julia> using Symbolics
 
 julia> @variables x y;
@@ -53,7 +53,7 @@
 (broadcast(~, A, B))[1:3,1:3]
 
 julia> A .~ 3x
-(broadcast(~, A, 3x))[1:3,1:3]
source

A note about functions restricted to Numbers

Sym and Term objects are NOT subtypes of Number. Symbolics provides a simple wrapper type called Num which is a subtype of Real. Num wraps either a Sym or a Term or any other object, defines the same set of operations as symbolic expressions and forwards those to the values it wraps. You can use Symbolics.value function to unwrap a Num.

By default, the @variables macros return Num-wrapped objects to allow calling functions which are restricted to Number or Real.

using Symbolics
+(broadcast(~, A, 3x))[1:3,1:3]
source

A note about functions restricted to Numbers

Sym and Term objects are NOT subtypes of Number. Symbolics provides a simple wrapper type called Num which is a subtype of Real. Num wraps either a Sym or a Term or any other object, defines the same set of operations as symbolic expressions and forwards those to the values it wraps. You can use Symbolics.value function to unwrap a Num.

By default, the @variables macros return Num-wrapped objects to allow calling functions which are restricted to Number or Real.

using Symbolics
 @variables t x y z(t);
 Symbolics.operation(Symbolics.value(x + y))
+ (generic function with 1052 methods)
Symbolics.operation(Symbolics.value(z))

\[ \begin{equation} z @@ -68,4 +68,4 @@ f(t)

\[ \begin{equation} 1 + t \left( \frac{2}{3} + \frac{4}{5} \pi \right) \end{equation} - \]

This will work for any floating-point input, as well as symbolic input.

Symbolic Control Flow

Control flow can be expressed in Symbolics.jl in the following ways:

Inspection Functions

Missing docstring.

Missing docstring for SymbolicUtils.iscall. Check Documenter's build log for details.

Missing docstring.

Missing docstring for SymbolicUtils.operation. Check Documenter's build log for details.

Missing docstring.

Missing docstring for SymbolicUtils.arguments. Check Documenter's build log for details.

+ \]

This will work for any floating-point input, as well as symbolic input.

Symbolic Control Flow

Control flow can be expressed in Symbolics.jl in the following ways:

Inspection Functions

Missing docstring.

Missing docstring for SymbolicUtils.iscall. Check Documenter's build log for details.

Missing docstring.

Missing docstring for SymbolicUtils.operation. Check Documenter's build log for details.

Missing docstring.

Missing docstring for SymbolicUtils.arguments. Check Documenter's build log for details.

diff --git a/dev/tutorials/auto_parallel/5d0769f1.svg b/dev/tutorials/auto_parallel/652e20cc.svg similarity index 58% rename from dev/tutorials/auto_parallel/5d0769f1.svg rename to dev/tutorials/auto_parallel/652e20cc.svg index 461d1ec4a..8fb358caa 100644 --- a/dev/tutorials/auto_parallel/5d0769f1.svg +++ b/dev/tutorials/auto_parallel/652e20cc.svg @@ -1,13222 +1,13222 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/dev/tutorials/auto_parallel/index.html b/dev/tutorials/auto_parallel/index.html index 6a2698ce6..541cd340d 100644 --- a/dev/tutorials/auto_parallel/index.html +++ b/dev/tutorials/auto_parallel/index.html @@ -59,7 +59,7 @@ \]

The output, here the in-place modified du, is a symbolic representation of each output of the function. We can then utilize this in the Symbolics functionality. For example, let's build a parallel version of f first:

fastf = eval(Symbolics.build_function(du,u,
             parallel=Symbolics.MultithreadedForm())[2])
#13 (generic function with 1 method)

Now let's compute the sparse Jacobian function and compile a fast multithreaded version:

jac = Symbolics.sparsejacobian(vec(du), vec(u))
 row,col,val = findnz(jac)
-scatter(row,col,legend=false,ms=1,c=:black)
Example block output
fjac = eval(Symbolics.build_function(jac,u,
+scatter(row,col,legend=false,ms=1,c=:black)
Example block output
fjac = eval(Symbolics.build_function(jac,u,
             parallel=Symbolics.MultithreadedForm())[2])
#15 (generic function with 1 method)

It takes awhile for this to generate, but the results will be worth it! Now let's set up the parabolic PDE to be solved by DifferentialEquations.jl. We will set up the vanilla version and the sparse multithreaded version:

using OrdinaryDiffEq
 u0 = zeros(N, N, 3)
 MyA = zeros(N, N);
@@ -139,4 +139,4 @@
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     0.0  0.0  0.0  0.0  0.0  0.0  0.0

Let's see the timing difference:

using BenchmarkTools
 #@btime solve(prob, TRBDF2()); # 33.073 s (895404 allocations: 23.87 GiB)
 #warning the following solve takes a long time to compile, but afterwards is very fast.
-#@btime solve(fastprob, TRBDF2()); # 209.670 ms (8208 allocations: 109.25 MiB)

Boom, an automatic 157x acceleration that grows as the size of the problem increases!

+#@btime solve(fastprob, TRBDF2()); # 209.670 ms (8208 allocations: 109.25 MiB)

Boom, an automatic 157x acceleration that grows as the size of the problem increases!

diff --git a/dev/tutorials/converting_to_C/index.html b/dev/tutorials/converting_to_C/index.html index ceff5428e..9eabd6409 100644 --- a/dev/tutorials/converting_to_C/index.html +++ b/dev/tutorials/converting_to_C/index.html @@ -18,11 +18,11 @@ \end{equation} \]

and then we build the function:

build_function(du, u, p, t, target=Symbolics.CTarget())
"#include <math.h>\nvoid diffeqf(double* du, const double* RHS1, const double* RHS2, const double RHS3) {\n  du[0] = RHS2[0] * RHS1[0] + -1 * RHS2[1] * RHS1[0] * RHS1[1];\n  du[1] = -1 * RHS2[2] * RHS1[1] + RHS2[3] * RHS1[0] * RHS1[1];\n}\n"

If we want to compile this, we do expression=Val{false}:

f = build_function(du, u, p, t, target=Symbolics.CTarget(), expression=Val{false})
RuntimeGeneratedFunction(#=in Symbolics=#, #=using Symbolics=#, :((du, u, p, t)->begin
           #= /home/runner/work/Symbolics.jl/Symbolics.jl/src/build_function.jl:809 =#
-          ccall(("diffeqf", "/tmp/jl_dUBixGZ0NU"), Cvoid, (Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Float64), du, u, p, t)
+          ccall(("diffeqf", "/tmp/jl_4nGjiRmhgL"), Cvoid, (Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Float64), du, u, p, t)
       end))

now we check it computes the same thing:

du = rand(2); du2 = rand(2)
 u = rand(2)
 p = rand(4)
 t = rand()
 f(du, u, p, t)
 lotka_volterra!(du2, u, p, t)
-du == du2 # true!
true
+du == du2 # true!
true
diff --git a/dev/tutorials/perturbation/index.html b/dev/tutorials/perturbation/index.html index e986fd4c9..824b34130 100644 --- a/dev/tutorials/perturbation/index.html +++ b/dev/tutorials/perturbation/index.html @@ -112,4 +112,4 @@ \]

This looks very different from our first series E_pert. If they are the same, we should get $0$ if we subtract and expand both as multivariate Taylor series in $(e,M)$. Indeed:

taylor(taylor(E_pert′ - E_pert, e, 0:4), M, 0:4)

\[ \begin{equation} 0 \end{equation} - \]

+ \]