diff --git a/Project.toml b/Project.toml index 10b16db8d..0b4afa33d 100644 --- a/Project.toml +++ b/Project.toml @@ -39,10 +39,12 @@ SymbolicUtils = "d1185830-fcd6-423d-90d6-eec64667417b" [weakdeps] ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" +Groebner = "0b43b601-686d-58a3-8a1c-6623616c7cd4" PreallocationTools = "d236fae5-4411-538c-8e31-a6e3d9e00b46" SymPy = "24249f21-da20-56a4-8eb1-6a02cf4ae2e6" [extensions] +SymbolicsGroebnerExt = "Groebner" SymbolicsPreallocationToolsExt = ["ForwardDiff", "PreallocationTools"] SymbolicsSymPyExt = "SymPy" @@ -56,7 +58,7 @@ Distributions = "0.25" DocStringExtensions = "0.9" DomainSets = "0.6" DynamicPolynomials = "0.5" -Groebner = "0.5" +Groebner = "0.5, 0.6" IfElse = "0.1" LaTeXStrings = "1.3" LambertW = "0.4.5" @@ -81,6 +83,7 @@ julia = "1.10" [extras] BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" +Groebner = "0b43b601-686d-58a3-8a1c-6623616c7cd4" Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" PkgBenchmark = "32113eaa-f34f-5b0d-bd6c-c81e245fc73d" PreallocationTools = "d236fae5-4411-538c-8e31-a6e3d9e00b46" @@ -91,4 +94,4 @@ SymPy = "24249f21-da20-56a4-8eb1-6a02cf4ae2e6" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [targets] -test = ["Test", "SafeTestsets", "Pkg", "PkgBenchmark", "PreallocationTools", "ForwardDiff", "BenchmarkTools", "ReferenceTests", "SymPy", "Random"] +test = ["Test", "SafeTestsets", "Pkg", "PkgBenchmark", "PreallocationTools", "ForwardDiff", "Groebner", "BenchmarkTools", "ReferenceTests", "SymPy", "Random"] diff --git a/ext/SymbolicsGroebnerExt.jl b/ext/SymbolicsGroebnerExt.jl new file mode 100644 index 000000000..2ebb89b4a --- /dev/null +++ b/ext/SymbolicsGroebnerExt.jl @@ -0,0 +1,73 @@ +module SymbolicsGroebnerExt + +using Groebner + +if isdefined(Base, :get_extension) + using Symbolics + using Symbolics: Num, symtype +else + using ..Symbolics + using ..Symbolics: Num, symtype +end + +""" + groebner_basis(polynomials; kwargs...) + +Computes a Groebner basis of the ideal generated by the given `polynomials` +using Groebner.jl as the backend. + +The basis is guaranteed to be unique. +The algorithm is randomized, and the output is correct with high probability. + +If a coefficient in the resulting basis becomes too large to be represented +exactly, `DomainError` is thrown. + +## Optional Arguments + +The Groebner.jl backend provides a number of useful keyword arguments, which are +also available for this function. See `?Groebner.groebner`. + +## Example + +```jldoctest +julia> using Symbolics, Groebner + +julia> @variables x y; + +julia> groebner_basis([x*y^2 + x, x^2*y + y]) +``` +""" +function Symbolics.groebner_basis(polynomials::Vector{Num}; kwargs...) + polynoms, pvar2sym, sym2term = Symbolics.symbol_to_poly(polynomials) + basis = Groebner.groebner(polynoms; kwargs...) + PolyType = symtype(first(polynomials)) + Symbolics.poly_to_symbol(basis, pvar2sym, sym2term, PolyType) +end + +""" + is_groebner_basis(polynomials; kwargs...) + +Checks whether the given `polynomials` forms a Groebner basis using Groebner.jl +as the backend. + +## Optional Arguments + +The Groebner.jl backend provides a number of useful keyword arguments, which are +also available for this function. See `?Groebner.isgroebner`. + +## Example + +```jldoctest +julia> using Symbolics, Groebner + +julia> @variables x y; + +julia> is_groebner_basis([x^2 - y^2, x*y^2 + x, y^3 + y]) +``` +""" +function Symbolics.is_groebner_basis(polynomials::Vector{Num}; kwargs...) + polynoms, _, _ = Symbolics.symbol_to_poly(polynomials) + Groebner.isgroebner(polynoms; kwargs...) +end + +end # module diff --git a/src/Symbolics.jl b/src/Symbolics.jl index 82062a688..d453afd73 100644 --- a/src/Symbolics.jl +++ b/src/Symbolics.jl @@ -78,6 +78,8 @@ include("equations.jl") export Inequality, ≲, ≳ include("inequality.jl") +using Bijections +import DynamicPolynomials include("utils.jl") using ConstructionBase @@ -116,9 +118,8 @@ include("logexpfunctions-lib.jl") include("linear_algebra.jl") -using Groebner include("groebner_basis.jl") -export groebner_basis +export groebner_basis, is_groebner_basis import Libdl include("build_function.jl") @@ -182,6 +183,9 @@ end @static if !isdefined(Base,:get_extension) function __init__() + @require Groebner="0b43b601-686d-58a3-8a1c-6623616c7cd4" begin + include("../ext/SymbolicsGroebnerExt.jl") + end @require SymPy="24249f21-da20-56a4-8eb1-6a02cf4ae2e6" begin include("../ext/SymbolicsSymPyExt.jl") end diff --git a/src/groebner_basis.jl b/src/groebner_basis.jl index 6446ab4f7..5bb9c5e5f 100644 --- a/src/groebner_basis.jl +++ b/src/groebner_basis.jl @@ -1,104 +1,25 @@ -import DynamicPolynomials -using Bijections -const DP = DynamicPolynomials -# extracting underlying polynomial and coefficient type from Polyforms -underlyingpoly(x::Number) = x -underlyingpoly(pf::PolyForm) = pf.p -coefftype(x::Number) = typeof(x) -coefftype(pf::PolyForm) = DP.coefficienttype(underlyingpoly(pf)) - -#= -Converts an array of symbolic polynomials -into an array of DynamicPolynomials.Polynomials -=# -function symbol_to_poly(sympolys::AbstractArray) - @assert !isempty(sympolys) "Empty input." - - # standardize input - stdsympolys = map(unwrap, sympolys) - sort!(stdsympolys, lt=(<ₑ)) - - pvar2sym = Bijections.Bijection{Any,Any}() - sym2term = Dict{BasicSymbolic,Any}() - polyforms = map(f -> PolyForm(f, pvar2sym, sym2term), stdsympolys) - - # Discover common coefficient type - commontype = mapreduce(coefftype, promote_type, polyforms, init=Int) - @assert commontype <: Union{Integer,Rational} "Only integer and rational coefficients are supported as input." - - # Convert all to DP.Polynomial, so that coefficients are of same type, - # and constants are treated as polynomials - # We also need this because Groebner does not support abstract types as input - polynoms = Vector{DP.Polynomial{DP.Commutative{DP.CreationOrder}, DP.Graded{DP.LexOrder}, commontype}}(undef, length(sympolys)) - for (i, pf) in enumerate(polyforms) - polynoms[i] = underlyingpoly(pf) - end - - polynoms, pvar2sym, sym2term -end - -#= -Converts an array of AbstractPolynomialLike`s into an array of -symbolic expressions mapping variables w.r.t pvar2sym -=# -function poly_to_symbol(polys, pvar2sym, sym2term, ::Type{T}) where {T} - map(f -> PolyForm{T}(f, pvar2sym, sym2term), polys) -end +@noinline __throw_absent_groebner_engine() = throw( + """Groebner bases engine is required. Execute `using Groebner` to enable this functionality.""") """ - -groebner_basis(polynomials) + groebner_basis(polynomials) Computes a Groebner basis of the ideal generated by the given `polynomials`. -The basis is reduced, thus guaranteed to be unique. - -# Example - -```jldoctest -julia> using Symbolics - -julia> @variables x y; - -julia> groebner_basis([x*y^2 + x, x^2*y + y]) -``` - -The coefficients in the resulting basis are in the same domain as for input polynomials. -Hence, if the coefficient becomes too large to be represented exactly, `DomainError` is thrown. - -The algorithm is randomized, so the basis will be correct with high probability. +This function requires a Groebner bases backend (such as Groebner.jl) to be loaded. """ -function groebner_basis(polynomials) - polynoms, pvar2sym, sym2term = symbol_to_poly(polynomials) - - basis = groebner(polynoms) - - # polynomials is nonemtpy - T = symtype(first(polynomials)) - poly_to_symbol(basis, pvar2sym, sym2term, T) +function groebner_basis(args; kwargs...) + __throw_absent_groebner_engine() end """ - -Do not document this for now. - -is_groebner_basis(polynomials) + groebner_basis(polynomials) Checks whether the given `polynomials` forms a Groebner basis. -# Example - -```jldoctest -julia> using Symbolics - -julia> @variables x y; - -julia> is_groebner_basis([x^2 - y^2, x*y^2 + x, y^3 + y]) -``` - +This function requires a Groebner bases backend (such as Groebner.jl) to be loaded. """ -function is_groebner_basis(polynomials) - polynoms, _, _ = symbol_to_poly(polynomials) - isgroebner(polynoms) +function is_groebner_basis(args; kwargs...) + __throw_absent_groebner_engine() end diff --git a/src/utils.jl b/src/utils.jl index 94b9433a7..f86ed12c3 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -331,3 +331,50 @@ function coeff(p, sym=nothing) throw(DomainError(p, "Datatype $(typeof(p)) not accepted.")) end end + +### Nums <--> Polys + +const DP = DynamicPolynomials +# extracting underlying polynomial and coefficient type from Polyforms +underlyingpoly(x::Number) = x +underlyingpoly(pf::PolyForm) = pf.p +coefftype(x::Number) = typeof(x) +coefftype(pf::PolyForm) = DP.coefficient_type(underlyingpoly(pf)) + +#= +Converts an array of symbolic polynomials +into an array of DynamicPolynomials.Polynomials +=# +function symbol_to_poly(sympolys::AbstractArray) + @assert !isempty(sympolys) "Empty input." + + # standardize input + stdsympolys = map(unwrap, sympolys) + sort!(stdsympolys, lt=(<ₑ)) + + pvar2sym = Bijections.Bijection{Any,Any}() + sym2term = Dict{BasicSymbolic,Any}() + polyforms = map(f -> PolyForm(f, pvar2sym, sym2term), stdsympolys) + + # Discover common coefficient type + commontype = mapreduce(coefftype, promote_type, polyforms, init=Int) + @assert commontype <: Union{Integer,Rational} "Only integer and rational coefficients are supported as input." + + # Convert all to DP.Polynomial, so that coefficients are of same type, + # and constants are treated as polynomials + # We also need this because Groebner does not support abstract types as input + polynoms = Vector{DP.Polynomial{DP.Commutative{DP.CreationOrder},DP.Graded{DP.LexOrder},commontype}}(undef, length(sympolys)) + for (i, pf) in enumerate(polyforms) + polynoms[i] = underlyingpoly(pf) + end + + polynoms, pvar2sym, sym2term +end + +#= +Converts an array of AbstractPolynomialLike`s into an array of +symbolic expressions mapping variables w.r.t pvar2sym +=# +function poly_to_symbol(polys, pvar2sym, sym2term, ::Type{T}) where {T} + map(f -> PolyForm{T}(f, pvar2sym, sym2term), polys) +end diff --git a/test/extensions/groebner.jl b/test/extensions/groebner.jl new file mode 100644 index 000000000..93b9d02f9 --- /dev/null +++ b/test/extensions/groebner.jl @@ -0,0 +1,76 @@ +using Symbolics +using Symbolics: symbol_to_poly, poly_to_symbol +using Groebner +using Test + +@variables x y z + +syms = [ + [1], [1, BigInt(2)], [x], [x^2 + 2], [x + (5 // 8)y], + [1 - x * y * z], [(x + y + z)^5], [0, BigInt(0)y^2, Rational(1)z^3], + [x, sin((44 // 31)y) * z] +] +for sym in syms + polynoms, pvar2sym, sym2term = Symbolics.symbol_to_poly(sym) + sym2 = Symbolics.poly_to_symbol(polynoms, pvar2sym, sym2term, Real) + @test isequal(expand.(sym2), expand.(sym)) +end + +@test isequal(expand.(groebner_basis([x, y])), [y, x]) +@test isequal(expand.(groebner_basis([y, x])), [y, x]) +@test isequal(expand.(groebner_basis([x])), [x]) +@test isequal(expand.(groebner_basis([x, x^2])), [x]) +@test isequal(expand.(groebner_basis([BigInt(1)x + 2 // 3])), [x + 2 // 3]) + +@test Symbolics.is_groebner_basis([x, y, z]) +@test Symbolics.is_groebner_basis([x^2 - x, y^2 - y]) +@test !Symbolics.is_groebner_basis([x^2 + y, x * y^3 - 1, y^4 - 1]) + +@variables x1 x2 x3 x4 +@test isequal(expand.(groebner_basis([x1, x, y])), [y, x1, x]) + +# input unchanged +f1 = [x2, x1, x4, x3] +f2 = [x2, x1, x4, x3] +groebner_basis(f1) +@test isequal(expand.(f1), expand.(f2)) + +@variables x1 x2 x3 x4 x5 +system = [ + x1 + x2 + x3 + x4 + x5, + x1 * x2 + x1 * x3 + x1 * x4 + x1 * x5 + x2 * x3 + x2 * x4 + x2 * x5 + x3 * x4 + x3 * x5 + x4 * x5, + x1 * x2 * x3 + x1 * x2 * x4 + x1 * x2 * x5 + x1 * x3 * x4 + x1 * x3 * x5 + x1 * x4 * x5 + x2 * x3 * x4 + x2 * x3 * x5 + x2 * x4 * x5 + x3 * x4 * x5, + x1 * x2 * x3 * x4 + x1 * x2 * x3 * x5 + x1 * x2 * x4 * x5 + x1 * x3 * x4 * x5 + x2 * x3 * x4 * x5, + x1 * x2 * x3 * x4 * x5 - 1 +] +truebasis = [ + x1 + x2 + x3 + x4 + x5, + x2^2 + x2 * x3 + x2 * x4 + x2 * x5 + x3^2 + x3 * x4 + x3 * x5 + x4^2 + x4 * x5 + x5^2, + x3^3 + x3 * (x4^2) + x3 * (x5^2) + x4^3 + x4 * (x3^2) + x5 * (x4^2) + x4 * (x5^2) + x5^3 + x5 * (x3^2) + x3 * x4 * x5, + x4^4 + x4 * (x5^3) + x5^4 + x5 * (x4^3) + (x4^2) * (x5^2), + x5^5 - 1 +] +basis = expand.(groebner_basis(system)) +@test isequal(basis, truebasis) + +basis = expand.(groebner_basis(system, linalg=:deterministic)) +@test isequal(basis, truebasis) + +N = 45671930739135174346839766056203605080877915151 +system = [ + x1 + x2 + x3 + x4, + x1 * x2 + x1 * x3 + x1 * x4 + x2 * x3 + x2 * x4 + x3 * x4, + x1 * x2 * x3 + x1 * x2 * x4 + x1 * x3 * x4 + x2 * x3 * x4, + x1 * x2 * x3 * x4 + N +] +truebasis = [ + x1 + x2 + x3 + x4, + x2^2 + x2 * x3 + x3^2 + x2 * x4 + x3 * x4 + x4^2, + x3^3 + x3^2 * x4 + x3 * x4^2 + x4^3, + x4^4 - N +] +basis = groebner_basis(system) +@test isequal(expand.(basis), truebasis) + +# Groebner does not yet work with constant ideals +@test_broken groebner_basis([1]) diff --git a/test/groebner_basis.jl b/test/groebner_basis.jl deleted file mode 100644 index 638f5c3d1..000000000 --- a/test/groebner_basis.jl +++ /dev/null @@ -1,75 +0,0 @@ -using Symbolics -using Symbolics: symbol_to_poly, poly_to_symbol - -using Test - -@variables x y z - -syms = [ - [1], [1, BigInt(2)], [x], [x^2 + 2], [x + (5//8)y], - [1 - x*y*z], [(x + y + z)^5], [0, BigInt(0)y^2, Rational(1)z^3], - [x, sin((44//31)y)*z] -] -for sym in syms - polynoms, pvar2sym, sym2term = Symbolics.symbol_to_poly(sym) - sym2 = Symbolics.poly_to_symbol(polynoms, pvar2sym, sym2term, Real) - @test isequal(expand.(sym2), expand.(sym)) -end - -@test isequal(expand.(groebner_basis([x, y])), [y, x]) -@test isequal(expand.(groebner_basis([y, x])), [y, x]) -@test isequal(expand.(groebner_basis([x])), [x]) -@test isequal(expand.(groebner_basis([x, x^2])), [x]) -@test isequal(expand.(groebner_basis([BigInt(1)x + 2//3])), [x + 2//3]) - -@test Symbolics.is_groebner_basis([x, y, z]) -@test Symbolics.is_groebner_basis([x^2 - x, y^2 - y]) -@test !Symbolics.is_groebner_basis([x^2 + y, x*y^3 - 1, y^4 - 1]) - -@variables x1 x2 x3 x4 -@test isequal(expand.(groebner_basis([x1, x, y])), [y, x1, x]) - -# input unchanged -f1 = [x2, x1, x4, x3] -f2 = [x2, x1, x4, x3] -groebner_basis(f1) -@test isequal(expand.(f1), expand.(f2)) - -@variables x1 x2 x3 x4 x5 -system = [ - x1 + x2 + x3 + x4 + x5, - x1*x2 + x1*x3 + x1*x4 + x1*x5 + x2*x3 + x2*x4 + x2*x5 + x3*x4 + x3*x5 + x4*x5, - x1*x2*x3 + x1*x2*x4 + x1*x2*x5 + x1*x3*x4 + x1*x3*x5 + x1*x4*x5 + x2*x3*x4 + x2*x3*x5 + x2*x4*x5 + x3*x4*x5, - x1*x2*x3*x4 + x1*x2*x3*x5 + x1*x2*x4*x5 + x1*x3*x4*x5 + x2*x3*x4*x5, - x1*x2*x3*x4*x5 - 1 -] -truebasis = [ - x1 + x2 + x3 + x4 + x5, - x2^2 + x2*x3 + x2*x4 + x2*x5 + x3^2 + x3*x4 + x3*x5 + x4^2 + x4*x5 + x5^2, - x3^3 + x3*(x4^2) + x3*(x5^2) + x4^3 + x4*(x3^2) + x5*(x4^2) + x4*(x5^2) + x5^3 + x5*(x3^2) + x3*x4*x5, - x4^4 + x4*(x5^3) + x5^4 + x5*(x4^3) + (x4^2)*(x5^2), - x5^5 - 1 -] -basis = expand.(groebner_basis(system)) -@test isequal(basis, truebasis) - - -N = 45671930739135174346839766056203605080877915151 -system = [ - x1 + x2 + x3 + x4, - x1*x2 + x1*x3 + x1*x4 + x2*x3 + x2*x4 + x3*x4, - x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4, - x1*x2*x3*x4 + N -] -truebasis = [ - x1 + x2 + x3 + x4, - x2^2 + x2*x3 + x3^2 + x2*x4 + x3*x4 + x4^2, - x3^3 + x3^2*x4 + x3*x4^2 + x4^3, - x4^4 - N -] -basis = groebner_basis(system) -@test isequal(expand.(basis), truebasis) - - -# Groebner does not yet work with constant ideals -@test_broken groebner_basis([1]) diff --git a/test/runtests.jl b/test/runtests.jl index 7ec01e6c4..ecfecc37a 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -32,7 +32,6 @@ if GROUP == "All" || GROUP == "Core" @safetestset "Is Linear or Affine Test" begin include("islinear_affine.jl") end @safetestset "Linear Solver Test" begin include("linear_solver.jl") end @safetestset "Algebraic Solver Test" begin include("solver.jl") end - @safetestset "Groebner Bases Test" begin include("groebner_basis.jl") end @safetestset "Overloading Test" begin include("overloads.jl") end @safetestset "Nested ForwardDiff Sparsity Test" begin include("nested_forwarddiff_sparsity.jl") end @safetestset "Build Function Test" begin include("build_function.jl") end @@ -47,6 +46,12 @@ if GROUP == "All" || GROUP == "Core" @safetestset "CartesianIndex Test" begin include("cartesianindex.jl") end @safetestset "LogExpFunctions Test" begin include("logexpfunctions.jl") end @safetestset "Registration without using Test" begin include("registration_without_using.jl") end + + @safetestset "Groebner extension Test" begin include("extensions/groebner.jl") end +end + +if GROUP == "GroebnerExt" + @safetestset "Groebner extension Test" begin include("extensions/groebner.jl") end end if GROUP == "All" || GROUP == "Core" || GROUP == "SymbolicIndexingInterface"