forked from EvanZ/myvagrant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab1_word_count_student.py
434 lines (290 loc) · 18.9 KB
/
lab1_word_count_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# coding: utf-8
# #![Spark Logo](http://spark-mooc.github.io/web-assets/images/ta_Spark-logo-small.png) + ![Python Logo](http://spark-mooc.github.io/web-assets/images/python-logo-master-v3-TM-flattened_small.png)
# # **Word Count Lab: Building a word count application**
# #### This lab will build on the techniques covered in the Spark tutorial to develop a simple word count application. The volume of unstructured text in existence is growing dramatically, and Spark is an excellent tool for analyzing this type of data. In this lab, we will write code that calculates the most common words in the [Complete Works of William Shakespeare](http://www.gutenberg.org/ebooks/100) retrieved from [Project Gutenberg](http://www.gutenberg.org/wiki/Main_Page). This could also be scaled to find the most common words on the Internet.
# #### ** During this lab we will cover: **
# #### *Part 1:* Creating a base RDD and pair RDDs
# #### *Part 2:* Counting with pair RDDs
# #### *Part 3:* Finding unique words and a mean value
# #### *Part 4:* Apply word count to a file
# #### Note that, for reference, you can look up the details of the relevant methods in [Spark's Python API](https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD)
# ### ** Part 1: Creating a base RDD and pair RDDs **
# #### In this part of the lab, we will explore creating a base RDD with `parallelize` and using pair RDDs to count words.
# #### ** (1a) Create a base RDD **
# #### We'll start by generating a base RDD by using a Python list and the `sc.parallelize` method. Then we'll print out the type of the base RDD.
# In[2]:
wordsList = ['cat', 'elephant', 'rat', 'rat', 'cat']
wordsRDD = sc.parallelize(wordsList, 4)
# Print out the type of wordsRDD
print type(wordsRDD)
# #### ** (1b) Pluralize and test **
# #### Let's use a `map()` transformation to add the letter 's' to each string in the base RDD we just created. We'll define a Python function that returns the word with an 's' at the end of the word. Please replace `<FILL IN>` with your solution. If you have trouble, the next cell has the solution. After you have defined `makePlural` you can run the third cell which contains a test. If you implementation is correct it will print `1 test passed`.
# #### This is the general form that exercises will take, except that no example solution will be provided. Exercises will include an explanation of what is expected, followed by code cells where one cell will have one or more `<FILL IN>` sections. The cell that needs to be modified will have `# TODO: Replace <FILL IN> with appropriate code` on its first line. Once the `<FILL IN>` sections are updated and the code is run, the test cell can then be run to verify the correctness of your solution. The last code cell before the next markdown section will contain the tests.
# In[3]:
# TODO: Replace <FILL IN> with appropriate code
def makePlural(word):
"""Adds an 's' to `word`.
Note:
This is a simple function that only adds an 's'. No attempt is made to follow proper
pluralization rules.
Args:
word (str): A string.
Returns:
str: A string with 's' added to it.
"""
return word + 's'
print makePlural('cat')
# In[4]:
# One way of completing the function
def makePlural(word):
return word + 's'
print makePlural('cat')
# In[5]:
# Load in the testing code and check to see if your answer is correct
# If incorrect it will report back '1 test failed' for each failed test
# Make sure to rerun any cell you change before trying the test again
from test_helper import Test
# TEST Pluralize and test (1b)
Test.assertEquals(makePlural('rat'), 'rats', 'incorrect result: makePlural does not add an s')
# #### ** (1c) Apply `makePlural` to the base RDD **
# #### Now pass each item in the base RDD into a [map()](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.map) transformation that applies the `makePlural()` function to each element. And then call the [collect()](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.collect) action to see the transformed RDD.
# In[6]:
# TODO: Replace <FILL IN> with appropriate code
pluralRDD = wordsRDD.map(makePlural)
print pluralRDD.collect()
# In[7]:
# TEST Apply makePlural to the base RDD(1c)
Test.assertEquals(pluralRDD.collect(), ['cats', 'elephants', 'rats', 'rats', 'cats'],
'incorrect values for pluralRDD')
# #### ** (1d) Pass a `lambda` function to `map` **
# #### Let's create the same RDD using a `lambda` function.
# In[8]:
# TODO: Replace <FILL IN> with appropriate code
pluralLambdaRDD = wordsRDD.map(lambda word: word + 's')
print pluralLambdaRDD.collect()
# In[9]:
# TEST Pass a lambda function to map (1d)
Test.assertEquals(pluralLambdaRDD.collect(), ['cats', 'elephants', 'rats', 'rats', 'cats'],
'incorrect values for pluralLambdaRDD (1d)')
# #### ** (1e) Length of each word **
# #### Now use `map()` and a `lambda` function to return the number of characters in each word. We'll `collect` this result directly into a variable.
# In[10]:
# TODO: Replace <FILL IN> with appropriate code
pluralLengths = (pluralRDD
.map(lambda word: len(word))
.collect())
print pluralLengths
# In[11]:
# TEST Length of each word (1e)
Test.assertEquals(pluralLengths, [4, 9, 4, 4, 4],
'incorrect values for pluralLengths')
# #### ** (1f) Pair RDDs **
# #### The next step in writing our word counting program is to create a new type of RDD, called a pair RDD. A pair RDD is an RDD where each element is a pair tuple `(k, v)` where `k` is the key and `v` is the value. In this example, we will create a pair consisting of `('<word>', 1)` for each word element in the RDD.
# #### We can create the pair RDD using the `map()` transformation with a `lambda()` function to create a new RDD.
# In[12]:
# TODO: Replace <FILL IN> with appropriate code
wordPairs = wordsRDD.map(lambda word: (word,1) )
print wordPairs.collect()
# In[13]:
# TEST Pair RDDs (1f)
Test.assertEquals(wordPairs.collect(),
[('cat', 1), ('elephant', 1), ('rat', 1), ('rat', 1), ('cat', 1)],
'incorrect value for wordPairs')
# ### ** Part 2: Counting with pair RDDs **
# #### Now, let's count the number of times a particular word appears in the RDD. There are multiple ways to perform the counting, but some are much less efficient than others.
# #### A naive approach would be to `collect()` all of the elements and count them in the driver program. While this approach could work for small datasets, we want an approach that will work for any size dataset including terabyte- or petabyte-sized datasets. In addition, performing all of the work in the driver program is slower than performing it in parallel in the workers. For these reasons, we will use data parallel operations.
# #### ** (2a) `groupByKey()` approach **
# #### An approach you might first consider (we'll see shortly that there are better ways) is based on using the [groupByKey()](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.groupByKey) transformation. As the name implies, the `groupByKey()` transformation groups all the elements of the RDD with the same key into a single list in one of the partitions. There are two problems with using `groupByKey()`:
# + #### The operation requires a lot of data movement to move all the values into the appropriate partitions.
# + #### The lists can be very large. Consider a word count of English Wikipedia: the lists for common words (e.g., the, a, etc.) would be huge and could exhaust the available memory in a worker.
#
# #### Use `groupByKey()` to generate a pair RDD of type `('word', iterator)`.
# In[14]:
# TODO: Replace <FILL IN> with appropriate code
# Note that groupByKey requires no parameters
wordsGrouped = wordPairs.groupByKey()
for key, value in wordsGrouped.collect():
print '{0}: {1}'.format(key, list(value))
# In[15]:
# TEST groupByKey() approach (2a)
Test.assertEquals(sorted(wordsGrouped.mapValues(lambda x: list(x)).collect()),
[('cat', [1, 1]), ('elephant', [1]), ('rat', [1, 1])],
'incorrect value for wordsGrouped')
# #### ** (2b) Use `groupByKey()` to obtain the counts **
# #### Using the `groupByKey()` transformation creates an RDD containing 3 elements, each of which is a pair of a word and a Python iterator.
# #### Now sum the iterator using a `map()` transformation. The result should be a pair RDD consisting of (word, count) pairs.
# In[16]:
# TODO: Replace <FILL IN> with appropriate code
wordCountsGrouped = wordsGrouped.map(lambda (word, oc): (word, sum(oc)))
print wordCountsGrouped.collect()
# In[17]:
# TEST Use groupByKey() to obtain the counts (2b)
Test.assertEquals(sorted(wordCountsGrouped.collect()),
[('cat', 2), ('elephant', 1), ('rat', 2)],
'incorrect value for wordCountsGrouped')
# #### ** (2c) Counting using `reduceByKey` **
# #### A better approach is to start from the pair RDD and then use the [reduceByKey()](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.reduceByKey) transformation to create a new pair RDD. The `reduceByKey()` transformation gathers together pairs that have the same key and applies the function provided to two values at a time, iteratively reducing all of the values to a single value. `reduceByKey()` operates by applying the function first within each partition on a per-key basis and then across the partitions, allowing it to scale efficiently to large datasets.
# In[18]:
# TODO: Replace <FILL IN> with appropriate code
# Note that reduceByKey takes in a function that accepts two values and returns a single value
wordCounts = wordPairs.reduceByKey(lambda x, y: x + y)
print wordCounts.collect()
# In[19]:
# TEST Counting using reduceByKey (2c)
Test.assertEquals(sorted(wordCounts.collect()), [('cat', 2), ('elephant', 1), ('rat', 2)],
'incorrect value for wordCounts')
# #### ** (2d) All together **
# #### The expert version of the code performs the `map()` to pair RDD, `reduceByKey()` transformation, and `collect` in one statement.
# In[20]:
# TODO: Replace <FILL IN> with appropriate code
wordCountsCollected = (wordsRDD
.map(lambda word: (word, [1]))
.map(lambda (word, oc): (word, sum(oc)))
.reduceByKey(lambda x, y: x + y)
.collect())
print wordCountsCollected
# In[21]:
# TEST All together (2d)
Test.assertEquals(sorted(wordCountsCollected), [('cat', 2), ('elephant', 1), ('rat', 2)],
'incorrect value for wordCountsCollected')
# ### ** Part 3: Finding unique words and a mean value **
# #### ** (3a) Unique words **
# #### Calculate the number of unique words in `wordsRDD`. You can use other RDDs that you have already created to make this easier.
# In[22]:
# TODO: Replace <FILL IN> with appropriate code
uniqueWords = len(wordCountsCollected)
print uniqueWords
# In[23]:
# TEST Unique words (3a)
Test.assertEquals(uniqueWords, 3, 'incorrect count of uniqueWords')
# #### ** (3b) Mean using `reduce` **
# #### Find the mean number of words per unique word in `wordCounts`.
# #### Use a `reduce()` action to sum the counts in `wordCounts` and then divide by the number of unique words. First `map()` the pair RDD `wordCounts`, which consists of (key, value) pairs, to an RDD of values.
# In[24]:
# TODO: Replace <FILL IN> with appropriate code
from operator import add
totalCount = (wordCounts
.map(lambda (w,c): c)
.reduce(lambda x,y: x + y))
average = totalCount / float(uniqueWords)
print totalCount
print round(average, 2)
# In[25]:
# TEST Mean using reduce (3b)
Test.assertEquals(round(average, 2), 1.67, 'incorrect value of average')
# ### ** Part 4: Apply word count to a file **
# #### In this section we will finish developing our word count application. We'll have to build the `wordCount` function, deal with real world problems like capitalization and punctuation, load in our data source, and compute the word count on the new data.
# #### ** (4a) `wordCount` function **
# #### First, define a function for word counting. You should reuse the techniques that have been covered in earlier parts of this lab. This function should take in an RDD that is a list of words like `wordsRDD` and return a pair RDD that has all of the words and their associated counts.
# In[28]:
# TODO: Replace <FILL IN> with appropriate code
def wordCount(wordListRDD):
"""Creates a pair RDD with word counts from an RDD of words.
Args:
wordListRDD (RDD of str): An RDD consisting of words.
Returns:
RDD of (str, int): An RDD consisting of (word, count) tuples.
"""
wordCountsCollected = (wordListRDD
.map(lambda word: (word, [1]))
.map(lambda (word, oc): (word, sum(oc)))
.reduceByKey(lambda x, y: x + y)
)
return wordCountsCollected
print wordCount(wordsRDD).collect()
# In[29]:
# TEST wordCount function (4a)
Test.assertEquals(sorted(wordCount(wordsRDD).collect()),
[('cat', 2), ('elephant', 1), ('rat', 2)],
'incorrect definition for wordCount function')
# #### ** (4b) Capitalization and punctuation **
# #### Real world files are more complicated than the data we have been using in this lab. Some of the issues we have to address are:
# + #### Words should be counted independent of their capitialization (e.g., Spark and spark should be counted as the same word).
# + #### All punctuation should be removed.
# + #### Any leading or trailing spaces on a line should be removed.
#
# #### Define the function `removePunctuation` that converts all text to lower case, removes any punctuation, and removes leading and trailing spaces. Use the Python [re](https://docs.python.org/2/library/re.html) module to remove any text that is not a letter, number, or space. Reading `help(re.sub)` might be useful.
# In[43]:
# TODO: Replace <FILL IN> with appropriate code
import re
def removePunctuation(text):
"""Removes punctuation, changes to lower case, and strips leading and trailing spaces.
Note:
Only spaces, letters, and numbers should be retained. Other characters should should be
eliminated (e.g. it's becomes its). Leading and trailing spaces should be removed after
punctuation is removed.
Args:
text (str): A string.
Returns:
str: The cleaned up string.
"""
# return re.sub(r'[!,_\'#@$%^&*().]','',text.lower().strip())
return re.sub(r'[^a-z0-9\s]','',text.lower().strip())
print removePunctuation('Hi, you!')
print removePunctuation(' No under_score!')
# In[44]:
# TEST Capitalization and punctuation (4b)
Test.assertEquals(removePunctuation(" The Elephant's 4 cats. "),
'the elephants 4 cats',
'incorrect definition for removePunctuation function')
# #### ** (4c) Load a text file **
# #### For the next part of this lab, we will use the [Complete Works of William Shakespeare](http://www.gutenberg.org/ebooks/100) from [Project Gutenberg](http://www.gutenberg.org/wiki/Main_Page). To convert a text file into an RDD, we use the `SparkContext.textFile()` method. We also apply the recently defined `removePunctuation()` function using a `map()` transformation to strip out the punctuation and change all text to lowercase. Since the file is large we use `take(15)`, so that we only print 15 lines.
# In[45]:
# Just run this code
import os.path
baseDir = os.path.join('data')
inputPath = os.path.join('cs100', 'lab1', 'shakespeare.txt')
fileName = os.path.join(baseDir, inputPath)
shakespeareRDD = (sc
.textFile(fileName, 8)
.map(removePunctuation))
print '\n'.join(shakespeareRDD
.zipWithIndex() # to (line, lineNum)
.map(lambda (l, num): '{0}: {1}'.format(num, l)) # to 'lineNum: line'
.take(15))
# #### ** (4d) Words from lines **
# #### Before we can use the `wordcount()` function, we have to address two issues with the format of the RDD:
# + #### The first issue is that that we need to split each line by its spaces.
# + #### The second issue is we need to filter out empty lines.
#
# #### Apply a transformation that will split each element of the RDD by its spaces. For each element of the RDD, you should apply Python's string [split()](https://docs.python.org/2/library/string.html#string.split) function. You might think that a `map()` transformation is the way to do this, but think about what the result of the `split()` function will be.
# In[55]:
# TODO: Replace <FILL IN> with appropriate code
shakespeareWordsRDD = shakespeareRDD.flatMap(lambda line: line.split(' '))
shakespeareWordCount = shakespeareWordsRDD.count()
print shakespeareWordsRDD.top(5)
print shakespeareWordCount
# In[56]:
# TEST Words from lines (4d)
# This test allows for leading spaces to be removed either before or after
# punctuation is removed.
Test.assertTrue(shakespeareWordCount == 927631 or shakespeareWordCount == 928908,
'incorrect value for shakespeareWordCount')
Test.assertEquals(shakespeareWordsRDD.top(5),
[u'zwaggerd', u'zounds', u'zounds', u'zounds', u'zounds'],
'incorrect value for shakespeareWordsRDD')
# #### ** (4e) Remove empty elements **
# #### The next step is to filter out the empty elements. Remove all entries where the word is `''`.
# In[62]:
# TODO: Replace <FILL IN> with appropriate code
shakeWordsRDD = shakespeareWordsRDD.filter(lambda word: len(word) > 0)
shakeWordCount = shakeWordsRDD.count()
print shakeWordCount
# In[63]:
# TEST Remove empty elements (4e)
Test.assertEquals(shakeWordCount, 882996, 'incorrect value for shakeWordCount')
# #### ** (4f) Count the words **
# #### We now have an RDD that is only words. Next, let's apply the `wordCount()` function to produce a list of word counts. We can view the top 15 words by using the `takeOrdered()` action; however, since the elements of the RDD are pairs, we need a custom sort function that sorts using the value part of the pair.
# #### You'll notice that many of the words are common English words. These are called stopwords. In a later lab, we will see how to eliminate them from the results.
# #### Use the `wordCount()` function and `takeOrdered()` to obtain the fifteen most common words and their counts.
# In[67]:
# TODO: Replace <FILL IN> with appropriate code
top15WordsAndCounts = wordCount(shakeWordsRDD).takeOrdered(15, key=lambda (w,c): -c)
print '\n'.join(map(lambda (w, c): '{0}: {1}'.format(w, c), top15WordsAndCounts))
# In[68]:
# TEST Count the words (4f)
Test.assertEquals(top15WordsAndCounts,
[(u'the', 27361), (u'and', 26028), (u'i', 20681), (u'to', 19150), (u'of', 17463),
(u'a', 14593), (u'you', 13615), (u'my', 12481), (u'in', 10956), (u'that', 10890),
(u'is', 9134), (u'not', 8497), (u'with', 7771), (u'me', 7769), (u'it', 7678)],
'incorrect value for top15WordsAndCounts')