-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcompute_adj.py
104 lines (82 loc) · 3.16 KB
/
compute_adj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import re
import os
import argparse
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from dataloader import LOSO_sequence_generate
# Selected action units
AU_CODE = [1, 2, 4, 10, 12, 14, 15, 17, 25]
AU_DICT = {
number: idx
for idx, number in enumerate(AU_CODE)
}
def evaluate_adj(df, args):
assert isinstance(df, (str, pd.DataFrame)), "Type not supported"
if isinstance(df, str):
# Read in data
df = pd.read_csv(args.csv_name)
# Take out the `Action Units` Columns
data = df.loc[:, "Action Units"]
# Create a blank matrix for counting the adjacent
count_matrix = np.zeros((9, 9))
# Create a blank list for counting the au
count_au = np.zeros(9)
# Split the action list
for idx, unit in enumerate(data):
# Find only the digit
au_list = re.findall(r"\d+", unit)
# Filter the AU_CODE
au_list = list(filter(lambda au: int(au) in AU_CODE, au_list))
for i in range(len(au_list)):
first_code = AU_DICT[int(au_list[i])]
for j in range(i + 1, len(au_list)):
second_code = AU_DICT[int(au_list[j])]
count_matrix[first_code, second_code] += 1
count_matrix[second_code, first_code] += 1
# Count the total appear times
count_au[first_code] += 1
# Replace 0 in count_au to 1
count_au = np.where(count_au == 0.0, 1, count_au)
# Compute the adjancent matrix
adj_matrix = count_matrix / count_au.reshape(-1, 1)
# Show the information
print("AU appers:\n", count_au)
if args["save_img"]:
plt.matshow(adj_matrix, cmap="summer")
for (i, j), z in np.ndenumerate(adj_matrix):
plt.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
plt.savefig(args["jpg_name"], format="svg", dpi=1200)
np.savez(args["npz_name"],
adj_matrix=adj_matrix)
def save_LOSO_adj(args):
data = pd.read_csv(args.csv_name)
train_list, _ = LOSO_sequence_generate(data, "Subject")
os.makedirs(args.npz_place, exist_ok=True)
for idx, train_info in enumerate(train_list):
evaluate_adj(df=train_info,
args={
"npz_name": f"{args.npz_place}/{idx}.npz",
"jpg_name": f"{args.image_place}/{idx}.svg",
"save_img": args.save_img
})
if __name__ == "__main__":
# Argument parse
parser = argparse.ArgumentParser()
parser.add_argument("--csv_name",
type=str,
required=True,
help="Filename")
parser.add_argument("--npz_place",
type=str,
required=True,
help="The root place for saving npz files")
parser.add_argument("--save_img",
action="store_true",
default=False)
parser.add_argument("--image_place",
type=str,
default=None,
help="The root place for saving images")
args = parser.parse_args()
save_LOSO_adj(args)