forked from jiupinjia/stylized-neural-painting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
103 lines (81 loc) · 4.61 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse
import torch
import torch.optim as optim
from painter import *
# settings
parser = argparse.ArgumentParser(description='STYLIZED NEURAL PAINTING')
parser.add_argument('--img_path', type=str, default='./test_images/sunflowers.jpg', metavar='str',
help='path to test image (default: ./test_images/sunflowers.jpg)')
parser.add_argument('--renderer', type=str, default='oilpaintbrush', metavar='str',
help='renderer: [watercolor, markerpen, oilpaintbrush, rectangle (default oilpaintbrush)')
parser.add_argument('--canvas_color', type=str, default='black', metavar='str',
help='canvas_color: [black, white] (default black)')
parser.add_argument('--canvas_size', type=int, default=512, metavar='str',
help='size of the canvas for stroke rendering')
parser.add_argument('--keep_aspect_ratio', action='store_true', default=False,
help='keep input aspect ratio when saving outputs')
parser.add_argument('--max_m_strokes', type=int, default=500, metavar='str',
help='max number of strokes (default 500)')
parser.add_argument('--m_grid', type=int, default=5, metavar='N',
help='divide an image to m_grid x m_grid patches (default 5)')
parser.add_argument('--beta_L1', type=float, default=1.0,
help='weight for L1 loss (default: 1.0)')
parser.add_argument('--with_ot_loss', action='store_true', default=False,
help='imporve the convergence by using optimal transportation loss')
parser.add_argument('--beta_ot', type=float, default=0.1,
help='weight for optimal transportation loss (default: 0.1)')
parser.add_argument('--net_G', type=str, default='zou-fusion-net-light', metavar='str',
help='net_G: plain-dcgan, plain-unet, huang-net, zou-fusion-net, '
'or zou-fusion-net-light (default: zou-fusion-net-light)')
parser.add_argument('--renderer_checkpoint_dir', type=str, default=r'./checkpoints_G_oilpaintbrush_light', metavar='str',
help='dir to load neu-renderer (default: ./checkpoints_G_oilpaintbrush_light)')
parser.add_argument('--lr', type=float, default=0.002,
help='learning rate for stroke searching (default: 0.005)')
parser.add_argument('--output_dir', type=str, default=r'./output', metavar='str',
help='dir to save painting results (default: ./output)')
parser.add_argument('--disable_preview', action='store_true', default=False,
help='disable cv2.imshow, for running remotely without x-display')
args = parser.parse_args()
# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def optimize_x(pt):
pt._load_checkpoint()
pt.net_G.eval()
pt.initialize_params()
pt.x_ctt.requires_grad = True
pt.x_color.requires_grad = True
pt.x_alpha.requires_grad = True
utils.set_requires_grad(pt.net_G, False)
pt.optimizer_x = optim.RMSprop([pt.x_ctt, pt.x_color, pt.x_alpha], lr=pt.lr)
print('begin to draw...')
pt.step_id = 0
for pt.anchor_id in range(0, pt.m_strokes_per_block):
pt.stroke_sampler(pt.anchor_id)
iters_per_stroke = int(500 / pt.m_strokes_per_block)
for i in range(iters_per_stroke):
pt.optimizer_x.zero_grad()
pt.x_ctt.data = torch.clamp(pt.x_ctt.data, 0.1, 1 - 0.1)
pt.x_color.data = torch.clamp(pt.x_color.data, 0, 1)
pt.x_alpha.data = torch.clamp(pt.x_alpha.data, 0, 1)
if args.canvas_color == 'white':
pt.G_pred_canvas = torch.ones(
[args.m_grid ** 2, 3, pt.net_G.out_size, pt.net_G.out_size]).to(device)
else:
pt.G_pred_canvas = torch.zeros(
[args.m_grid ** 2, 3, pt.net_G.out_size, pt.net_G.out_size]).to(device)
pt._forward_pass()
pt._drawing_step_states()
pt._backward_x()
pt.optimizer_x.step()
pt.x_ctt.data = torch.clamp(pt.x_ctt.data, 0.1, 1 - 0.1)
pt.x_color.data = torch.clamp(pt.x_color.data, 0, 1)
pt.x_alpha.data = torch.clamp(pt.x_alpha.data, 0, 1)
pt.step_id += 1
v = pt.x.detach().cpu().numpy()
pt._save_stroke_params(v)
v_n = pt._normalize_strokes(pt.x)
v_n = pt._shuffle_strokes_and_reshape(v_n)
final_rendered_image = pt._render(v_n, save_jpgs=True, save_video=True)
if __name__ == '__main__':
pt = Painter(args=args)
optimize_x(pt)