-
Notifications
You must be signed in to change notification settings - Fork 45
/
data.py
205 lines (160 loc) · 7.46 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import cv2
import glob
import torch
import random
import numpy as np
def get_dataset(config, type):
data = REDS_Dataset(config, type=type)
if type == 'train':
data_loader = torch.utils.data.DataLoader(data, batch_size=config.batch_size, drop_last=True, shuffle=True, num_workers=int(config.nThreads), pin_memory=True)
elif type == 'val':
data_loader = torch.utils.data.DataLoader(data, batch_size=1, drop_last=False, shuffle=False, num_workers=int(config.nThreads), pin_memory=True)
elif type == 'test':
data_loader = torch.utils.data.DataLoader(data, batch_size=1, drop_last=False, shuffle=False, num_workers=int(config.nThreads), pin_memory=True)
else:
raise NotImplementedError('not implemented for this mode: {}!'.format(type))
return data_loader
class REDS_Dataset:
def __init__(self, config, type):
self.config = config
self.type = type
self.num_seq = self.config.num_seq
bath_path = None
if type == 'train':
bath_path = os.path.join(config.dataset_path, 'train_blur_bicubic')
if type == 'val':
bath_path = os.path.join(config.dataset_path, 'val_blur_bicubic')
if type == 'test':
bath_path = os.path.join(config.dataset_path, 'val_blur_bicubic')
self.seq_path = self.get_seq_path(bath_path)
self.num_data = len(self.seq_path)
print(f'num {type} dataset: {self.num_data}')
def __getitem__(self, idx):
# input
lr_blur_path = self.seq_path[idx]
lr_blur_seq = [cv2.imread(path) for path in lr_blur_path]
lr_blur_seq = np.stack(lr_blur_seq, axis=0)
if self.type == 'train' or self.type == 'val':
# for TA loss
lr_sharp_path = [os.path.normpath(path.replace('blur', 'sharp')) for path in lr_blur_path]
lr_sharp_seq = [cv2.imread(path) for path in lr_sharp_path]
lr_sharp_seq = np.stack(lr_sharp_seq, axis=0)
# GT
hr_sharp_path = [os.path.normpath(path.replace('blur_bicubic', 'sharp').replace('X4', '')) for path in lr_blur_path]
hr_sharp_seq = [cv2.imread(path) for path in hr_sharp_path]
hr_sharp_seq = np.stack(hr_sharp_seq, axis=0)
# RAFT pseudo-GT optical flow
flow = []
img_c_name = os.path.basename(lr_blur_path[self.num_seq // 2]).replace('.png', '')
for i in range(self.num_seq):
if i == self.num_seq // 2:
flow.append(np.zeros_like(flow[0]))
continue
filename = os.path.normpath(lr_blur_path[i].replace("blur", "flow"))
img_name = os.path.basename(lr_blur_path[i].replace('.png', ''))
temp = np.load(f'{filename.replace(img_name + ".png", img_c_name + "_" + img_name)}.npy')
flow.append(temp)
flow = np.stack(flow, axis=0)
if self.type == 'train':
lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow = self.get_random_patch(lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow)
lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow = self.augment(lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow)
return self.np2tensor(lr_blur_seq), self.np2tensor(hr_sharp_seq), self.np2tensor(lr_sharp_seq), self.flow2tensor(flow)
if self.type == 'val':
return self.np2tensor(lr_blur_seq), self.np2tensor(hr_sharp_seq), self.np2tensor(lr_sharp_seq), self.flow2tensor(flow)
if self.type == 'test':
filename = lr_blur_path[self.num_seq // 2]
return self.np2tensor(lr_blur_seq), filename
def get_random_patch(self, lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow):
ih, iw, c = lr_blur_seq[0].shape
tp = self.config.patch_size
ip = tp // self.config.scale
ix = random.randrange(0, iw - ip + 1)
iy = random.randrange(0, ih - ip + 1)
(tx, ty) = (self.config.scale * ix, self.config.scale * iy)
lr_blur_seq = lr_blur_seq[:, iy:iy + ip, ix:ix + ip, :]
hr_sharp_seq = hr_sharp_seq[:, ty:ty + tp, tx:tx + tp, :]
lr_sharp_seq = lr_sharp_seq[:, iy:iy + ip, ix:ix + ip, :]
flow = flow[:, iy:iy + ip, ix:ix + ip, :]
return lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow
def augment(self, lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow):
# random horizontal flip
if random.random() < 0.5:
lr_blur_seq = lr_blur_seq[:, :, ::-1, :]
hr_sharp_seq = hr_sharp_seq[:, :, ::-1, :]
lr_sharp_seq = lr_sharp_seq[:, :, ::-1, :]
flow = flow[:, :, ::-1, :]
flow[:, :, :, 0] *= -1
# random vertical flip
if random.random() < 0.5:
lr_blur_seq = lr_blur_seq[:, ::-1, :, :]
hr_sharp_seq = hr_sharp_seq[:, ::-1, :, :]
lr_sharp_seq = lr_sharp_seq[:, ::-1, :, :]
flow = flow[:, ::-1, :, :]
flow[:, :, :, 1] *= -1
return lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow
def np2tensor(self, x):
# x shape: [T, H, W, C]
# reshape to [C, T, H, W]
ts = (3, 0, 1, 2)
x = torch.Tensor(x.transpose(ts).astype(float)).mul_(1.0)
# normalization [0,1]
x = x / 255.0
return x
def flow2tensor(self, flow):
# flow shape: [T, H, W, C]
# reshape to [C, T, H, W]
ts = (3, 0, 1, 2)
flow = torch.Tensor(flow.transpose(ts).astype(float)).mul_(1.0)
return flow
def get_seq_path(self, bath_path):
seq_list = []
dir_list = glob.glob(os.path.join(bath_path, '*/*/*/*'))
for dir in dir_list:
frame_list = sorted(glob.glob(os.path.join(dir, '*.png')))
start = (self.num_seq - 1) // 2
end = len(frame_list) - (self.num_seq - 1) // 2
for i in range(start, end):
frame_seq = []
for seq_num in range(self.num_seq):
frame_seq.append(frame_list[i + seq_num - start])
seq_list.append(frame_seq)
return seq_list
def __len__(self):
return self.num_data
class Custom_Dataset:
def __init__(self, config):
self.config = config
self.num_seq = self.config.num_seq
bath_path = os.path.join(config.custom_path)
self.seq_path = self.get_seq_path(bath_path)
self.num_data = len(self.seq_path)
print(f'num custom dataset: {self.num_data}')
def __getitem__(self, idx):
# input
lr_blur_path = self.seq_path[idx]
lr_blur_seq = [cv2.imread(path) for path in lr_blur_path]
lr_blur_seq = np.stack(lr_blur_seq, axis=0)
filename = lr_blur_path[self.num_seq // 2]
return self.np2tensor(lr_blur_seq), filename
def np2tensor(self, x):
# x shape: [T, H, W, C]
# reshape to [C, T, H, W]
ts = (3, 0, 1, 2)
x = torch.Tensor(x.transpose(ts).astype(float)).mul_(1.0)
# normalization [0,1]
x = x / 255.0
return x
def get_seq_path(self, bath_path):
seq_list = []
frame_list = sorted(glob.glob(os.path.join(bath_path, '*.png')))
start = (self.num_seq - 1) // 2
end = len(frame_list) - (self.num_seq - 1) // 2
for i in range(start, end):
frame_seq = []
for seq_num in range(self.num_seq):
frame_seq.append(frame_list[i + seq_num - start])
seq_list.append(frame_seq)
return seq_list
def __len__(self):
return self.num_data