-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtrain.py
281 lines (225 loc) · 15.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import time
import torch
from utils import Train_Report, TestReport, SaveManager
class Trainer:
def __init__(self, config, model):
self.config = config
self.model = model
if self.config.save_train_img:
self.save_manager = SaveManager(config)
self.criterion = torch.nn.L1Loss()
milestones = [260, 360, 380, 390]
# optimizer and scheduler for degradation learning network
self.optimizer_D = torch.optim.Adam(self.model.degradation_learning_network.parameters(), lr=self.config.lr)
self.scheduler_D = torch.optim.lr_scheduler.MultiStepLR(self.optimizer_D, milestones=milestones, gamma=0.5, last_epoch=-1)
# optimizer and scheduler for restoration network
if self.config.stage == 2:
self.optimizer_R = torch.optim.Adam(self.model.restoration_network.parameters(), lr=self.config.lr)
self.scheduler_R = torch.optim.lr_scheduler.MultiStepLR(self.optimizer_R, milestones=milestones, gamma=0.5, last_epoch=-1)
self.checkpoint_path = os.path.join(self.config.save_dir, f'model_stage{self.config.stage}')
if not os.path.exists(self.checkpoint_path):
os.makedirs(self.checkpoint_path)
self.model.cuda()
def save_checkpoint(self, epoch):
D_state_dict = {'epoch': epoch,
'model_D_state_dict': self.model.degradation_learning_network.state_dict(),
'optimizer_D_state_dict': self.optimizer_D.state_dict(),
'scheduler_D_state_dict': self.scheduler_D.state_dict()}
torch.save(D_state_dict, self.checkpoint_path + '/model_D_latest.pt')
torch.save(D_state_dict, self.checkpoint_path + '/model_D_' + str(epoch) + '.pt')
if self.config.stage == 2:
R_state_dict = {'epoch': epoch,
'model_R_state_dict': self.model.restoration_network.state_dict(),
'optimizer_R_state_dict': self.optimizer_R.state_dict(),
'scheduler_R_state_dict': self.scheduler_R.state_dict()}
torch.save(R_state_dict, self.checkpoint_path + '/model_R_latest.pt')
torch.save(R_state_dict, self.checkpoint_path + '/model_R_' + str(epoch) + '.pt')
def save_best_model(self, epoch):
D_state_dict = {'epoch': epoch,
'model_D_state_dict': self.model.degradation_learning_network.state_dict(),
'optimizer_D_state_dict': self.optimizer_D.state_dict(),
'scheduler_D_state_dict': self.scheduler_D.state_dict()}
torch.save(D_state_dict, self.checkpoint_path + '/model_D_best.pt')
if self.config.stage == 2:
R_state_dict = {'epoch': epoch,
'model_R_state_dict': self.model.restoration_network.state_dict(),
'optimizer_R_state_dict': self.optimizer_R.state_dict(),
'scheduler_R_state_dict': self.scheduler_R.state_dict()}
torch.save(R_state_dict, self.checkpoint_path + '/model_R_best.pt')
def load_checkpoint(self, epoch=None):
if epoch is None:
D_state_dict = torch.load(self.checkpoint_path + '/model_D_latest.pt')
self.model.degradation_learning_network.load_state_dict(D_state_dict['model_D_state_dict'])
self.optimizer_D.load_state_dict(D_state_dict['optimizer_D_state_dict'])
self.scheduler_D.load_state_dict(D_state_dict['scheduler_D_state_dict'])
last_epoch = D_state_dict['epoch']
print(f'load degradation learning network status from {self.checkpoint_path}/model_D_latest.pt, epoch: {last_epoch}')
if self.config.stage == 2:
R_state_dict = torch.load(self.checkpoint_path + '/model_R_latest.pt')
self.model.restoration_network.load_state_dict(R_state_dict['model_R_state_dict'])
self.optimizer_R.load_state_dict(R_state_dict['optimizer_R_state_dict'])
self.scheduler_R.load_state_dict(R_state_dict['scheduler_R_state_dict'])
last_epoch = R_state_dict['epoch']
print(f'load restoration network status from {self.checkpoint_path}/model_R_latest.pt, epoch: {last_epoch}')
else:
D_state_dict = torch.load(self.checkpoint_path + '/model_D_' + str(epoch) + '.pt')
self.model.degradation_learning_network.load_state_dict(D_state_dict['model_D_state_dict'])
self.optimizer_D.load_state_dict(D_state_dict['optimizer_D_state_dict'])
self.scheduler_D.load_state_dict(D_state_dict['scheduler_D_state_dict'])
last_epoch = D_state_dict['epoch']
print(f'load degradation learning network status from {self.checkpoint_path}/model_D_{epoch}.pt, epoch: {last_epoch}')
if self.config.stage == 2:
R_state_dict = torch.load(self.checkpoint_path + '/model_R_' + str(epoch) + '.pt')
self.model.restoration_network.load_state_dict(R_state_dict['model_R_state_dict'])
self.optimizer_R.load_state_dict(R_state_dict['optimizer_R_state_dict'])
self.scheduler_R.load_state_dict(R_state_dict['scheduler_R_state_dict'])
last_epoch = R_state_dict['epoch']
print(f'load restoration network status from {self.checkpoint_path}/model_R_{epoch}.pt, epoch: {last_epoch}')
return last_epoch
def load_best_model(self):
D_state_dict = torch.load(self.checkpoint_path + '/model_D_best.pt')
self.model.degradation_learning_network.load_state_dict(D_state_dict['model_D_state_dict'])
print(f'load degradation learning network status from {self.checkpoint_path}/model_D_best.pt, epoch: {D_state_dict["epoch"]}')
if self.config.stage == 2:
R_state_dict = torch.load(self.checkpoint_path + '/model_R_best.pt')
self.model.restoration_network.load_state_dict(R_state_dict['model_R_state_dict'])
print(f'load restoration network status from {self.checkpoint_path}/model_R_best.pt, epoch: {R_state_dict["epoch"]}')
def load_best_stage1_model(self):
path = self.checkpoint_path.replace(f'model_stage{self.config.stage}', 'model_stage1')
state_dict = torch.load(path + '/model_D_best.pt')
self.model.degradation_learning_network.load_state_dict(state_dict['model_D_state_dict'])
self.optimizer_D.load_state_dict(state_dict['optimizer_D_state_dict'])
self.scheduler_D.load_state_dict(state_dict['scheduler_D_state_dict'])
print(f'load degradation learning network status from {path}/model_D_best.pt, epoch: {state_dict["epoch"]}')
def train(self, dataloader, train_log, global_step):
self.model.train()
report = Train_Report()
start = time.time()
for idx, (lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow) in enumerate(dataloader):
lr_blur_seq = lr_blur_seq.cuda()
hr_sharp_seq = hr_sharp_seq.cuda()
lr_sharp_seq = lr_sharp_seq.cuda()
flow = flow.cuda()
result_dict = self.model(lr_blur_seq, hr_sharp_seq)
batch_size, _, t, _, _ = lr_blur_seq.shape
# pretrain degradation learning network
if self.config.stage == 1:
recon_loss = self.criterion(result_dict['recon'], lr_blur_seq[:, :, t//2, :, :])
hr_warping_loss = self.config.hr_warping_loss_weight * self.criterion(result_dict['hr_warp'], hr_sharp_seq[:, :, t//2:t//2+1, :, :].repeat([1,1,t,1,1]))
# RAFT pseudo-GT optical flow loss
flow_loss = self.config.flow_loss_weight * self.criterion(result_dict['image_flow'], flow)
# TA loss for degradation learning network
D_TA_loss = self.config.D_TA_loss_weight * self.criterion(result_dict['F_sharp_D'], lr_sharp_seq)
total_loss = recon_loss + hr_warping_loss + flow_loss + D_TA_loss
self.optimizer_D.zero_grad()
total_loss.backward()
self.optimizer_D.step()
report.update(batch_size, 0, recon_loss.item(), hr_warping_loss.item(), 0, flow_loss.item(), D_TA_loss.item(), 0, total_loss.item())
# train full network
elif self.config.stage == 2:
restoration_loss = self.criterion(result_dict['output'], hr_sharp_seq[:, :, t//2, :, :])
recon_loss = self.config.Net_D_weight * self.criterion(result_dict['recon'], lr_blur_seq[:, :, t//2, :, :])
lr_warping_loss = self.config.lr_warping_loss_weight * self.criterion(result_dict['lr_warp'], lr_blur_seq[:, :, t//2:t//2 + 1, :, :].repeat([1,1,t,1,1]))
hr_warping_loss = self.config.Net_D_weight * self.config.hr_warping_loss_weight * self.criterion(result_dict['hr_warp'], hr_sharp_seq[:, :, t//2:t//2+1, :, :].repeat([1,1,t,1,1]))
# RAFT pseudo-GT optical flow loss
flow_loss = self.config.Net_D_weight * self.config.flow_loss_weight * self.criterion(result_dict['image_flow'], flow)
# TA loss for degradation learning network and restoration network
R_TA_loss = self.config.R_TA_loss_weight * self.criterion(result_dict['F_sharp_R'], lr_sharp_seq)
D_TA_loss = self.config.Net_D_weight * self.config.D_TA_loss_weight * self.criterion(result_dict['F_sharp_D'], lr_sharp_seq)
total_loss = restoration_loss + recon_loss + hr_warping_loss + lr_warping_loss + flow_loss + R_TA_loss + D_TA_loss
self.optimizer_D.zero_grad()
self.optimizer_R.zero_grad()
total_loss.backward()
self.optimizer_D.step()
self.optimizer_R.step()
report.update(batch_size, restoration_loss.item(), recon_loss.item(), hr_warping_loss.item(), lr_warping_loss.item(), flow_loss.item(), D_TA_loss.item(), R_TA_loss.item(), total_loss.item())
global_step += 1
if global_step % 100 == 0 or idx == len(dataloader) - 1:
lr_D = self.scheduler_D.optimizer.state_dict()['param_groups'][0]['lr']
lr_R = self.scheduler_R.optimizer.state_dict()['param_groups'][0]['lr'] if self.config.stage == 2 else None
period_time = time.time() - start
prefix_str = f'[{global_step}/{len(dataloader) * self.config.num_epochs}]\t'
result_str = report.result_str(lr_D, lr_R, period_time)
train_log.write(prefix_str + result_str)
start = time.time()
report.__init__()
if self.config.save_train_img:
if self.config.stage == 1:
src = [lr_blur_seq[:, :, t // 2, :, :], result_dict['recon']]
elif self.config.stage == 2:
src = [lr_blur_seq[:, :, t // 2, :, :], result_dict['recon'], result_dict['output'], hr_sharp_seq[:, :, t // 2, :, :]]
self.save_manager.save_batch_images(src, batch_size, global_step)
self.scheduler_D.step()
if self.config.stage == 2:
self.scheduler_D.step()
return global_step
def validate(self, dataloader, val_log, epoch):
self.model.eval()
report = Train_Report()
start = time.time()
with torch.no_grad():
for idx, (lr_blur_seq, hr_sharp_seq, lr_sharp_seq, flow) in enumerate(dataloader):
lr_blur_seq = lr_blur_seq.cuda()
hr_sharp_seq = hr_sharp_seq.cuda()
lr_sharp_seq = lr_sharp_seq.cuda()
flow = flow.cuda()
result_dict = self.model(lr_blur_seq, hr_sharp_seq)
batch_size, _, t, _, _ = lr_blur_seq.shape
if self.config.stage == 1:
recon_loss = self.criterion(result_dict['recon'], lr_blur_seq[:, :, t // 2, :, :])
hr_warping_loss = self.config.hr_warping_loss_weight * self.criterion(result_dict['hr_warp'], hr_sharp_seq[:, :, t // 2:t // 2 + 1, :, :].repeat([1, 1, t, 1, 1]))
flow_loss = self.config.flow_loss_weight * self.criterion(result_dict['image_flow'], flow)
D_TA_loss = self.config.D_TA_loss_weight * self.criterion(result_dict['F_sharp_D'], lr_sharp_seq)
total_loss = recon_loss + hr_warping_loss + flow_loss + D_TA_loss
report.update(batch_size, 0, recon_loss.item(), hr_warping_loss.item(), 0, flow_loss.item(), D_TA_loss.item(), 0, total_loss.item())
report.update_recon_metric(result_dict['recon'], lr_blur_seq[:, :, t // 2, :, :])
elif self.config.stage == 2:
restoration_loss = self.criterion(result_dict['output'], hr_sharp_seq[:, :, t // 2, :, :])
recon_loss = self.config.Net_D_weight * self.criterion(result_dict['recon'], lr_blur_seq[:, :, t // 2, :, :])
lr_warping_loss = self.config.lr_warping_loss_weight * self.criterion(result_dict['lr_warp'], lr_blur_seq[:, :, t // 2:t // 2 + 1, :, :].repeat([1, 1, t, 1, 1]))
hr_warping_loss = self.config.Net_D_weight * self.config.hr_warping_loss_weight * self.criterion(result_dict['hr_warp'], hr_sharp_seq[:, :, t // 2:t // 2 + 1, :, :].repeat([1, 1, t, 1, 1]))
flow_loss = self.config.Net_D_weight * self.config.flow_loss_weight * self.criterion(result_dict['image_flow'], flow)
R_TA_loss = self.config.R_TA_loss_weight * self.criterion(result_dict['F_sharp_R'], lr_sharp_seq)
D_TA_loss = self.config.Net_D_weight * self.config.D_TA_loss_weight * self.criterion(result_dict['F_sharp_D'], lr_sharp_seq)
total_loss = restoration_loss + recon_loss + hr_warping_loss + lr_warping_loss + flow_loss + R_TA_loss + D_TA_loss
report.update(batch_size, restoration_loss.item(), recon_loss.item(), hr_warping_loss.item(), lr_warping_loss.item(), flow_loss.item(), D_TA_loss.item(), R_TA_loss.item(), total_loss.item())
report.update_recon_metric(result_dict['recon'], lr_blur_seq[:, :, t // 2, :, :])
report.update_recon_metric(result_dict['output'], hr_sharp_seq[:, :, t//2, :, :])
period_time = time.time() - start
prefix_str = f'[{epoch}/{self.config.num_epochs}]\t'
result_str = report.val_result_str(period_time)
val_log.write(prefix_str + result_str)
if self.config.stage == 1:
return report.recon_psnr
elif self.config.stage == 2:
return report.psnr
def test(self, dataloader):
from utils import denorm
self.model.eval()
with torch.no_grad():
for idx, (lr_blur_seq, filename) in enumerate(dataloader):
lr_blur_seq = lr_blur_seq.cuda()
result_dict = self.model(lr_blur_seq)
output = result_dict['output']
output = output.squeeze(dim=0)
output = denorm(output)
filename = filename[0]
filepath = os.path.basename(os.path.dirname(filename))
filename = os.path.basename(filename)
filename = os.path.join(self.config.save_dir, 'test', filepath, filename)
self.save_manager.save_image(output, filename)
def test_quantitative_result(self, gt_dir, output_dir, image_border):
import cv2
import glob
report = TestReport(output_dir)
scene_list = sorted(glob.glob(os.path.join(gt_dir, '*')))
for scene in scene_list:
scene_name = os.path.basename(scene)
filelist = sorted(glob.glob(os.path.join(scene, '*.png')))
report.scene_init(scene_name)
for filename in filelist[image_border:-image_border]:
gt_img = cv2.imread(filename)
output_img = cv2.imread(os.path.join(output_dir, scene_name, os.path.basename(filename)))
report.update_metric(gt_img, output_img, os.path.basename(filename))
report.scene_del(scene_name)