-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_train.py
268 lines (234 loc) · 10.9 KB
/
new_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import pathlib
import datetime
import argparse
import yaml
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
from contextlib import contextmanager
from reimplement import YoloV3SPP, YoloDataset
from reimplement.train_utils.train_eval_utils import train_one_epoch, evaluate
from reimplement.train_utils.coco_utils import get_coco_api_from_dataset
def set_up_distributed(args):
def disable_print(*args, **argv):
pass
if args.local_rank == -1:
args.distributed = False
else:
args.distributed = True
if args.distributed:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
torch.cuda.set_device(args.local_rank)
if not ismaster(args.local_rank):
import builtins
builtins.print = disable_print
def ismaster(rank:int):
return rank in [-1, 0]
@contextmanager
def master_first(rank:int):
if not ismaster(rank):
torch.distributed.barrier()
yield
if ismaster(rank):
torch.distributed.barrier()
def main(args):
set_up_distributed(args)
if ismaster(args.local_rank):
log_folder = args.log
if not os.path.exists(log_folder):
os.mkdir(log_folder)
log_file = os.path.join(log_folder, datetime.datetime.now().__format__('%Y-%m-%d-%H:%M')) + '.txt'
grid_size = 32
img_size = args.img_size
if args.multi_scale:
max_size = int(np.ceil(img_size / 0.667 / grid_size) * grid_size)
min_size = int(np.ceil(img_size / 1.5 / grid_size) * grid_size)
train_hyp = args.train_hyp
with open(train_hyp) as f:
train_hyp = yaml.load(f, Loader=yaml.FullLoader)
train_hyp['obj'] *= (img_size / 320)
data = args.data
data_dict = {}
with open(data) as f:
for line in f.read().splitlines():
key, val = line.split('=')
if val.isnumeric():
val = int(val)
data_dict[key] = val
num_cls = data_dict['classes']
train_hyp['cls'] *= (num_cls / 80)
model_cfg = args.model_cfg
model = YoloV3SPP(model_cfg)
if args.distributed:
with master_first(args.local_rank):
model_weight_tmp = 'init_weight.pt'
if ismaster(args.local_rank):
torch.save(model.state_dict(), model_weight_tmp)
else:
model.load_state_dict(torch.load(model_weight_tmp, map_location='cpu'))
device = torch.device(args.local_rank)
model.to(device)
model.hyp = train_hyp
param_group = []
if args.freeze_layer:
for idx, module in enumerate(model.module_list):
if idx+1 not in model.yolo_layers: # next layer is not yolo layer
for p in module.parameters():
p.requires_grad_(False)
else:
param_group = param_group + list(module.parameters())
'''
if module.__class__.__name__ == 'MaxPool2d':
print(idx)
78 80 82
freeze layer above max pool when freeze_layer is False
'''
else:
max_pool_ind = 78
for module in model.module_list[:max_pool_ind]:
for p in module.parameters():
p.requires_grad_(False)
param_group = list(model.module_list[max_pool_ind:].parameters())
lr = train_hyp['lr0'] * max(1, (dist.get_world_size() if args.distributed else 1)*args.batch_size // 64)
momentum = train_hyp['momentum']
weight_decay = train_hyp['weight_decay']
optimizer = torch.optim.SGD(param_group, lr=lr, momentum=momentum,
weight_decay=weight_decay, nesterov=True)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs,
eta_min=train_hyp['lr0']*train_hyp['lrf'])
'''
import matplotlib.pyplot as plt
lr = []
for _ in range(args.epochs):
lr.append(lr_scheduler.get_last_lr())
lr_scheduler.step()
print(lr[-1])
plt.plot(lr)
plt.show()
'''
scaler = torch.cuda.amp.GradScaler() if args.amp else None
if args.weights.endswith('.pt'):
ckpt = torch.load(args.weights, map_location=device)
model_state_dict = model.state_dict()
model_weight = {k: v for k, v in ckpt['model'].items() \
if model_state_dict.get(k).numel() == v.numel() }
model.load_state_dict(model_weight, strict=False)
start_epochs = ckpt['epochs'] + 1 if ckpt.get('epochs') is not None else 0
if ckpt.get('optimizer') is not None:
optimizer.load_state_dict(ckpt['optimizer'])
if ckpt.get('scaler') is not None and scaler is not None:
scaler.load_state_dict(ckpt['scaler'])
if ckpt.get('log') is not None and ismaster(args.local_rank):
with open(ckpt.get('log')) as origin_f:
with open(log_file, 'w') as f:
f.write(origin_f.read())
if ckpt.get('lr_scheduler') is not None:
lr_scheduler.load_state_dict(ckpt['lr_scheduler'])
else:
raise ValueError('weights should be ends with .pt get %s'%args.weights[-3:])
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[args.local_rank], output_device=args.local_rank)
model.hyp = model.module.hyp
model.compute_loss = model.module.compute_loss
# model.module_list = model.module.module_list
trainset = YoloDataset(data_dict['train'], img_size=max_size,
batch_size=args.batch_size, augment=True,
rect=args.rect, aug_param=train_hyp, rank=args.local_rank)
testset = YoloDataset(data_dict['valid'], img_size=args.img_size,
batch_size=args.batch_size, augment=False,
rect=False, rank=args.local_rank)
num_worker = min(os.cpu_count(), args.batch_size)
# split data
if args.distributed:
train_smpler = torch.utils.data.distributed.DistributedSampler(trainset)
test_sampler = torch.utils.data.distributed.DistributedSampler(testset)
else:
train_smpler = torch.utils.data.SequentialSampler(trainset) if args.rect \
else torch.utils.data.RandomSampler(trainset)
test_sampler = torch.utils.data.SequentialSampler(testset)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
sampler=train_smpler, collate_fn=trainset.collate_fn, num_workers=num_worker)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size,
sampler=test_sampler, collate_fn=testset.collate_fn, num_workers=num_worker)
if args.distributed:
import pickle
coco_tmp = 'coco.tmp'
with master_first(args.local_rank):
if ismaster(args.local_rank):
coco = get_coco_api_from_dataset(testloader.dataset)
with open(coco_tmp, 'wb') as f:
pickle.dump(coco, f)
else:
with open(coco_tmp, 'rb') as f:
coco = pickle.load(f)
else:
coco = get_coco_api_from_dataset(testloader.dataset)
accumulate = max(1, 64 // (args.batch_size * dist.get_world_size() if args.distributed else 1))
gs = 32
if args.distributed:
dist.barrier()
if ismaster(args.local_rank):
os.remove(model_weight_tmp)
os.remove(coco_tmp)
writer = SummaryWriter(log_dir='/root/tf-logs')
for epoch in range(start_epochs, args.epochs):
if args.distributed:
torch.distributed.barrier()
train_smpler.set_epoch(epoch)
mloss, lr = train_one_epoch(model, optimizer, trainloader, device, epoch,
print_freq=100, accumulate=accumulate, img_size=img_size,
gs=gs, grid_min=min_size//gs, grid_max=max_size//gs,
multi_scale=args.multi_scale, warmup=True, scaler=scaler)
lr_scheduler.step()
result_info = evaluate(model, testloader, coco=coco, device=device)
if ismaster(args.local_rank):
text_ls = [str(round(i, 3)) for i in result_info] + [str(lr)]
with open(log_file, 'a') as f:
text = f'epoch [{epoch}/{args.epochs}]: ' + ' '.join(text_ls)
f.write(text)
coco_mAP = result_info[0]
voc_mAP = result_info[1]
tb_vals = [coco_mAP, voc_mAP] + mloss.detach().cpu().numpy().tolist()
tb_tags = ['coco_mAP', 'voc_mAP', 'train/box_loss', 'train/obj_loss', 'train/class_loss', 'train/loss']
for tag, val in zip(tb_tags, tb_vals):
writer.add_scalar(tag, val, epoch)
# save all in checkpoint
save_dict = {'model': model.state_dict(),
'epochs': epoch,
'optimizer': optimizer.state_dict(),
'log': log_file,
'lr_scheduler': lr_scheduler.state_dict()}
if scaler is not None:
save_dict['scaler'] = scaler.state_dict()
weight_dir = pathlib.Path(args.weights).parent
save_file = str(weight_dir / f'yolov3-spp-epoch{epoch}-{args.epochs}.pt')
torch.save(save_dict, save_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train hyperparameters.')
parser.add_argument('--log', default='./log', type=str,
help='path to log, default: ./log')
parser.add_argument('--img-size', default=512, type=int,
help='size of image, default: 512')
parser.add_argument('--multi-scale', default=True, type=bool,
help='start multi scale train, default: True')
parser.add_argument('--train-hyp', default='./cfg/train_hyp.yaml', type=str,
help='hyperparameters in train, default: ./cfg/train_hyp.yaml')
parser.add_argument('--data', default='./data/my_data.data', type=str,
help='data path dict.')
parser.add_argument('--model-cfg', default='./cfg/my_yolov3.cfg', type=str,
help='model construction config file')
parser.add_argument('--device', default='cuda:0', type=str, help='')
parser.add_argument('--freeze-layer', action='store_true')
parser.add_argument('--amp', action='store_true')
parser.add_argument('--weights', default='./weights/yolov3-spp-ultralytics-512.pt',
type=str, help='file of weights')
parser.add_argument('--epochs', default=30, type=int,
help='num of epochs to train and evaluate.')
parser.add_argument('--batch-size', default=16, type=int, help='')
parser.add_argument('--rect', action='store_true')
parser.add_argument('--local_rank', type=int, default=-1)
args = parser.parse_args()
main(args)