diff --git a/evolution/machine_learning/quantum_reinforcement_learning.py b/evolution/machine_learning/quantum_reinforcement_learning.py new file mode 100644 index 0000000..4416a0d --- /dev/null +++ b/evolution/machine_learning/quantum_reinforcement_learning.py @@ -0,0 +1,43 @@ +# quantum_reinforcement_learning.py +import numpy as np +from qiskit import QuantumCircuit, execute +from qiskit.providers.aer import AerSimulator +from tensorflow.keras.models import Model +from tensorflow.keras.layers import Input, Dense, LSTM + +class QuantumReinforcementLearning: + def __init__(self, num_qubits, num_layers): + self.num_qubits = num_qubits + self.num_layers = num_layers + self.quantum_backend = AerSimulator() + self.quantum_circuit = QuantumCircuit(num_qubits) + + def _generate_quantum_circuit(self): + for i in range(self.num_layers): + self.quantum_circuit.ry(np.pi / 2, i) + self.quantum_circuit.rz(np.pi / 2, i) + return self.quantum_circuit + + def _train_quantum_model(self, X, y): + quantum_circuit = self._generate_quantum_circuit() + job = execute(quantum_circuit, self.quantum_backend, shots=1024) + result = job.result() + counts = result.get_counts(quantum_circuit) + return counts + + def _train_classical_model(self, X, y): + model = Model(inputs=Input(shape=(X.shape[1],)), outputs=Dense(y.shape[1], activation='softmax')(LSTM(64)(Input(shape=(X.shape[1],))))) + model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) + model.fit(X, y, epochs=10, batch_size=32, validation_data=(X, y)) + return model + + def train(self, X, y): + quantum_counts = self._train_quantum_model(X, y) + classical_model = self._train_classical_model(X, y) + return quantum_counts, classical_model + +# Example usage: +X = np.random.rand(100, 10) +y = np.random.rand(100, 10) +qrl = QuantumReinforcementLearning(num_qubits=10, num_layers=5) +quantum_counts, classical_model = qrl.train(X, y)