diff --git a/evolution/machine_learning/quantum_annealing_autonomous_systems.py b/evolution/machine_learning/quantum_annealing_autonomous_systems.py new file mode 100644 index 0000000..affe013 --- /dev/null +++ b/evolution/machine_learning/quantum_annealing_autonomous_systems.py @@ -0,0 +1,42 @@ +# quantum_annealing_autonomous_systems.py +import numpy as np +from qiskit import QuantumCircuit, execute +from qiskit.providers.aer import AerSimulator + +class QuantumAnnealingAutonomousSystems: + def __init__(self, num_qubits, num_iterations): + self.num_qubits = num_qubits + self.num_iterations = num_iterations + self.quantum_backend = AerSimulator() + self.quantum_circuit = QuantumCircuit(num_qubits) + + def _generate_quantum_circuit(self): + for i in range(self.num_qubits): + self.quantum_circuit.ry(np.pi / 2, i) + self.quantum_circuit.rz(np.pi / 2, i) + return self.quantum_circuit + + def _evaluate_energy(self, X): + # Implement energy function + pass + + def _anneal(self, X): + quantum_circuit = self._generate_quantum_circuit() + for i in range(self.num_iterations): + beta = i / self.num_iterations + quantum_circuit.ry(beta * np.pi / 2, 0) + quantum_circuit.rz(beta * np.pi / 2, 0) + job = execute(quantum_circuit, self.quantum_backend, shots=1024) + result = job.result() + counts = result.get_counts(quantum_circuit) + return counts + + def train(self, X): + counts = self._anneal(X) + best_solution = max(counts, key=lambda x: self._evaluate_energy(x)) + return best_solution + +# Example usage: +X = np.random.rand(100, 10) +qaas = QuantumAnnealingAutonomousSystems(num_qubits=10, num_iterations=100) +best_solution = qaas.train(X)