-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
441 lines (359 loc) · 19.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import imageio
import random
import os
from random import randint
import torch.linalg
from scene_reconstruction.train_utils import regularization, image_losses, densification, train_step
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui, RenderResults
import sys
from scene_reconstruction.scene import Scene
from scene_reconstruction.gaussian_mesh import MultiGaussianMesh
from meshnet.meshnet_network import MeshSimulator, ResidualMeshSimulator
from utils.general_utils import safe_state
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams, ModelHiddenParams, MeshnetParams
from torch.utils.data import DataLoader
from utils.timer import Timer
from utils.external import *
import wandb
import lpips
from utils.scene_utils import render_training_image
to8b = lambda x: (255 * np.clip(x.cpu().numpy(), 0, 1)).astype(np.uint8)
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def flow_loss(all_projections=None, visibility_filter_list=None, viewpoint_cams=None):
# flow frame i-1
flow_0 = all_projections[1] - all_projections[0]
# mask s.t. only visible points are used for flow
mask_visibility = visibility_filter_list[0].squeeze(0) & visibility_filter_list[1].squeeze(0)
# mask s.t. only points that are in [H,W] are used for flow
mask_in_image = (all_projections[0, :, 0] >= 0) & (all_projections[0, :, 0] < viewpoint_cams[0].image_height) & (
all_projections[0, :, 1] >= 0) & \
(all_projections[0, :, 1] < viewpoint_cams[0].image_width)
mask = mask_visibility & mask_in_image
flow_0 = flow_0[mask]
projections_0 = all_projections[0][mask]
raft_flow_0 = torch.tensor(viewpoint_cams[0].flow[0], device="cuda")
raft_flow_0_indexed = raft_flow_0[:, projections_0[:, 0].long(), projections_0[:, 1].long()].T
## flow frame i
flow_1 = all_projections[2] - all_projections[1]
# mask s.t. only visible points are used for flow
mask_visibility = visibility_filter_list[1].squeeze(0) & visibility_filter_list[2].squeeze(0)
# mask s.t. only points that are in [H,W] are used for flow
mask_in_image = (all_projections[:, 1] >= 0) & (all_projections[:, 1] < viewpoint_cams[1].image_width) & (
all_projections[:, 2] >= 0) & \
(all_projections[:, 2] < viewpoint_cams[2].image_height)
mask = mask_visibility & mask_in_image
flow_1 = flow_1[mask]
# raft_flow_0 shape 2 x H x W
# all_projections[0] N x 2
# index raft_flow_0 with all_projections[0]
print(raft_flow_0_indexed.shape)
print(flow_0.shape)
print(raft_flow_0_indexed[:3])
raft_flow_1 = viewpoint_cams[1].flow
def scene_reconstruction(dataset, opt_params: OptimizationParams, pipeline_params, meshnet_params: MeshnetParams, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians: MultiGaussianMesh, simulator: MeshSimulator, scene: Scene, stage, tb_writer, train_iter, user_args=None):
first_iter = 0
# Initialize optimizers
gaussians.training_setup(opt_params)
# TODO Maybe attach this to the meshnet class
meshnet_optimizer = torch.optim.Adam(
simulator.parameters(),
lr=meshnet_params.lr_init
)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt_params)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing=True)
iter_end = torch.cuda.Event(enable_timing=True)
viewpoint_stack = None
ema_loss_for_log = 0.0
ema_psnr_for_log = 0.0
final_iter = train_iter
progress_bar = tqdm(range(first_iter, final_iter), desc="Training progress")
first_iter += 1
lpips_model = lpips.LPIPS(net="alex").cuda()
video_cams = scene.video_cameras
cameras_extent = scene.cameras_extent
o3d_knn_dists, o3d_knn_indices, knn_weights = None, None, None
for iteration in range(first_iter, final_iter + 1):
static = opt_params.static_reconst and iteration < opt_params.static_reconst_iteration
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipeline_params.convert_SHs_python, pipeline_params.compute_cov3D_python, keep_alive, scaling_modifer, ts = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, simulator, pipeline_params, background, scaling_modifer, render_static=static)[
"render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2,
0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt_params.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.train_cameras
batch_size = 1
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size, shuffle=True, num_workers=32,
collate_fn=list)
loader = iter(viewpoint_stack_loader)
if opt_params.dataloader:
try:
viewpoint_cams = next(loader)
except StopIteration:
print("reset dataloader")
batch_size = 1
loader = iter(viewpoint_stack_loader)
else:
idx = randint(0, len(viewpoint_stack) - 1) # picking a random viewpoint
viewpoint_cams = viewpoint_stack[idx] # returning 3 subsequence timesteps
if static:
viewpoint_cams = [viewpoint_stack.get_one_item(iteration % len(viewpoint_stack), 0)]
# Render
if (iteration - 1) == debug_from:
pipeline_params.debug = True
psnr_, loss, loss_dict = train_step(iteration, viewpoint_cams, gaussians, simulator, meshnet_optimizer,
pipeline_params, opt_params, cameras_extent, background, static,
dataset.white_background, user_args)
# Log and save
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
ema_psnr_for_log = 0.4 * psnr_ + 0.6 * ema_psnr_for_log
total_point = gaussians.num_gaussians
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}",
"psnr": f"{psnr_:.{2}f}",
"point": f"{total_point}"})
progress_bar.update(10)
if iteration == opt_params.iterations:
progress_bar.close()
training_report(tb_writer, iteration, loss_dict, loss, iter_start.elapsed_time(iter_end),
testing_iterations, scene, gaussians, simulator, [pipeline_params, background], stage,
user_args=user_args, save_test_images=user_args.save_test_images)
if iteration in saving_iterations:
print("\n[ITER {}] Saving Gaussians".format(iteration))
point_cloud_path = os.path.join(scene.model_path, "point_cloud/iteration_{}".format(iteration))
gaussians.save_ply(point_cloud_path)
meshnet_path = os.path.join(scene.model_path, 'meshnet')
os.makedirs(meshnet_path, exist_ok=True)
simulator.save(os.path.join(meshnet_path, 'model-' + str(iteration) + '.pt'))
if user_args.use_wandb and stage == "fine":
wandb.log({"train/psnr": psnr_, "train/loss": loss}, step=iteration)
wandb.log({"train/num_gaussians": gaussians.num_gaussians}, step=iteration)
if dataset.render_process:
if (iteration < 1000 and iteration % 10 == 1) \
or (iteration < 3000 and iteration % 50 == 1) \
or (iteration < 10000 and iteration % 100 == 1) \
or (iteration < 60000 and iteration % 100 == 1):
render_training_image(scene, gaussians, video_cams, render, pipeline_params, background, stage, iteration - 1,
iter_start.elapsed_time(iter_end))
# total_images.append(to8b(temp_image).transpose(1,2,0))
if iteration in checkpoint_iterations:
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration),
os.path.join(scene.model_path, "chkpnt" + str(iteration) + ".pth"))
def training(dataset, hyper, opt, pipe, meshnet_params, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint,
debug_from, expname, user_args=None):
# first_iter = 0
tb_writer = prepare_output_and_logger(expname)
timer = Timer()
dataset.model_path = args.model_path
scene = Scene(dataset, load_coarse=None, user_args=user_args)
# load simulator
mesh_pos = torch.concat([mesh.pos.unsqueeze(0) for mesh in scene.mesh_predictions], dim=0)
simulator = ResidualMeshSimulator(mesh_pos, device='cuda')
simulator.train()
gaussians = MultiGaussianMesh(dataset.sh_degree)
gaussians.from_mesh(scene.initial_mesh, scene.cameras_extent, opt.gaussian_init_factor)
if not opt.no_coarse:
scene_reconstruction(dataset, opt, pipe, meshnet_params, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, simulator, scene, "coarse", tb_writer,
opt.coarse_iterations, user_args=user_args)
scene_reconstruction(dataset, opt, pipe, meshnet_params, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, simulator, scene, "fine", tb_writer,
opt.iterations, user_args=user_args)
def prepare_output_and_logger(expname):
if not args.model_path:
# if os.getenv('OAR_JOB_ID'):
# unique_str=os.getenv('OAR_JOB_ID')
# else:
# unique_str = str(uuid.uuid4())
unique_str = expname
args.model_path = os.path.join("./output/", unique_str)
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok=True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, loss_dict, loss, elapsed, testing_iterations, scene: Scene, gaussians: MultiGaussianMesh, simulator: MeshSimulator,
render_args: RenderResults, stage, user_args=None, save_test_images=True):
if tb_writer:
tb_writer.add_scalar(f'{stage}/train_loss_patches/l1_loss', loss_dict['l1'], iteration)
tb_writer.add_scalar(f'{stage}/train_loss_patchestotal_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{stage}/iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test',
'cameras': [scene.test_camera_individual[idx % len(scene.test_camera_individual)]
for idx in range(10, 5000, 299)]},
{'name': 'train', 'cameras': [
scene.train_camera_individual[idx % len(scene.train_camera_individual)] for
idx in range(10, 5000, 299)]})
# individual to get only a single view at a time
for config_id, config in enumerate(validation_configs):
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(
render(viewpoint, gaussians, simulator, *render_args, no_shadow=user_args.no_shadow).render, 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(
stage + "/" + config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None],
global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(
stage + "/" + config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name),
gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
if save_test_images:
save_path = os.path.join(scene.model_path, "test_renders".format(iteration))
os.makedirs(save_path, exist_ok=True)
save_im = np.transpose(gt_image.detach().cpu().numpy(), (1, 2, 0))
save_im = (save_im * 255).astype(np.uint8)
imageio.imsave(os.path.join(save_path, f"{iteration}_{config['name']}_{config_id}_gt.png"), save_im)
save_im = np.transpose(image.squeeze().detach().cpu().numpy(), (1, 2, 0))
save_im = (save_im * 255).astype(np.uint8)
imageio.imsave(os.path.join(save_path, f"{iteration}_{config['name']}_{config_id}_render.png"), save_im)
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
if user_args.use_wandb and config['name'] == "test" and stage == "fine":
wandb.log({"test/psnr": psnr_test, "test/loss": l1_test}, step=iteration)
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(stage + "/" + config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(stage + "/" + config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram(f"{stage}/scene/opacity_histogram", gaussians.get_opacity, iteration)
tb_writer.add_scalar(f'{stage}/total_points', gaussians.num_gaussians, iteration)
#tb_writer.add_scalar(f'{stage}/deformation_rate',
# gaussians._deformation_table.sum() / gaussians.get_xyz().shape[0], iteration)
#tb_writer.add_histogram(f"{stage}/scene/motion_histogram",
# gaussians._deformation_accum.mean(dim=-1) / 100, iteration, max_bins=500)
torch.cuda.empty_cache()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
# Set up command line argument parser
# torch.set_default_tensor_type('torch.FloatTensor')
torch.cuda.empty_cache()
parser = ArgumentParser(description="Training script parameters")
setup_seed(6666)
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
hp = ModelHiddenParams(parser)
mp = MeshnetParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[i * 500 for i in range(0, 120)])
parser.add_argument("--save_iterations", nargs="+", type=int,
default=[1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default=None)
parser.add_argument("--expname", type=str, default="")
parser.add_argument("--configs", type=str, default="")
parser.add_argument("--three_steps_batch", type=bool, default=True)
parser.add_argument("--save_test_images", type=bool, default=True)
parser.add_argument("--use_wandb", action="store_true", default=False)
parser.add_argument("--wandb_project", type=str, default="test_project")
parser.add_argument("--wandb_name", type=str, default="test_name")
parser.add_argument("--view_skip", default=1, type=int)
parser.add_argument("--time_skip", type=int, default=1)
###
# model parameters
###
# disable shadow net
parser.add_argument("--no_shadow", action="store_true")
# regularization
# momentum term
parser.add_argument("--reg_iter", default=5000, type=int)
parser.add_argument("--knn_update_iter", default=1000, type=int)
# isometric loss
parser.add_argument("--lambda_isometric", default=0.0, type=float)
# shadow loss
parser.add_argument("--lambda_shadow_mean", default=0.0, type=float)
parser.add_argument("--lambda_shadow_delta", default=0.0, type=float)
parser.add_argument("--lambda_momentum_rotation", default=0.0, type=float)
parser.add_argument("--lambda_spring", default=0.0, type=float)
parser.add_argument("--lambda_w", default=2000, type=float)
parser.add_argument("--k_nearest", default=20, type=int)
parser.add_argument("--single_cam_video", action="store_true",
help='Only render from the first camera for the video viz')
args = parser.parse_args(sys.argv[1:])
if args.use_wandb:
wandb.init(project=args.wandb_project, name=args.wandb_name)
wandb.config.update(args)
args.save_iterations.append(args.iterations)
if args.configs:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), hp.extract(args), op.extract(args), pp.extract(args), mp.extract(args), args.test_iterations,
args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.expname,
user_args=args)
# All done
print("\nTraining complete.")