-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathACO_abt_2.py
151 lines (123 loc) · 5.47 KB
/
ACO_abt_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import matplotlib.pyplot as plt
import time
# Define the city coordinates (x, y)
cities = np.array([
[0, 0], # City 0
[2, 3], # City 1
[5, 4], # City 2
[1, 1], # City 3
[7, 3], # City 4
[6, 1], # City 5
])
n_cities = len(cities)
# Calculate the distance matrix
def calculate_distance_matrix(cities):
n = len(cities)
dist_matrix = np.zeros((n, n))
for i in range(n):
for j in range(n):
if i != j:
dist_matrix[i][j] = np.linalg.norm(cities[i] - cities[j])
return dist_matrix
dist_matrix = calculate_distance_matrix(cities)
# Parameters for the ACO
n_ants = 10
n_iterations = 100
evaporation_rate = 0.5
pheromone_constant = 1.0
initial_pheromone = 1.0
# Initialize pheromone levels
pheromone_matrix = np.ones((n_cities, n_cities)) * initial_pheromone
# Function to calculate the probability of moving to the next city
def calculate_transition_probabilities(pheromone_matrix, dist_matrix, alpha, beta, visited, current_city):
n = len(pheromone_matrix)
probabilities = np.zeros(n)
for i in range(n):
if i not in visited:
try:
probabilities[i] = (pheromone_matrix[current_city, i] ** alpha) * ((1.0 / dist_matrix[current_city, i]) ** beta)
except OverflowError:
probabilities[i] = 0 # Handle any overflow errors gracefully
# Check if the sum of probabilities is zero
if np.sum(probabilities) == 0:
probabilities = np.ones(n)
for i in visited:
probabilities[i] = 0
return probabilities / np.sum(probabilities)
# Function to run the ACO algorithm
def ant_colony_optimization(dist_matrix, pheromone_matrix, alpha, beta, evaporation_rate, pheromone_constant, n_ants, n_iterations):
n_cities = len(dist_matrix)
best_route = None
best_distance = float('inf')
for iteration in range(n_iterations):
all_routes = []
all_distances = []
for ant in range(n_ants):
route = []
visited = set()
current_city = np.random.randint(n_cities)
route.append(current_city)
visited.add(current_city)
while len(visited) < n_cities:
probabilities = calculate_transition_probabilities(pheromone_matrix, dist_matrix, alpha, beta, visited, current_city)
next_city = np.random.choice(range(n_cities), p=probabilities)
route.append(next_city)
visited.add(next_city)
current_city = next_city
route.append(route[0]) # Return to start
all_routes.append(route)
distance = np.sum([dist_matrix[route[i], route[i + 1]] for i in range(len(route) - 1)])
all_distances.append(distance)
if distance < best_distance:
best_distance = distance
best_route = route
# Update pheromone matrix
pheromone_matrix *= (1 - evaporation_rate)
for route, distance in zip(all_routes, all_distances):
for i in range(len(route) - 1):
pheromone_matrix[route[i], route[i + 1]] += pheromone_constant / distance
return best_route, best_distance
# Function to test different alpha and beta values
def test_parameters(alpha_values, beta_values):
results = {}
times = {}
for alpha in alpha_values:
for beta in beta_values:
print(f"Testing with alpha={alpha}, beta={beta}")
pheromone_matrix = np.ones((n_cities, n_cities)) * initial_pheromone
start_time = time.time()
best_route, best_distance = ant_colony_optimization(dist_matrix, pheromone_matrix, alpha, beta, evaporation_rate, pheromone_constant, n_ants, n_iterations)
end_time = time.time()
elapsed_time = end_time - start_time
results[(alpha, beta)] = best_distance
times[(alpha, beta)] = elapsed_time
print(f"Best distance for alpha={alpha}, beta={beta}: {best_distance}")
print(f"Time taken for alpha={alpha}, beta={beta}: {elapsed_time:.2f} seconds\n")
return results, times
# Define the alpha and beta values to test (including super huge values)
alpha_values = [10.0, 50.0, 100.0, 500.0, 1000.0]
beta_values = [10.0, 50.0, 100.0, 500.0, 1000.0]
# Run the tests
results, times = test_parameters(alpha_values, beta_values)
# Plotting the results
def plot_results(results, times, alpha_values, beta_values):
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
alpha_beta_pairs = list(results.keys())
distances = [results[pair] for pair in alpha_beta_pairs]
time_taken = [times[pair] for pair in alpha_beta_pairs]
alpha_beta_labels = [f"α={pair[0]}, β={pair[1]}" for pair in alpha_beta_pairs]
ax1.bar(alpha_beta_labels, distances, color='g', alpha=0.6, label='Best Distance')
ax2.plot(alpha_beta_labels, time_taken, color='b', marker='o', label='Time Taken')
ax1.set_xlabel('Alpha and Beta Values')
ax1.set_ylabel('Best Distance', color='g')
ax2.set_ylabel('Time Taken (s)', color='b')
plt.title('ACO Results: Best Distance and Time Taken for Different Alpha and Beta Values')
ax1.legend(loc='upper left')
ax2.legend(loc='upper right')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# Plot the results
plot_results(results, times, alpha_values, beta_values)