-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extractor.py
209 lines (186 loc) · 8.63 KB
/
feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import logging
import math
import os
import shutil
from typing import Callable, Dict
import numpy as np
import torch
from torch import nn
from src.metrics.stats_reporter import StatsReporter
from src.data import get_dataset
from .models_factory import get_model
from src.utils.path_utils import get_model_path
class FeatureExtractor:
def __init__(self, config: Dict):
self.DEVICE = "cpu"
if torch.cuda.is_available():
self.DEVICE = "cuda:0"
self.model = get_model(config["model"]).to(self.DEVICE)
self.config = config
self.path = os.path.join(config["results_path"], get_model_path(config))
def train(self) -> None:
rotation = self.config.get("rotation", 0)
if rotation:
self.rotation_classifier = nn.Linear(self.config["features_dim"], 4).to(self.DEVICE)
self.optimizer = torch.optim.Adam([{'params': self.model.parameters()}, {'params': self.rotation_classifier.parameters()}], lr=self.config['learning_rate'])
else:
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.config['learning_rate'])
lf = lambda x: (1 + math.cos(x * math.pi / self.config['scheduler_mocked_epochs'])) / 2 * 0.9 + 0.1
self.scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lf)
loss_func = nn.CrossEntropyLoss()
metrics = {
'loss': loss_func,
'acc': lambda input, target: (torch.max(input, 1)[1] == target).sum() / float(target.shape[0]),
}
self.stats_reporter = StatsReporter(metrics, self.path)
if rotation:
self.stats_reporter.add_metrics(["loss_class", "loss_rotation"])
if self.config["model"].get("load_path") is not None:
self.load("best.pt", self.config["model"].get("load_path"))
train_dataset, val_dataset = get_dataset(
self.config["dataset"],
self.config["datasets_path"],
self.config["meta_split"],
train_test_split=True
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size = self.config["batch_size"],
shuffle = True,
num_workers = self.config["num_workers"],
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size = self.config["batch_size"],
shuffle = False,
num_workers = self.config["num_workers"],
)
bestLoss = 1e10
for epoch in range(self.config["epochs"]):
logging.info(f"Epoch {epoch}")
self.model.train()
self.single_epoch(
train_loader,
loss_func,
metrics,
gradient_accumulation=self.config.get("gradient_accumulation", 1),
is_training=True)
with torch.no_grad():
self.model.eval()
loss = self.single_epoch(
val_loader,
loss_func,
metrics,
gradient_accumulation=self.config.get("gradient_accumulation", 1),
is_training=False)['loss']
if loss < bestLoss:
bestLoss = loss
self.save('best.pt')
self.save('current.pt')
if epoch % self.config['persist_state_every'] == self.config['persist_state_every'] - 1 and os.path.exists(f'{self.path}/best.pt'):
shutil.copy(f'{self.path}/best.pt', f'{epoch}_checkpoint.pt')
self.scheduler.step()
def single_epoch(self, loader: torch.utils.data.DataLoader, loss_func: Callable, metrics: Dict[str, Callable]={}, gradient_accumulation: int=1, is_training: bool=False) -> None:
metric_values = {}
for metric in metrics.keys():
metric_values[metric] = []
samples = []
if is_training:
mixup_alpha = self.config.get("mixup_alpha", None)
rotation = self.config.get("rotation", 0)
if rotation:
metric_values["loss_class"] = []
metric_values["loss_rotation"] = []
else:
mixup_alpha = None
rotation = 0
for i, (x, y) in enumerate(loader):
x, y = x.to(self.DEVICE), y.to(self.DEVICE)
if mixup_alpha is not None:
print("MIXUP")
lambda_ = np.random.beta(mixup_alpha, mixup_alpha)
_, y_pred, y_a, y_b = self.model(x, y, lambda_)
loss = (1-lambda_)*loss_func(y_pred, y_a) + lambda_*loss_func(y_pred, y_b)
if is_training:
loss.backward()
if rotation == 1:
print("ROTATION")
n = x.shape[0]
if mixup_alpha is not None:
n//=4 # if rotation is not a single training objective take only
x_new, y_class, y_rotation = [], [], []
import matplotlib.pyplot as plt
for x_i, y_i in zip(x[:n], y[:n]):
for j in range(4):
x_new.append(x_i)
x_i = x_i.transpose(1, 2).flip(2)
y_class.append(y_i)
y_rotation.append(torch.tensor(j))
x_new = torch.stack(x_new, dim=0)
y_class = torch.stack(y_class, dim=0)
y_rotation = torch.stack(y_rotation, dim=0).to(self.DEVICE)
features, y_class_pred = self.model(x_new)
y_rotation_pred = self.rotation_classifier(features)
loss_class = loss_func(y_class_pred, y_class)
loss_rotation = loss_func(y_rotation_pred, y_rotation)
loss = (loss_class+loss_rotation)/2
if is_training:
loss.backward()
metric_values["loss_class"].append(loss_class.cpu().detach())
metric_values["loss_rotation"].append(loss_rotation.cpu().detach())
if mixup_alpha is None:
y_pred = y_class_pred[::4]
if rotation == 0 and mixup_alpha is None:
_, y_pred = self.model(x)
loss = loss_func(y_pred, y)
if is_training:
loss.backward()
logging.info(f"Loss: {loss.cpu().detach()}")
for metric, f in metrics.items():
metric_values[metric].append(f(y_pred, y).cpu().detach())
samples.append(x.shape[0])
if is_training:
if i%gradient_accumulation == 0:
self.optimizer.step()
self.optimizer.zero_grad()
if is_training and i%gradient_accumulation != 0:
self.optimizer.step()
self.optimizer.zero_grad()
samples = np.array(samples)
metric_keys = list(metric_values.keys())
for key in metric_keys:
metric_values[key] = np.sum(np.array(metric_values[key])*samples)/np.sum(samples)
self.stats_reporter.update(metric_values, is_training=is_training)
return metric_values
def extract_features(self, dataset: torch.utils.data.DataLoader) -> np.ndarray:
self.model.eval()
if hasattr(self.model, "extract_features"):
feature_extractor = self.model.extract_features
else:
raise RuntimeError(f"{self.model} has no extract_features method")
with torch.no_grad():
features = []
from tqdm import tqdm
for x, y in tqdm(dataset):
x, y = x.to(self.DEVICE), y.to(self.DEVICE)
features += [feature_extractor(x).cpu().numpy().reshape(len(y),-1)]
return np.concatenate(features, axis=0)
def save(self, filename: str) -> None:
path = os.path.join(self.path, filename)
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save({
'model': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict()
}, path)
def load(self, filename: str, path=None) -> None:
if path is None:
path = self.path
checkpoint = torch.load(os.path.join(path, filename), map_location=self.DEVICE)
model_state = checkpoint['model']
self.model.load_state_dict(model_state, strict=True)
if self.config['model'].get('load_optimizer', 0) == 1:
if hasattr(self, "optimizer"):
self.optimizer.load_state_dict(checkpoint['optimizer'])
if self.config['model'].get('load_scheduler', 1) == 1 and hasattr(self, "scheduler"):
self.scheduler.load_state_dict(checkpoint['scheduler'])