-
Notifications
You must be signed in to change notification settings - Fork 3
/
cancerSeqStudy.R
332 lines (286 loc) · 11.5 KB
/
cancerSeqStudy.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# get command line args
if ("getopt" %in% rownames(installed.packages())){
# get command line arguments
library(getopt)
spec <- matrix(c(
'mcores', 'c', 1, 'integer',
'output', 'o', 1, 'character',
'ratioMetric', 'r', 2, 'double',
'help', 'h', 0, 'logical'
), byrow=TRUE, ncol=4)
opt = getopt(spec)
# print out help msg
if ( !is.null(opt$help) ) {
cat(getopt(spec, usage=TRUE));
q(status=1);
} else if (is.null(opt$mcores) | is.null(opt$output)){
opt <- list(ARGS=NULL)
}
} else {
opt <- list(ARGS=NULL)
}
suppressPackageStartupMessages(library(VGAM))
suppressPackageStartupMessages(library(reshape2))
suppressPackageStartupMessages(library(parallel))
# load other R files
source("smg.R")
source("ratioMetric.R")
#############################
# Convert a rate and coefficient
# of variation parameter into
# the alpha and beta parameters
#############################
#' Converts mutation rate and coefficient of variation (CV) parameters
#' to equivalent alpha and beta parameters typically used for beta-binomial.
#'
#' @param rate mutation rate
#' @param cv coefficient of variation for mutation rate
#' @return Param list containing alpha and beta
rateCvToAlphaBeta <- function(rate, cv) {
ab <- rate * (1-rate) / (cv*rate)^2 - 1
my.alpha <- rate * ab
my.beta <- (1-rate)*ab
return(list(alpha=my.alpha, beta=my.beta))
}
#############################
# Analyze power and false positives
# when using a beta-binomial model
#############################
smgBbdFullAnalysis <- function(mu, cv, Leff, signif.level, effect.size,
desired.power, samp.sizes){
# find the power and numer of samples needed for a desired power
powerResult <- smgBbdRequiredSampleSize(desired.power, mu, cv, samp.sizes,
effect.size, signif.level, Leff)
bbd.samp.size.min <- powerResult$samp.size.min
bbd.samp.size.max <- powerResult$samp.size.max
power.result.bbd <- powerResult$power
# get alpha and beta parameterization
# for beta-binomial
params <- rateCvToAlphaBeta(mu, cv)
# find expected number of false positives
fp.result <- smg.binom.false.pos(params$alpha, params$beta, samp.sizes, Leff,
signif.level=signif.level)
# save binomial data
tmp.df <- data.frame(sample.size=samp.sizes)
tmp.df["Power"] <- power.result.bbd
tmp.df['sample min'] <- bbd.samp.size.min
tmp.df['sample max'] <- bbd.samp.size.max
tmp.df['CV'] <- cv
tmp.df['signif.level'] <- signif.level
tmp.df['effect.size'] <- effect.size
tmp.df['mutation.rate'] <- mu
tmp.df["FP"] <- fp.result
return(tmp.df)
}
ratiometricBbdFullAnalysis <- function(p, cv, mu, L, signif.level, effect.size,
desired.power, samp.sizes){
# find the power and numer of samples needed for a desired power
powerResult <- ratiometricBbdRequiredSampleSize(p, cv, desired.power, samp.sizes, mu,
effect.size, signif.level, L)
bbd.samp.size.min <- powerResult$samp.size.min
bbd.samp.size.max <- powerResult$samp.size.max
power.result.bbd <- powerResult$power
# get alpha and beta parameterization
# for beta-binomial
params <- rateCvToAlphaBeta(p, cv)
# find expected number of false positives
fp.result <- ratiometric.binom.false.pos(params$alpha, params$beta, samp.sizes,
mu, L, signif.level=signif.level)
# save binomial data
tmp.df <- data.frame(sample.size=samp.sizes)
tmp.df["Power"] <- power.result.bbd
tmp.df['sample min'] <- bbd.samp.size.min
tmp.df['sample max'] <- bbd.samp.size.max
tmp.df['CV'] <- cv
tmp.df['signif.level'] <- signif.level
tmp.df['effect.size'] <- effect.size
tmp.df['mutation.rate'] <- mu
tmp.df["Ratio-metric.P"] <- p
tmp.df["FP"] <- fp.result
return(tmp.df)
}
######################
# Estimate power with a binomial model
######################
smgBinomFullAnalysis <- function(mu, Leff, signif.level, effect.size,
desired.power, samp.sizes){
# calculate power
power.result.binom <- smg.binom.power(mu, samp.sizes, Leff,
signif.level=signif.level,
r=effect.size)
binom.samp.size.min <- samp.sizes[min(which(power.result.binom>=desired.power))]
binom.samp.size.max <- samp.sizes[max(which(power.result.binom<desired.power))+1]
# record all power measurements
tmp.df <- data.frame(sample.size=samp.sizes)
tmp.df["Power"] <- power.result.binom
tmp.df['sample min'] <- binom.samp.size.min
tmp.df['sample max'] <- binom.samp.size.max
tmp.df['CV'] <- 0
tmp.df['signif.level'] <- signif.level
tmp.df['effect.size'] <- effect.size
tmp.df['mutation.rate'] <- mu
tmp.df["FP"] <- NA
return(tmp.df)
}
ratiometricBinomFullAnalysis <- function(p, mu, L, signif.level, effect.size,
desired.power, samp.sizes){
# calculate power
power.result.binom <- ratiometric.binom.power(p, samp.sizes, mu, L,
signif.level=signif.level,
r=effect.size)
binom.samp.size.min <- samp.sizes[min(which(power.result.binom>=desired.power))]
binom.samp.size.max <- samp.sizes[max(which(power.result.binom<desired.power))+1]
# record all power measurements
tmp.df <- data.frame(sample.size=samp.sizes)
tmp.df["Power"] <- power.result.binom
tmp.df['sample min'] <- binom.samp.size.min
tmp.df['sample max'] <- binom.samp.size.max
tmp.df['CV'] <- 0
tmp.df['signif.level'] <- signif.level
tmp.df['effect.size'] <- effect.size
tmp.df['mutation.rate'] <- mu
tmp.df["Ratio-metric.P"] <- p
tmp.df["FP"] <- NA
return(tmp.df)
}
#############################
# run the analysis
#############################
runSmgAnalysisList <- function(x, samp.sizes,
desired.power=.9, Leff=1500*3/4,
possible.cvs=c()){
# unpack the parameters
mymu <- x[1]
myeffect.size <- x[2]
myalpha.level <- x[3]
# run analysis
result.df <- runSmgAnalysis(mymu, myeffect.size, myalpha.level,
samp.sizes, desired.power, Leff, possible.cvs)
return(result.df)
}
runRatiometricAnalysisList <- function(x, samp.sizes,
desired.power=.9, L=1500,
possible.cvs=c()){
# unpack the parameters
myp <- x[1]
mymu <- x[2]
myeffect.size <- x[3]
myalpha.level <- x[4]
# run analysis
result.df <- runRatiometricAnalysis(myp, mymu, myeffect.size, myalpha.level,
samp.sizes, desired.power, L, possible.cvs)
return(result.df)
}
#' This function unpacks a vector x which contains many combinations of the mutation
#' rate, effect.size, and significance level. The purpose of this function is parallelized
#' code running over a list of parameters. If you are not parallelizing, then use the
#' runAnalysis function.
runAnalysisList <- function(x, analysisType="smg", Leff=1500*3/4, L=1500, ...){
if (analysisType=="smg"){
result <- runSmgAnalysisList(x, Leff=Leff, ...)
} else{
result <- runRatiometricAnalysisList(x, L=L, ...)
}
return(result)
}
#' Runs the entire power and false positive analysis pipeline.
runSmgAnalysis <- function(mu, effect.size, signif.level,
samp.sizes, desired.power=.9,
Leff=1500*3/4, possible.cvs=c()){
# run beta-binomial model
result.df <- data.frame()
for (mycv in possible.cvs){
# calculate false positives and power
tmp.df <- smgBbdFullAnalysis(mu, mycv, Leff, signif.level, effect.size,
desired.power, samp.sizes)
result.df <- rbind(result.df, tmp.df)
}
# save binomial data
tmp.df <- smgBinomFullAnalysis(mu, Leff, signif.level, effect.size, desired.power, samp.sizes)
result.df <- rbind(result.df, tmp.df)
return(result.df)
}
#' Runs the entire power and false positive analysis pipeline.
runRatiometricAnalysis <- function(p, mu, effect.size, signif.level,
samp.sizes, desired.power=.9,
L=1500, possible.cvs=c()){
# run beta-binomial model
result.df <- data.frame()
for (mycv in possible.cvs){
# calculate false positives and power
tmp.df <- ratiometricBbdFullAnalysis(p, mycv, mu, L, signif.level, effect.size,
desired.power, samp.sizes)
result.df <- rbind(result.df, tmp.df)
}
# save binomial data
tmp.df <- ratiometricBinomFullAnalysis(p, mu, L, signif.level,
effect.size, desired.power, samp.sizes)
result.df <- rbind(result.df, tmp.df)
return(result.df)
}
# Run as a script if arguments provided
if (!is.null(opt$ARGS)){
#############################
# define the model params
#############################
# figure out whether to run a ratio-metric analysis
# or mutation rate analysis
if (is.null(opt$ratioMetric)){
cmdType <- "smg"
} else {
cmdType <- "ratio-metric"
}
# long list of rates to be evaluated
rate <- c(.1e-6, .2e-6, .3e-6, .4e-6, .5e-6, .7e-6, .8e-6, 1e-6, 1.25e-6, 1.5e-6, 1.75e-6, 2e-6, 2.25e-6, 2.5e-6, 2.75e-6, 3e-6, 3.5e-6, 4e-6,
4.5e-6, 5e-6, 5.5e-6, 6e-6, 6.5e-6, 7e-6, 7.5e-6, 8e-6, 8.5e-6, 9e-6, 10e-6, 11e-6, 12e-6)
fg <- 3.9 # an adjustment factor that lawrence et al used for variable gene length
rate <- fg*rate # nominal rates are adjusted (will have to adjust back after analysis is done)
# model parameters
nonsilentFactor <- 3/4 # roughly the fraction
L <- 1500 # same length as used in lawrence et al. paper
Leff <- L * nonsilentFactor
desired.power <- .9 # aka 90% power
possible.cvs <- c(.05, .1, .2) # coefficient of variation for mutation rate per base
effect.sizes <- c(.01, .02, .05) # fraction of samples above background
alpha.levels <- c(5e-6) # list for level of significance
# setting up the sample sizes to check
N <- 25000
by.step <- 25
samp.sizes <- seq(by.step, N, by=by.step) # grid of sample sizes to check
##################################
# Loop through different params
##################################
param.list <- list()
counter <- 1
for (i in 1:length(rate)){
# loop over effect sizes
for (effect.size in effect.sizes){
# loop over alpha levels
for (alpha.level in alpha.levels){
if(cmdType=="smg"){
param.list[[counter]] <- c(rate[i], effect.size, alpha.level)
}else {
param.list[[counter]] <- c(opt$ratioMetric, rate[i], effect.size, alpha.level)
}
counter <- counter + 1
}
}
}
############################
# run analysis
############################
result.list <- mclapply(param.list, runAnalysisList, mc.cores=opt$mcores,
analysisType=cmdType, samp.sizes=samp.sizes,
desired.power=desired.power,
Leff=Leff, L=L, possible.cvs=possible.cvs)
result.df <- do.call("rbind", result.list)
# adjust mutation rates back to the average
result.df$mutation.rate <- result.df$mutation.rate / fg
# convert to factor
result.df$mutation.rate <- factor(result.df$mutation.rate, levels=unique(result.df$mutation.rate))
result.df$effect.size <- factor(result.df$effect.size, levels=unique(result.df$effect.size))
######################
# Save result to text file
######################
write.table(result.df, opt$output, sep='\t')
}