-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcancerSeqStudy.R
629 lines (565 loc) · 23.3 KB
/
cancerSeqStudy.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
# get command line args
if ("getopt" %in% rownames(installed.packages())){
# get command line arguments
library(getopt)
spec <- matrix(c(
'mcores', 'c', 1, 'integer',
'output', 'o', 1, 'character',
'help', 'h', 0, 'logical'
), byrow=TRUE, ncol=4)
opt = getopt(spec)
# print out help msg
if ( !is.null(opt$help) ) {
cat(getopt(spec, usage=TRUE));
q(status=1);
} else if (is.null(opt$mcores) | is.null(opt$output)){
opt <- list(ARGS=NULL)
}
} else {
opt <- list(ARGS=NULL)
}
suppressPackageStartupMessages(library(VGAM))
suppressPackageStartupMessages(library(reshape2))
suppressPackageStartupMessages(library(parallel))
#' calculates the power in a binomial power model
#'
#' @param my.mu per base rate of mutation for binomial
#' @param N vector of sample sizes
#' @param r effect size for power analysis
#' @param signif.level alpha level for power analysis
#' @return vector containing power for each sample size
binom.power <- function(my.mu,
N,
Leff=1500*3/4,
r=.02,
signif.level=5e-6){
# examine power of binomial test
# first find critical value based on binomial distribution
# Calculate power for various sizes with different effects
muEffect <- 1 - ((1-my.mu)^Leff - r)^(1/Leff)
power <- c()
falsePositives <- c()
#for(i in seq(by, N, by=by)){
for(i in N){
# step one, find critical threshold
j <- 1
while(j){
pval <- 1-pbinom(j-1, Leff*i, my.mu)
if(pval <= signif.level){
Xc <- j
break
}
j <- j+1
}
# step two, calculate power
p <- 1-pbinom(Xc-1, Leff*i, muEffect)
power <- c(power, p)
}
return(power)
}
#' calculates the false positives in a binomial model
#' if there is over-diserspion
#'
#' @param my.alpha alpha parameter for beta binomial
#' @param my.beta beta parameter for beta binomial
#' @param N vector of # samples to calculate power for
#' @param Leff effective gene length in bases
#' @param num.genes number of genes that are tested
#' @param signif.level alpha level for power analysis
binom.false.pos <- function(my.alpha, my.beta,
N, Leff=1500*3/4,
num.genes=18500,
signif.level=5e-6){
# calculate mutation rate from alpha/beta
my.mu <- my.alpha / (my.alpha + my.beta)
# examine power of binomial test
# first find critical value based on binomial distribution
power <- c()
falsePositives <- c()
for(i in N){
# step one, find critical threshold
j <- 1
while(j){
pval <- 1-pbinom(j-1, Leff*i, my.mu)
if(pval <= signif.level){
Xc <- j
break
}
j <- j+1
}
# step two, calculate false positives if overdispersion
fp <- 1 - pbetabinom.ab(Xc-1, Leff*i, my.alpha, my.beta)
falsePositives <- c(falsePositives, num.genes*fp)
}
return(falsePositives)
}
#' calculates the power in a beta-binomial model
#'
#' @param my.alpha alpha parameter for beta binomial
#' @param my.beta beta parameter for beta binomial
#' @param N maximum number of sample to calculate power for
#' @param Leff effective gene length in bases
#' @param r effect size for power analysis
#' @param signif.level alpha level for power analysis
bbd.power <- function(my.alpha, my.beta,
N,
Leff=1500*3/4,
r=.02,
signif.level=5e-6){
# calc the mutation rate from alpha/beta
my.mu <- my.alpha / (my.alpha + my.beta)
# examine power of binomial test
# first find critical value based on binomial distribution
# Calculate power for various sizes with different effects
muEffect <- 1 - ((1-my.mu)^Leff - r)^(1/Leff)
power <- c()
falsePositives <- c()
for(i in N){
# step one, find critical threshold
j <- 1
while(j){
pval <- 1-pbetabinom.ab(j-1, Leff*i, my.alpha, my.beta)
if(pval <= signif.level){
Xc <- j
break
}
j <- j+1
}
# step two, calculate power
p <- 1-pbinom(Xc-1, Leff*i, muEffect)
power <- c(power, p)
}
return(power)
}
ratiometric.binom.power <- function(p, N, mu,
L=1500,r=.02,
signif.level=5e-6){
# figure out the target mutation rate for effect size is
muEffect <- 1 - ((1-mu)^(L) - r)^(1/L)
# Calculate the discrepancy between the background and
# target effect size
muDiff <- muEffect - mu
# given the mutation rates calculate the target effect
# size for a ratio-metric method
pEffect <- (mu*p + muDiff) / muEffect
# iterate over the number of samples
power <- c()
for(i in N){
# step one, find the # of mutations where
# it is expected to occur at least 90% of the time
j <- 1
while(j){
prob <- pbinom(j-1, L*i, muEffect)
if(prob >= .1){
mutEff <- j
break
}
j <- j+1
}
# step two, find critical threshold
j <- 1
while(j){
pval <- 1-pbinom(j-1, mutEff, p)
if(pval <= signif.level){
Xc <- j
break
}
j <- j+1
}
# step three, calculate power
prob <- 1-pbinom(Xc-1, mutEff, pEffect)
power <- c(power, prob)
}
return(power)
}
ratiometric.bbd.power <- function(my.alpha, my.beta,
N, mu,
L=1500,r=.02,
signif.level=5e-6){
# figure out what the ratio-metric probability is from
# the alpha and beta parameters
p <- my.alpha / (my.alpha + my.beta)
# figure out the target mutation rate for effect size is
muEffect <- 1 - ((1-mu)^(L) - r)^(1/L)
# Calculate the discrepancy between the background and
# target effect size
muDiff <- muEffect - mu
# given the mutation rates calculate the target effect
# size for a ratio-metric method
pEffect <- (mu*p + muDiff) / muEffect
# iterate over the number of samples
power <- c()
for(i in N){
# step one, find the # of mutations where
# it is expected to occur at least 90% of the time
j <- 1
while(j){
prob <- pbinom(j-1, L*i, muEffect)
if(prob >= .1){
mutEff <- j
break
}
j <- j+1
}
# step two, find critical threshold
j <- 1
while(j){
pval <- 1-pbetabinom.ab(j-1, mutEff, my.alpha, my.beta)
if(pval <= signif.level){
Xc <- j
break
}
j <- j+1
}
# step three, calculate power
prob <- 1-pbinom(Xc-1, mutEff, pEffect)
power <- c(power, prob)
}
return(power)
}
#############################
# Convert a rate and coefficient
# of variation parameter into
# the alpha and beta parameters
#############################
#' Converts mutation rate and coefficient of variation (CV) parameters
#' to equivalent alpha and beta parameters typically used for beta-binomial.
#'
#' @param rate mutation rate
#' @param cv coefficient of variation for mutation rate
#' @return Param list containing alpha and beta
rateCvToAlphaBeta <- function(rate, cv) {
ab <- rate * (1-rate) / (cv*rate)^2 - 1
my.alpha <- rate * ab
my.beta <- (1-rate)*ab
return(list(alpha=my.alpha, beta=my.beta))
}
###################
# Functions to calculate the required sample size
##################
#' Calculates the smallest sample size to detect driver genes for which
#' there is sufficient power using a beta-binomial model.
#'
#' Effect size is measures as the fraction of sample/patient cancers with a non-silent
#' mutation in a driver gene above the background mutation rate.
#'
#' @param desired.power A floating point number indicating desired power
#' @param mu Mutation rate per base
#' @param cv Coefficient of Variation surrounding the uncertaintly in mutation rate
#' @param possible.samp.sizes vector of possible number of cancer samples in study
#' @param effect.size fraction of samples above background mutation rate
#' @param signif.level significance level for binomial test
#' @param Leff effective gene length of CDS in bases for an average gene
#' @return List containing the smallest effect size with sufficient power
bbdRequiredSampleSize <- function(desired.power, mu, cv, possible.samp.sizes,
effect.size, signif.level=5e-6, Leff=1500*3/4){
# get alpha and beta parameterization
# for beta-binomial
params <- rateCvToAlphaBeta(mu, cv)
# calc power
power.result.bbd <- bbd.power(params$alpha, params$beta, possible.samp.sizes, Leff,
signif.level=signif.level, r=effect.size)
# find min/max samples to achieve desired power
bbd.samp.size.min <- possible.samp.sizes[min(which(power.result.bbd>=desired.power))]
bbd.samp.size.max <- possible.samp.sizes[max(which(power.result.bbd<desired.power))+1]
# return result
result <- list(samp.size.min=bbd.samp.size.min, samp.size.max=bbd.samp.size.max,
power=power.result.bbd, sample.sizes=possible.samp.sizes)
return(result)
}
#' Calculates the smallest sample size to detect driver genes for which
#' there is sufficient power using a binomial model for mutation rate.
#'
#' Effect size is measures as the fraction of sample/patient cancers with a non-silent
#' mutation in a driver gene above the background mutation rate.
#'
#' @param desired.power A floating point number indicating desired power
#' @param mu Mutation rate per base
#' @param possible.samp.sizes vector of possible number of cancer samples in study
#' @param effect.size fraction of samples above background mutation rate
#' @param signif.level significance level for binomial test
#' @param Leff effective gene length of CDS in bases for an average gene
#' @return List containing the smallest effect size with sufficient power
binomRequiredSampleSize <- function(desired.power, mu, possible.samp.sizes,
effect.size, signif.level=5e-6, Leff=1500*3/4){
# calculate power
power.result.binom <- binom.power(mu, possible.samp.sizes, Leff,
signif.level=signif.level,
r=effect.size)
binom.samp.size.min <- possible.samp.sizes[min(which(power.result.binom>=desired.power))]
binom.samp.size.max <- possible.samp.sizes[max(which(power.result.binom<desired.power))+1]
# return result
result <- list(samp.size.min=binom.samp.size.min, samp.size.max=binom.samp.size.max,
power=power.result.binom, sample.sizes=possible.samp.sizes)
return(result)
}
#' Calculates the smallest sample size to detect driver genes for which
#' there is sufficient power using a binomial model for ratio-metric features.
#'
#' Effect size is measures as the fraction of sample/patient cancers with a non-silent
#' mutation in a driver gene above the background mutation rate.
#'
#' @param p the background fraction of total mutations represented by the ratio-metric feature (e.g. inactivating mutations / total)
#' @param desired.power A floating point number indicating desired power
#' @param possible.samp.sizes vector of possible number of cancer samples in study
#' @param mu mutation rate per base
#' @param effect.size fraction of samples above background mutation rate
#' @param signif.level significance level for binomial test
#' @param L gene length of CDS in bases for an average gene
#' @return List containing the smallest effect size with sufficient power
ratiometricBinomRequiredSampleSize <- function(p, desired.power, possible.samp.sizes, mu,
effect.size, signif.lvl=5e-6, L=1500){
# calculate power
power.result.ratio <- ratiometric.binom.power(p, possible.samp.sizes, mu, L,
signif.level=signif.lvl,
r=effect.size)
ratiometric.samp.size.min <- possible.samp.sizes[min(which(power.result.ratio>=desired.power))]
ratiometric.samp.size.max <- possible.samp.sizes[max(which(power.result.ratio<desired.power))+1]
# return result
result <- list(samp.size.min=ratiometric.samp.size.min, samp.size.max=ratiometric.samp.size.max,
power=power.result.ratio, sample.sizes=possible.samp.sizes)
return(result)
}
#' Calculates the smallest sample size to detect driver genes for which
#' there is sufficient power using a beta-binomial model for ratio-metric features.
#'
#' Effect size is measures as the fraction of sample/patient cancers with a non-silent
#' mutation in a driver gene above the background mutation rate.
#'
#' @param p the background fraction of total mutations represented by the ratio-metric feature (e.g. inactivating mutations / total)
#' @param cv the coefficient of variation for the parameter p
#' @param desired.power A floating point number indicating desired power
#' @param possible.samp.sizes vector of possible number of cancer samples in study
#' @param mu mutation rate per base
#' @param effect.size fraction of samples above background mutation rate
#' @param signif.level significance level for binomial test
#' @param L gene length of CDS in bases for an average gene
#' @return List containing the smallest effect size with sufficient power
ratiometricBbdRequiredSampleSize <- function(p, cv, desired.power, possible.samp.sizes, mu,
effect.size, signif.lvl=5e-6, L=1500){
# get alpha and beta parameterization
# for beta-binomial
params <- rateCvToAlphaBeta(p, cv)
# calculate power
power.result.ratio <- ratiometric.bbd.power(params$alpha, params$beta,
possible.samp.sizes,
mu, L,
signif.level=signif.lvl,
r=effect.size)
ratiometric.samp.size.min <- possible.samp.sizes[min(which(power.result.ratio>=desired.power))]
ratiometric.samp.size.max <- possible.samp.sizes[max(which(power.result.ratio<desired.power))+1]
# return result
result <- list(samp.size.min=ratiometric.samp.size.min, samp.size.max=ratiometric.samp.size.max,
power=power.result.ratio, sample.sizes=possible.samp.sizes)
return(result)
}
####################################
# Functions to calculate the minimum effect size
# with a given power
#####################################
#' Calculates the smallest effect size in a driver gene for which
#' there is sufficient power using a beta-binomial model.
#'
#' Effect size is measures as the fraction of sample/patient cancers with a non-silent
#' mutation in a driver gene above the background mutation rate.
#'
#' @param possible.effect.sizes vector of effect sizes
#' @param desired.power A floating point number indicating desired power
#' @param mu Mutation rate per base
#' @param cv Coefficient of Variation surrounding the uncertaintly in mutation rate
#' @param samp.size number of cancer samples in study
#' @param signif.level significance level for binomial test
#' @param Leff effective gene length of CDS in bases for an average gene
#' @return List containing the smallest effect size with sufficient power
bbdPoweredEffectSize <- function(possible.effect.sizes, desired.power, mu, cv, samp.size,
signif.level=5e-6, Leff=1500*3/4) {
# get alpha and beta parameterization
# for beta-binomial
params <- rateCvToAlphaBeta(mu, cv)
# calculate the power for each effect size
pow.vec <- c()
for(effect.size in possible.effect.sizes){
# calc power
pow <- bbd.power(params$alpha, params$beta, samp.size, Leff,
signif.level=signif.level, r=effect.size)
pow.vec <- c(pow.vec, pow)
}
# find the effect size
bbd.eff.size.min <- possible.effect.sizes[min(which(pow.vec>=desired.power))]
bbd.eff.size.max <- possible.effect.sizes[max(which(pow.vec<desired.power))+1]
# return result
result <- list(eff.size.min=bbd.eff.size.min, eff.size.max=bbd.eff.size.max,
power=pow.vec, eff.size=possible.effect.sizes)
return(result)
}
#' Calculates the effect size of a driver gene according to a binomial for which
#' there is sufficient power.
#'
#' Effect size is measures as the fraction of sample/patient cancers with a non-silent
#' mutation in a driver gene above the background mutation rate.
#'
#' @param possible.effect.sizes vector of effect sizes
#' @param desired.power A floating point number indicating desired power
#' @param mu Mutation rate per base
#' @param samp.size number of cancer samples in study
#' @param signif.level significance level for binomial test
#' @param Leff effective gene length of CDS in bases for an average gene
#' @return List containing the smallest effect size with sufficient power
binomPoweredEffectSize <- function(possible.effect.sizes, desired.power, mu, samp.size,
signif.level=5e-6, Leff=1500*3/4) {
# calculate the power for each effect size
pow.vec <- c()
for(effect.size in possible.effect.sizes){
pow <- binom.power(mu, samp.size, Leff,
signif.level=signif.level,
r=effect.size)
pow.vec <- c(pow.vec, pow)
}
# find the effect size
binom.eff.size.min <- possible.effect.sizes[min(which(pow.vec>=desired.power))]
binom.eff.size.max <- possible.effect.sizes[max(which(pow.vec<desired.power))+1]
# return result
result <- list(eff.size.min=binom.eff.size.min, eff.size.max=binom.eff.size.max,
power=pow.vec, eff.size=possible.effect.sizes)
return(result)
}
#############################
# Analyze power and false positives
# when using a beta-binomial model
#############################
bbdFullAnalysis <- function(mu, cv, Leff, signif.level, effect.size,
desired.power, samp.sizes){
# find the power and numer of samples needed for a desired power
powerResult <- bbdRequiredSampleSize(desired.power, mu, cv, samp.sizes,
effect.size, signif.level, Leff)
bbd.samp.size.min <- powerResult$samp.size.min
bbd.samp.size.max <- powerResult$samp.size.max
power.result.bbd <- powerResult$power
# get alpha and beta parameterization
# for beta-binomial
params <- rateCvToAlphaBeta(mu, cv)
# find expected number of false positives
fp.result <- binom.false.pos(params$alpha, params$beta, samp.sizes, Leff,
signif.level=signif.level)
# save binomial data
tmp.df <- data.frame(sample.size=samp.sizes)
tmp.df["Power"] <- power.result.bbd
tmp.df['sample min'] <- bbd.samp.size.min
tmp.df['sample max'] <- bbd.samp.size.max
tmp.df['CV'] <- cv
tmp.df['signif.level'] <- signif.level
tmp.df['effect.size'] <- effect.size
tmp.df['mutation.rate'] <- mu
tmp.df["FP"] <- fp.result
return(tmp.df)
}
binomFullAnalysis <- function(mu, Leff, signif.level, effect.size,
desired.power, samp.sizes){
# calculate power
power.result.binom <- binom.power(mu, samp.sizes, Leff,
signif.level=signif.level,
r=effect.size)
binom.samp.size.min <- samp.sizes[min(which(power.result.binom>=desired.power))]
binom.samp.size.max <- samp.sizes[max(which(power.result.binom<desired.power))+1]
# record all power measurements
tmp.df <- data.frame(sample.size=samp.sizes)
tmp.df["Power"] <- power.result.binom
tmp.df['sample min'] <- binom.samp.size.min
tmp.df['sample max'] <- binom.samp.size.max
tmp.df['CV'] <- 0
tmp.df['signif.level'] <- signif.level
tmp.df['effect.size'] <- effect.size
tmp.df['mutation.rate'] <- mu
tmp.df["FP"] <- NA
return(tmp.df)
}
#############################
# run the analysis
#############################
#' This function unpacks a vector x which contains many combinations of the mutation
#' rate, effect.size, and significance level. The purpose of this function is parallelized
#' code running over a list of parameters. If you are not parallelizing, then use the
#' runAnalysis function.
runAnalysisList <- function(x, samp.sizes,
desired.power=.9, Leff=1500*3/4,
possible.cvs=c()){
# unpack the parameters
mypi <- x[1]
myeffect.size <- x[2]
myalpha.level <- x[3]
# run analysis
result.df <- runAnalysis(mypi, myeffect.size, myalpha.level,
samp.sizes, desired.power, Leff, possible.cvs)
return(result.df)
}
#' Runs the entire power and false positive analysis pipeline.
runAnalysis <- function(pi, effect.size, signif.level,
samp.sizes, desired.power=.9,
Leff=1500*3/4, possible.cvs=c()){
# run beta-binomial model
result.df <- data.frame()
for (mycv in possible.cvs){
# calculate false positives and power
tmp.df <- bbdFullAnalysis(pi, mycv, Leff, signif.level, effect.size,
desired.power, samp.sizes)
result.df <- rbind(result.df, tmp.df)
}
# save binomial data
tmp.df <- binomFullAnalysis(pi, Leff, signif.level, effect.size, desired.power, samp.sizes)
result.df <- rbind(result.df, tmp.df)
return(result.df)
}
# Run as a script if arguments provided
if (!is.null(opt$ARGS)){
#############################
# define the model params
#############################
# long list of rates to be evaluated
rate <- c(.1e-6, .2e-6, .3e-6, .4e-6, .5e-6, .7e-6, .8e-6, 1e-6, 1.25e-6, 1.5e-6, 1.75e-6, 2e-6, 2.25e-6, 2.5e-6, 2.75e-6, 3e-6, 3.5e-6, 4e-6,
4.5e-6, 5e-6, 5.5e-6, 6e-6, 6.5e-6, 7e-6, 7.5e-6, 8e-6, 8.5e-6, 9e-6, 10e-6, 11e-6, 12e-6)
fg <- 3.9 # an adjustment factor that lawrence et al used for variable gene length
rate <- fg*rate # nominal rates are adjusted (will have to adjust back after analysis is done)
# model parameters
nonsilentFactor <- 3/4 # roughly the fraction
L <- 1500 # same length as used in lawrence et al. paper
Leff <- L * nonsilentFactor
desired.power <- .9 # aka 90% power
possible.cvs <- c(.05, .1, .2) # coefficient of variation for mutation rate per base
effect.sizes <- c(.01, .02, .05) # fraction of samples above background
alpha.levels <- c(1e-4, 5e-6) # level of significance
# setting up the sample sizes to check
N <- 25000
by.step <- 25
samp.sizes <- seq(by.step, N, by=by.step) # grid of sample sizes to check
##################################
# Loop through different params
##################################
param.list <- list()
counter <- 1
for (i in 1:length(rate)){
# loop over effect sizes
for (effect.size in effect.sizes){
# loop over alpha levels
for (alpha.level in alpha.levels){
param.list[[counter]] <- c(rate[i], effect.size, alpha.level)
counter <- counter + 1
}
}
}
############################
# run analysis
############################
result.list <- mclapply(param.list, runAnalysisList, mc.cores=opt$mcores,
samp.sizes=samp.sizes, desired.power=desired.power,
Leff=Leff, possible.cvs=possible.cvs)
result.df <- do.call("rbind", result.list)
# adjust mutation rates back to the average
result.df$mutation.rate <- result.df$mutation.rate / fg
# convert to factor
result.df$mutation.rate <- factor(result.df$mutation.rate, levels=unique(result.df$mutation.rate))
result.df$effect.size <- factor(result.df$effect.size, levels=unique(result.df$effect.size))
######################
# Save result to text file
######################
write.table(result.df, opt$output, sep='\t')
}