diff --git a/R/cancerSeqStudy.R b/R/cancerSeqStudy.R index 75ed6ef..c8b1102 100644 --- a/R/cancerSeqStudy.R +++ b/R/cancerSeqStudy.R @@ -69,11 +69,11 @@ binom.power <- function(my.mu, #' #' @param my.alpha alpha parameter for beta binomial #' @param my.beta beta parameter for beta binomial -#' @param N list of sample to calculate power for +#' @param N vector of # samples to calculate power for #' @param Leff effective gene length in bases #' @param num.genes number of genes that are tested #' @param r effect size for power analysis (fraction of samples above background) -#' @param alphaLevel : alpha level for power analysis +#' @param alphaLevel alpha level for power analysis binom.false.pos <- function(my.alpha, my.beta, N, Leff=1500*3/4, @@ -422,21 +422,25 @@ if (!is.null(opt$ARGS)){ ############################# # define the model params ############################# + # long list of rates to be evaluated rate <- c(.1e-6, .2e-6, .3e-6, .4e-6, .5e-6, .7e-6, .8e-6, 1e-6, 1.25e-6, 1.5e-6, 1.75e-6, 2e-6, 2.25e-6, 2.5e-6, 2.75e-6, 3e-6, 3.5e-6, 4e-6, 4.5e-6, 5e-6, 5.5e-6, 6e-6, 6.5e-6, 7e-6, 7.5e-6, 8e-6, 8.5e-6, 9e-6, 10e-6, 11e-6, 12e-6) fg <- 3.9 # an adjustment factor that lawrence et al used for variable gene length - rate <- fg*rate + rate <- fg*rate # nominal rates are adjusted (will have to adjust back after analysis is done) - nonsilentFactor <- 3/4 - L <- 1500 # same length as used in paper + # model parameters + nonsilentFactor <- 3/4 # roughly the fraction + L <- 1500 # same length as used in lawrence et al. paper Leff <- L * nonsilentFactor + desired.power <- .9 # aka 90% power + possible.cvs <- c(.05, .1, .2) # coefficient of variation for mutation rate per base + effect.sizes <- c(.01, .02, .05) # fraction of samples above background + alpha.levels <- c(1e-4, 5e-6) # level of significance + + # setting up the sample sizes to check N <- 25000 by.step <- 25 - samp.sizes <- seq(by.step, N, by=by.step) - desired.power <- .9 - possible.cvs <- c(.05, .1, .2) - effect.sizes <- c(.01, .02, .05) - alpha.levels <- c(1e-4, 5e-6) + samp.sizes <- seq(by.step, N, by=by.step) # grid of sample sizes to check ################################## # Loop through different params