-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMy_Simple_PPO_LSTM.py
368 lines (316 loc) · 16.4 KB
/
My_Simple_PPO_LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""
A simple version of Proximal Policy Optimization (PPO) using single thread.
Based on:
1. Emergence of Locomotion Behaviours in Rich Environments (Google Deepmind): [https://arxiv.org/abs/1707.02286]
2. Proximal Policy Optimization Algorithms (OpenAI): [https://arxiv.org/abs/1707.06347]
View more on my tutorial website: https://morvanzhou.github.io/tutorials
Dependencies:
tensorflow r1.2
gym 0.9.2
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gym
import os
import gym_compete
EP_MAX = 1
EP_LEN = 64
GAMMA = 0.9
A_LR = 0.0001
C_LR = 0.0002
BATCH = 32
A_UPDATE_STEPS = 10
C_UPDATE_STEPS = 10
S_DIM, A_DIM = 137, 8
METHOD = [
dict(name='kl_pen', kl_target=0.01, lam=0.5), # KL penalty
dict(name='clip', epsilon=0.2), # Clipped surrogate objective, find this is better
][1] # choose the method for optimization
class RunningMeanStd(object):
def __init__(self, scope= "running", reuse=False, epsilon=1e-2, shape=()):
with tf.variable_scope(scope, reuse=reuse):
self._sum = tf.get_variable(
dtype=tf.float32,
shape=shape,
initializer=tf.constant_initializer(0.0),
name="sum", trainable=False)
self._sumsq = tf.get_variable(
dtype=tf.float32,
shape=shape,
initializer=tf.constant_initializer(epsilon),
name="sumsq", trainable=False)
self._count = tf.get_variable(
dtype=tf.float32,
shape=(),
initializer=tf.constant_initializer(epsilon),
name="count", trainable=False)
self.shape = shape
self.mean = tf.to_float(self._sum / self._count)
var_est = tf.to_float(self._sumsq / self._count) - tf.square(self.mean)
self.std = tf.sqrt(tf.maximum(var_est, 1e-2))
class DiagonalGaussian(object):
def __init__(self, mean, logstd):
self.mean = mean
self.logstd = logstd
self.std = tf.exp(logstd)
def sample(self):
return self.mean + self.std * tf.random_normal(tf.shape(self.mean))
def mode(self):
return self.mean
class PPO(object):
def __init__(self, scope):
with tf.variable_scope(scope):
self.sess = tf.Session()
ob_shape = (137,) # it's a tuple of one element
ac_space = (8,) # it is a tuple of one element
hiddens = [128, 128]
self.tfs = tf.placeholder(tf.float32, [None, None] + list(ob_shape), 'observation')
self.taken_action_ph = tf.placeholder(dtype=tf.float32, shape=[None, None, ac_space[0]],name="taken_action")
#first try to normalize the the observation
self.ret_rms = RunningMeanStd(scope = "retfilter")
self.ob_rms = RunningMeanStd(shape = ob_shape, scope="obsfilter")
obz = tf.clip_by_value((self.tfs - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
self.zero_state = []
self.state_in_ph = []
self.state_out = []
# critic
with tf.variable_scope('critic'):
last_out = obz
for hidden in hiddens[:-1]:
last_out = tf.contrib.layers.fully_connected(last_out, hidden)
cell = tf.contrib.rnn.BasicLSTMCell(hiddens[-1], reuse=False)
size = cell.state_size
self.zero_state.append(np.zeros(size.c, dtype=np.float32))
self.zero_state.append(np.zeros(size.h, dtype=np.float32))
self.state_in_ph.append(tf.placeholder(tf.float32, [None, size.c], name="lstmv_c"))
self.state_in_ph.append(tf.placeholder(tf.float32, [None, size.h], name="lstmv_h"))
initial_state = tf.contrib.rnn.LSTMStateTuple(self.state_in_ph[-2], self.state_in_ph[-1])
last_out, state_out = tf.nn.dynamic_rnn(cell, last_out, initial_state=initial_state, scope="lstmv")
self.state_out.append(state_out)
self.vpredz = tf.contrib.layers.fully_connected(last_out, 1, activation_fn=None)[:, :, 0]
self.v = self.vpredz * self.ret_rms.std + self.ret_rms.mean # raw = not standardized
# l1 = tf.layers.dense(self.tfs, 100, tf.nn.relu)
# self.v = tf.layers.dense(l1, 1)
#
self.tfdc_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r')
self.advantage = self.tfdc_r - self.v
self.closs = tf.reduce_mean(tf.square(self.advantage))
self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs)
# actor
pi,pi_norm, pi_params = self._build_anet('pi', trainable=True)
oldpi, oldpi_normal, oldpi_params = self._build_anet('oldpi', trainable=False)
with tf.variable_scope('sample_action'):
self.sample_op = tf.squeeze(pi, axis=0) # choosing action
with tf.variable_scope('update_oldpi'):
self.update_oldpi_op = [oldp.assign(p) for p, oldp in zip(pi_params, oldpi_params)]
self.tfa = tf.placeholder(tf.float32, [None, A_DIM], 'action')
self.tfadv = tf.placeholder(tf.float32, [None, 1], 'advantage')
with tf.variable_scope('loss'):
with tf.variable_scope('surrogate'):
# ratio = tf.exp(pi.log_prob(self.tfa) - oldpi.log_prob(self.tfa))
# ratio = tf.distributions.Normal.prob(self.tfa) / tf.distributions.Normal.prob(self.tfa)
ratio = pi_norm.prob(self.tfa) / oldpi_normal.prob(self.tfa)
surr = ratio * self.tfadv
if METHOD['name'] == 'kl_pen':
self.tflam = tf.placeholder(tf.float32, None, 'lambda')
kl = tf.distributions.kl_divergence(oldpi, pi)
self.kl_mean = tf.reduce_mean(kl)
self.aloss = -(tf.reduce_mean(surr - self.tflam * kl))
else: # clipping method, find this is better
self.aloss = -tf.reduce_mean(tf.minimum(
surr,
tf.clip_by_value(ratio, 1.-METHOD['epsilon'], 1.+METHOD['epsilon'])*self.tfadv))
with tf.variable_scope('atrain'):
self.atrain_op = tf.train.AdamOptimizer(A_LR).minimize(self.aloss)
tf.summary.FileWriter("log/", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
def update(self, s, a, r):
self.sess.run(self.update_oldpi_op)
adv = self.sess.run(self.advantage, {self.tfs: s[None, None], self.tfdc_r: r})
# adv = (adv - adv.mean())/(adv.std()+1e-6) # sometimes helpful
# update actor
if METHOD['name'] == 'kl_pen':
for _ in range(A_UPDATE_STEPS):
_, kl = self.sess.run(
[self.atrain_op, self.kl_mean],
{self.tfs: s[None], self.tfa: a, self.tfadv: adv, self.tflam: METHOD['lam']})
if kl > 4*METHOD['kl_target']: # this in in google's paper
break
if kl < METHOD['kl_target'] / 1.5: # adaptive lambda, this is in OpenAI's paper
METHOD['lam'] /= 2
elif kl > METHOD['kl_target'] * 1.5:
METHOD['lam'] *= 2
METHOD['lam'] = np.clip(METHOD['lam'], 1e-4, 10) # some time explode, this is my method
else: # clipping method, find this is better (OpenAI's paper)
[self.sess.run(self.atrain_op, {self.tfs: s[None], self.tfa: a, self.tfadv: adv}) for _ in range(A_UPDATE_STEPS)]
# update critic
[self.sess.run(self.ctrain_op, {self.tfs: s[None], self.tfdc_r: r}) for _ in range(C_UPDATE_STEPS)]
def _build_anet(self, name, trainable):
with tf.variable_scope(name):
hiddens = [128, 128]
obz = tf.clip_by_value((self.tfs - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
last_out = obz
for hidden in hiddens[:-1]:
last_out = tf.contrib.layers.fully_connected(last_out, hidden)
cell = tf.contrib.rnn.BasicLSTMCell(hiddens[-1], reuse=False)
size = cell.state_size
self.zero_state.append(np.zeros(size.c, dtype=np.float32))
self.zero_state.append(np.zeros(size.h, dtype=np.float32))
# self.zero_state = np.concatenate(self.zero_state, np.zeros(size.c, dtype=np.float32))
# self.zero_state = np.concatenate(self.zero_state, np.zeros(size.h, dtype=np.float32))
self.state_in_ph.append(tf.placeholder(tf.float32, [None, size.c], name="lstmp_c"))
self.state_in_ph.append(tf.placeholder(tf.float32, [None, size.h], name="lstmp_h"))
initial_state = tf.contrib.rnn.LSTMStateTuple(self.state_in_ph[-2], self.state_in_ph[-1])
# print("type of last_out is",type(last_out))
# print("last_out is ", last_out)
last_out, state_out = tf.nn.dynamic_rnn(cell, last_out, initial_state=initial_state, scope="lstmp")
self.state_out.append(state_out)
self.mean = tf.contrib.layers.fully_connected(last_out, A_DIM, activation_fn=None)
self.logstd = tf.get_variable(name="logstd", shape=A_DIM, initializer=tf.zeros_initializer())
# print("in the policy network, the mean and logstd is {} {}".format(mean, logstd))
pd = DiagonalGaussian(self.mean, self.logstd)
# print("in the policy network, the output pd is {}".format(self.pd))
# def switch(condition, if_exp, else_exp):
# if stochastic is true then return sampled pd else return pd.mode()
# first cast stochastic_ph to a bool value if it is true then sampled_action is pd.sample
# else sampled_aciton is pd.mode
# self.sampled_action = switch(self.stochastic_ph, self.pd.sample(), self.pd.mode())
sampled_action = pd.mean + pd.std * tf.random_normal(tf.shape(pd.mean))
# to make it consistent with the original code
norm_dist = tf.distributions.Normal(loc=self.mean, scale=self.logstd)
# l1 = tf.layers.dense(self.tfs, 100, tf.nn.relu, trainable=trainable)
# mu = 2 * tf.layers.dense(l1, A_DIM, tf.nn.tanh, trainable=trainable)
# sigma = tf.layers.dense(l1, A_DIM, tf.nn.softplus, trainable=trainable)
# norm_dist = tf.distributions.Normal(loc=mu, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
self.zero_state = np.array(self.zero_state)
self.state_in_ph = tuple(self.state_in_ph)
self.state = self.zero_state
return sampled_action, norm_dist, params
def choose_action(self, s):
outputs = [self.sample_op, self.state_out]
a, s = tf.get_default_session().run(outputs, {
self.tfs: s[None, None],
self.state_in_ph: list(self.state[:, None, :])
})
self.state = []
for x in s:
self.state.append(x.c[0])
self.state.append(x.h[0])
self.state = np.array(self.state)
# s = s[np.newaxis, :]
# a = self.sess.run(self.sample_op, {self.tfs: s[None], self.state_in_ph: list(self.state[:, None,:])})
# self.state = []
# for x in
# return np.clip(a, -2, 2)
return a
def get_v(self, s):
if s.ndim < 2: s = s[np.newaxis, :]
return self.sess.run(self.v, {self.tfs: s})[0, 0]
env = gym.make("sumo-ants-v0").unwrapped
len1 = len(env.agents)
ppo = []
for i in range(len1):
scope = "agent" + str(i)
ppo.append(PPO(scope))
all_ep_r = [[] for i in range(len1)]
for ep in range(EP_MAX):
# in the environment of "ante-sumo" s of environment produced is a tuple of two ob arrays
# remember s is a tuple
s = env.reset()
buffer_s, buffer_a, buffer_r = [[] for i in range(len1)], [[] for i in range(len1)], [[] for i in range(len1)]
ep_r = [0.0 for i in range(len1)]
for t in range(EP_LEN): # in one episode
# env.render()
# a is the action for one step of two agents
a = [ppo[i].choose_action(s[i]) for i in range(len1)]
print("the action value for the two agents are {} and {} respectively".format(a[0], a[1]))
# now in the environment of "ant-sumo", all the returned info is tuple
# in order to feed the step function, 'a' should be tuple type so
# just save a in a temple tuple variable a2tuple
a2tuple = tuple(a)
# the returned state info s_, rewared r, done info done are all tuple of two
s_, r, done, info = env.step(a2tuple)
for i in range(len1):
buffer_s[i].append(s[i])
buffer_a[i].append(a[i])
# exploration_reward = r[i][0] * (1-t * 0.002)
# if t == EP_LEN -1:
# competition_reward = r[i][1] * t * 0.002
# else :
# competition_reward = 0
# r[i] = exploration_reward + competition_reward
# center_reward = info['reward_center']
# ctrl_cost = info['reward_ctrl']
# contact_cost = info['reward_contact']
# survive = info['reward_survive']
exploration_reward = info[i]['reward_move'] * (1 - t*0.002)
competition_reward = info[i]['reward_remaining'] * t * 0.002
rewrd= exploration_reward + competition_reward
# buffer_r[i].append((rewrd+8)/8) # normalize reward, find to be useful
ep_r[i] += rewrd
print("At step {} in episode {} reward for two agents are {} and {} respectively".format(t, ep, ep_r[0], ep_r[1]))
s = s_
# update ppo
v_s_ = [0.0 for i in range(len1)]
discounted_r = [[] for i in range(len1)]
# bs, ba, br = [np.zeros(3,1) for i in range(len1)], [np.zeros(3,1) for i in range(len1)],[np.zeros(3,1) for i in range(len1)]
if (t+1) % BATCH == 0 or t == EP_LEN-1:
# print(s)
for i in range(len1):
v_s_[i] = ppo[i].get_v(s_[i])
discounted_r[i] = []
# note: a[::-1] return the reversed array a
# but a[:-1] return the array a but the last element of a
for r in buffer_r[i][::-1]:
# r is the returned reward by the environment through env.step
v_s_[i] = r + GAMMA * v_s_[i]
discounted_r[i].append(v_s_[i])
discounted_r[i].reverse()
#Stack arrays in sequence vertically (row wise).
# Take a sequence of arrays and stack them vertically
# to make a single array. Rebuild arrays divided by vsplit.
#TODO: before this step, first normalize the input state to (-5.0,5.0) as follows:
#obz = self.observation_ph
# if self.normalized:
# obz = tf.clip_by_value((self.observation_ph - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
bs, ba, br= np.vstack(buffer_s[i]), np.vstack(buffer_a[i]), np.array(discounted_r[i])[:, np.newaxis]
# buffer_s, buffer_a, buffer_r = [[] for i in range(len1)], [[] for i in range(len1)], [[] for i in range(len1)]
bs = (bs - np.mean(bs)) / (np.std(bs))
# bs = np.clip(bs, -5.0, 5.0)
buffer_s[i], buffer_a[i], buffer_r[i] = [], [], []
# for i in range(len1):
ppo[i].update(bs, ba, br)
if ep == 0:
for i in range(len1):
all_ep_r[i].append(ep_r[i])
print(all_ep_r[i])
else:
for i in range(len1):
print(all_ep_r[i][-1])
all_ep_r[i].append(all_ep_r[i][-1]*0.9 + ep_r[i]*0.1)
print(all_ep_r[i])
print(all_ep_r)
print(
'Ep: %i' % ep,
"|Ep_r_0: %f" % ep_r[0],
"|Ep-r_1: %f" % ep_r[1],
("|Lam: %.4f" % METHOD['lam']) if METHOD['name'] == 'kl_pen' else '',
)
# for xe, ye in zip(np.arange(len(all_ep_r[0])), all_ep_r):
# plt.scatter([xe] * len(ye), ye)
#
# plt.xticks([1,2])
# plt.axes().set_xticklabels(['agent0', 'agent1'])
# plt.savefig('train-multiagent1.png')
plt.subplot(1,2,1)
plt.plot(np.arange(len(all_ep_r[0])), all_ep_r[0])
plt.xlabel('Episode');
plt.ylabel('Moving averaged episode reward for agent0');
plt.subplot(1,2,2)
plt.plot(np.arange(len(all_ep_r[1])), all_ep_r[1])
plt.xlabel('Episode');
plt.ylabel('Moving averaged episode reward for agent0');
plt.show()
plt.close()