-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
42 lines (30 loc) · 1.07 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
# from bidict import bidict
from flask import (
Flask, render_template, request,
redirect, url_for, session
)
from random import choice
from tensorflow import keras
LABELS = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'a', 'b', 'd', 'e', 'f', 'g', 'h', 'n', 'q', 'r', 't']
app = Flask(__name__)
@app.route("/")
def index():
return render_template("index.html")
@app.route("/", methods=['POST'])
def practice_post():
# print(request.form)
pixels = request.form['pixels']
# print(pixels)
# print(pixels.shape())
pixels = pixels.split(',')
img = np.array(pixels).astype(float).reshape(1, 784)
# img=img.reshape(784)
model = keras.models.load_model('hcr_related\hcr3.h5')
pred_letter = model.predict(img)
letter = str(LABELS[np.argmax(pred_letter)])
return render_template("index.html", letter=letter)
if __name__ == "__main__":
app.run(debug=True)