-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
172 lines (150 loc) · 5.97 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import base64
import io
import os
import PIL
from flask import (
Flask, flash, render_template, request, send_file
)
import numpy as np
import logging
import cv2
import tensorflow as tf
from PIL import Image
outputname="pred_letter.jpeg"
size=[]
garrey=[]
ogname=[]
ogsize=[]
# logging
logging.basicConfig(level=logging.DEBUG, filename="log.log",
filemode="a", format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
app = Flask(__name__)
@app.route("/")
def index():
app.logger.info('Index.html page working')
return render_template("index.html")
@app.route("/about.html")
def about():
app.logger.info('about.html page working')
return render_template("about.html")
@app.route("/project.html")
def project():
app.logger.info('project.html page working')
return render_template("project.html")
@app.route('/project.html', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
filename="input.jpeg"
f = request.files['file']
app.logger.info('Input image uploaded')
garrey.append(filename)
f.save(filename)
resizeinbox(filename)
app.logger.info('resizeinbox() is done on input image')
img = Image.open(filename)
data = io.BytesIO()
img.save(data, "JPEG")
encode_img_data = base64.b64encode(data.getvalue())
return render_template('project.html', filename=encode_img_data.decode("UTF-8"))
@app.route('/transform', methods=['GET', 'POST'])
def transform():
try:
filename=garrey.pop()
if filename:
app.logger.info('Input image shown into input box')
img = Image.open(filename)
data = io.BytesIO()
img.save(data, "JPEG")
encode_img_data = base64.b64encode(data.getvalue())
image = cv2.imread(filename, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (256, 256))
img2 = (image-127.5)/127.5
img = np.reshape(img2, (-1, 256, 256, 3))
app.logger.info('input image is normalize as per model requirements')
loaded_styled_generator = tf.keras.models.load_model(
'C:\\Users\\PARTH\\Desktop\\saved_model\\styled_generator')#give local model path
app.logger.info('prediction of image done')
pred_letter = loaded_styled_generator(img, training=False)[0].numpy()
pred_letter = (pred_letter*127.5 + 127.5).astype(np.uint8)
width=size.pop()
height=size.pop()
pred_letter = cv2.resize(pred_letter,(width,height))
app.logger.info('resize predicted iamage as per the input iamge size')
cv2.imwrite(outputname, pred_letter)
img2 = Image.open(outputname)
data = io.BytesIO()
img2.save(data, "JPEG")
app.logger.info('Predicted image going to output box')
encode_img_data2 = base64.b64encode(data.getvalue())
return render_template('project.html', filename=encode_img_data.decode(("UTF-8")), outputname=encode_img_data2.decode("UTF-8"))
else:
flash('upload image or capture newone before proceeding','error')
print('else')
except:
app.logger.critical('transform function failed')
flash('upload image or capture newone before proceeding','error')
@app.route('/download')
def download_file():
ogheight=ogsize.pop()
ogwidth=ogsize.pop()
# tempimg=cv2.imread(outputname,cv2.COLOR_BGR2RGB)
# tempimg= cv2.resize(tempimg,(ogwidth,ogheight))
# cv2.imwrite(outputname, tempimg)
path = "pred_letter.jpeg"
return send_file(path, as_attachment=True)
@app.route('/capture', methods=['GET','POST'])
def capture():
if request.method == 'POST':
filename="input.jpeg"
img_data = request.files['img'].read()
nparr = np.frombuffer(img_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
cv2.imwrite(filename,img)
garrey.append(filename)
# Process the captured image here
app.logger.info('Input image caputred')
resizeinbox(filename)
app.logger.info('resizeinbox() is done on input image')
img = Image.open(filename)
data = io.BytesIO()
img.save(data, "JPEG")
app.logger.info('save2')
encode_img_data = base64.b64encode(data.getvalue())
app.logger.info('encoded')
return render_template('project.html', filename=encode_img_data.decode("UTF-8"))
def resizeinbox(filename):
fixed_size = 400
image = Image.open(filename)
if float(image.size[1])<400 and float(image.size[0])<400:
size.append(image.size[0])
size.append(image.size[1])
app.logger.info('given image dim < 400')
elif float(image.size[1])>float(image.size[0]):
ogsize.append(image.size[0])
ogsize.append(image.size[1])
height_percent = (fixed_size / float(image.size[1]))
width_size = int((float(image.size[0]) * float(height_percent)))
image = image.resize((width_size, fixed_size), PIL.Image.NEAREST)
image.save(filename)
size.append(fixed_size)
size.append(width_size)
app.logger.info('given image is potrait')
else:
ogsize.append(image.size[0])
ogsize.append(image.size[1])
height_percent = (fixed_size / float(image.size[0]))
width_size = int((float(image.size[1]) * float(height_percent)))
image = image.resize((fixed_size, width_size), PIL.Image.NEAREST)
image.save(filename)
size.append(width_size)
size.append(fixed_size)
app.logger.info('given image is landscape')
app.logger.info('given image gone through resizeinbox()')
if __name__ == "__main__":
app.secret_key='super secret key'
app.config['SESSION_TYPE']='filesystem'
port = int(os.environ.get('PORT',5000))
app.run(host='0.0.0.0', port=port)