-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathinfer_seq2seq_common.py
64 lines (48 loc) · 2.02 KB
/
infer_seq2seq_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#-*- coding:utf-8 -*-
# author:chenmeng
# datetime:2019/2/15 16:34
# software: PyCharm
import tensorflow as tf
import thulac
from model_seq2seq_common import seq2seq
from run_seq2seq_common import word_to_id, Config
thul = thulac.thulac(seg_only=True)
source_dir = './data_mt/source.txt'
target_dir = './data_mt/target.txt'
source_vocab_dir = './data_mt/source_vocab.txt'
target_vocab_dir = './data_mt/target_vocab.txt'
model_path = './checkpoint/common/model.ckpt'
if __name__ == '__main__':
print('load data...')
source_word2id, source_id2word = word_to_id(source_vocab_dir)
target_word2id, target_id2word = word_to_id(target_vocab_dir)
print('build model...')
config = Config()
model = seq2seq(config, source_word2id, tearcherForcing=False, attention=True, beamSearch=3)
print('run model...')
max_source_length = 50
max_target_length = 50
with tf.Session() as sess:
saver = tf.train.Saver()
saver.restore(sess, model_path)
source_raw = '经济、社会和环境方面的发展、人居议程、森林、能源、水和卫生设施'
source_cut = thul.cut(source_raw, text=True)
source_id = [source_word2id[word] for word in source_cut.split(' ') if word in source_word2id]
source_len = [len(source_id)]
source, target = [], []
if source_len[0] >= max_source_length:
source.append(source_id[0:max_source_length])
else:
source.append(source_id + [source_word2id["_PAD"]] * (max_source_length - source_len[0]))
target_len = [max_target_length]
target = [[0]*max_target_length]
feed_dict = {
model.batch_size: len(source),
model.seq_inputs: source,
model.seq_inputs_length: source_len,
model.seq_targets: target,
model.seq_targets_length: target_len
}
predict = sess.run(model.out, feed_dict)
print('in:', source_raw)
print('out:', [target_id2word[i] for i in predict[0] if target_id2word[i] != '_PAD'])