-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInitial.py
174 lines (135 loc) · 4.98 KB
/
Initial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
df = pd.read_csv('/home/hossein/Downloads/avocado_datasets/avocado_l4.csv', sep=";")
df['KilosEntrados'] = df['KilosEntrados'].clip(lower=0)
# selected_features = ['KilosEntrados', 'FechaRecepcion']+ E.tolist()
# # selected_features = ['KilosEntrados', 'FechaRecepcion']+ E
# data3=df[selected_features]
data3=df
data3.index = pd.to_datetime(data3['FechaRecepcion'])
data3.drop(columns='FechaRecepcion',inplace=True)
df_train = data3[:-12]
df_test = data3[-12:]
df_train=df_train.reset_index()
df_test=df_test.reset_index()
df_train.drop(columns='FechaRecepcion',inplace=True)
df_test.drop(columns='FechaRecepcion',inplace=True)
def sarimax_evaluate_models(df1,df2, configs):
"""
Evaluates all possible SARIMAX parameters.
Returns the best parameter selection.
"""
best_cfg = None
best_score=-100000
for config in configs:
p, d, q, P_value, D_value, Q_value, seasonality = config
order = (p, d, q)
s_order = (P_value, D_value, Q_value, seasonality)
try:
r2 = evaluate_sarimax_model_r2(df1,df2, order, s_order)
print("Configuration: ", config, " has r2 of: ", r2)
if r2 > best_score:
best_score, best_cfg = r2, [order, s_order]
except Exception as err:
print(f"SARIMAX config {config} has raised an error.")
print(err)
continue
return best_cfg
def evaluate_sarimax_model_r2(df1, df2, order, s_order):
"""
Evaluates the SARIMAX model given certain parameters using R2.
Returns the R2 score as a float value
"""
try:
model = SARIMAX(
endog=df1["KilosEntrados"],
exog=df1.drop(["KilosEntrados"], axis=1),
# endog=df1.iloc[:,df1.shape[1]-1],
# exog=df1.iloc[:,0:df1.shape[1]-1],
order=order,
seasonal_order=s_order,
enforce_invertibility=False,
enforce_stationarity=False,
)
results = model.fit(disp=False)
pred_uc = results.get_forecast(
exog=df2.drop(["KilosEntrados"], axis=1), steps=12
)
# pred_uc = results.get_forecast(
# exog=df2.iloc[:,0:df2.shape[1]-1], steps=12
# )
return r2_score(df2["KilosEntrados"].values, pred_uc.predicted_mean)
# return r2_score(df2.iloc[:,df2.shape[1]-1], pred_uc.predicted_mean)
except Exception as err:
print(err)
return float("inf")
def sarimax_configs(seasonality: int = 12):
"""
Method to get all posible parameter configurations for Grid Search.
Returns a list of tuples with parameters
"""
p_params = [0, 1, 2]
d_params = [1]
q_params = [0, 1, 2]
P_params = [0, 1, 2]
D_params = [1]
Q_params = [0, 1, 2]
configs = product(
p_params, d_params, q_params, P_params, D_params, Q_params, [seasonality]
)
return configs
from itertools import product
import time
# search space for the grid search: all possible configurations
from statsmodels.tsa.statespace.sarimax import SARIMAX
configs=sarimax_configs()
# grid search
t0=time.time()
best_cfg = sarimax_evaluate_models(df_train,df_test, configs)
t1=time.time()
print(t1-t0)
def sarimax_fit(df, config):
"""
Method to train SARIMA given data and its parameters.
Returns the fitted model.
"""
order, sorder = config
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
model = SARIMAX(
endog=df["KilosEntrados"],
# endog=df.iloc[:,df.shape[1]-1],
exog=df.drop(["KilosEntrados"], axis=1),
# exog=df.iloc[:,0:df.shape[1]-1]
order=order,
seasonal_order=sorder,
enforce_stationarity=False,
enforce_invertibility=False,
)
fit_model = model.fit(disp=False)
return fit_model
import warnings
warnings.filterwarnings("ignore")
warnings.simplefilter("ignore")
results = sarimax_fit(df_train, best_cfg)
forecast=results.get_forecast(exog=df_test.drop(["KilosEntrados"], axis=1),steps=12)
forecasted_values = forecast.predicted_mean
ax = df_test["KilosEntrados"].plot(label="Real values")
forecasted_values.plot(
ax=ax, label="Predicted values", alpha=0.7, figsize=(14, 7)
)
ax.set_xlabel("Date")
ax.set_ylabel("Kilos")
plt.legend()
plt.show()
import math
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
def theil_index(y, y_est):
n = len(y)
num = math.sqrt(np.sum(np.power(y - y_est, 2)) / n)
den1 = math.sqrt(np.sum(np.power(y, 2)) / n)
den2 = math.sqrt(np.sum(np.power(y_est, 2)) / n)
return num / (den1 + den2)
mae_sarimax = round(mean_absolute_error(df_test["KilosEntrados"].values, forecasted_values))
rmse_sarimax = round(math.sqrt(mean_squared_error(df_test["KilosEntrados"].values, forecasted_values)))
r2_sarimax = round(r2_score(df_test["KilosEntrados"].values, forecasted_values),2)
theil_sarimax = (theil_index(df_test["KilosEntrados"].values, forecasted_values))