forked from dmMaze/comic-text-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseg_dataset.py
253 lines (224 loc) · 10.4 KB
/
seg_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import glob
import os
import os.path as osp
import random
from itertools import repeat
from multiprocessing.pool import Pool, ThreadPool
from pathlib import Path
from threading import Thread
from zipfile import ZipFile
import cv2
import numpy as np
from numpy.lib.npyio import load
from numpy.random import rand
import torch
import torch.nn.functional as F
from torch.utils import data
from torchvision.transforms.transforms import Compose
from torch.utils.data import Dataset
from tqdm import tqdm
from pathlib import Path
from tqdm import tqdm
from torchvision import transforms
import random
from torch.utils.data import DataLoader, Dataset
from utils.general import LOGGER, Loggers, CUDA, DEVICE
from utils.imgproc_utils import resize_keepasp, letterbox
from utils.io_utils import imread, imwrite
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) # DPP
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of multiprocessing threads
IMG_EXT = ['.bmp', '.jpg', '.png', '.jpeg']
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
# HSV color-space augmentation
if hgain or sgain or vgain:
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
dtype = im.dtype # uint8
x = np.arange(0, 256, dtype=r.dtype)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
def load_image_mask(self, i, max_size=None):
# loads 1 image from dataset index 'i', returns im, original hw, resized hw
img, mask = self.imgs[i], self.masks[i]
imp, maskp = self.img_mask_list[i]
if img is None:
img = cv2.imread(imp)
if mask is None:
mask = cv2.imread(maskp, cv2.IMREAD_GRAYSCALE)
if max_size is not None:
if isinstance(max_size, tuple):
max_size = max_size[0]
try:
img = resize_keepasp(img, max_size)
mask = resize_keepasp(mask, max_size, interpolation=cv2.INTER_AREA)
except:
pass
return img, mask
def mini_mosaic(self, img, mask):
im_h, im_w = img.shape[0], img.shape[1]
idx = random.randint(0, len(self)-1)
img2, mask2 = load_image_mask(self, idx, self.img_size)
img2_h, img2_w = img2.shape[0], img2.shape[1]
ratio = img2_h / im_h
if img2_h > img2_w and ratio > 0.4 and ratio < 1.6:
im_h = max(im_h, img2_h)
im_w = im_w + img2_w
im_tmp = np.zeros((im_h, im_w, 3), np.uint8)
im_tmp[:img.shape[0], :img.shape[1]] = img
im_tmp[:img2_h, img.shape[1]:] = img2
mask_tmp = np.zeros((im_h, im_w), np.uint8)
mask_tmp[:img.shape[0], :img.shape[1]] = mask
mask_tmp[:img2_h, img.shape[1]:] = mask2
img = np.ascontiguousarray(im_tmp)
mask = np.ascontiguousarray(mask_tmp)
return img, mask
class LoadImageAndMask(Dataset):
def __init__(self, img_dir, mask_dir=None, img_size=640, augment=False, aug_param=None, cache=False, stride=128, cache_mask_only=True):
if isinstance(img_dir, str):
self.img_dir = [img_dir]
elif isinstance(img_dir, list):
self.img_dir = img_dir
else:
raise Exception('unknown img_dir format')
if mask_dir is None or mask_dir == '':
self.mask_dir = self.img_dir
else:
if isinstance(mask_dir, str):
self.mask_dir = [mask_dir]
elif isinstance(mask_dir, list):
self.mask_dir = mask_dir
self.img_mask_list = []
self.img_size = (img_size, img_size)
self.stride = stride
self._augment = augment
if self._augment:
self._mini_mosaic = aug_param['mini_mosaic']
self._augment_hsv = aug_param['hsv']
self._flip_lr = aug_param['flip_lr']
self._neg = aug_param['neg']
size_range = aug_param['size_range']
if size_range[0] != -1:
min_size = round(img_size * size_range[0] / stride ) * stride
max_size = round(img_size * size_range[1] / stride ) * stride
self.valid_size = np.arange(min_size, max_size+1, stride)
self.multi_size = True
else:
self.valid_size = None
self.multi_size = False
for img_dir in self.img_dir:
for filep in glob.glob(osp.join(img_dir, "*")):
filename = osp.basename(filep)
file_suffix = Path(filename).suffix
if file_suffix.lower() not in IMG_EXT:
continue
maskname = 'mask-' + filename.replace(file_suffix, '.png')
for mask_dir in self.mask_dir:
maskp = osp.join(mask_dir, maskname)
if osp.exists(maskp):
self.img_mask_list.append((filep, maskp))
self._img_transform = transforms.Compose([transforms.ToTensor()])
self._mask_transform = transforms.Compose([transforms.ToTensor()])
n = len(self.img_mask_list)
self.imgs, self.masks = [None] * n, [None] * n
gb = 0
if cache:
results = ThreadPool(NUM_THREADS).imap(lambda x: load_image_mask(*x, max_size=img_size), zip(repeat(self), range(n)))
pbar = tqdm(enumerate(results), total=n)
for i, x in pbar:
im, self.masks[i] = x # im, hw_orig, hw_resized = load_image_mask(self, i)
if not cache_mask_only:
self.imgs[i] = im
gb += self.imgs[i].nbytes
gb += self.masks[i].nbytes
if gb / 1E9 > 7:
break
pbar.desc = f'Caching images ({gb / 1E9:.1f}GB )'
pbar.close()
def initialize(self):
if self.augment:
if self.multi_size:
self.img_size = random.choice(self.valid_size)
def transform(self, img, mask):
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
img = img.astype(np.float32) / 255
mask = (mask > 30).astype(np.float32)
# mask = mask / 255
img = self._img_transform(img)
mask = self._mask_transform(mask)
return img, mask
def augment(self, img, mask):
im_h, im_w = img.shape[0], img.shape[1]
if im_h > im_w and random.random() < self._mini_mosaic:
# imp2, maskp2 = random.choice(self.img_mask_list)
img, mask = mini_mosaic(self, img, mask)
img, ratio, (dw, dh) = letterbox(img, new_shape=self.img_size, auto=False)
mask, ratio, (dw, dh) = letterbox(mask, new_shape=self.img_size, auto=False)
if random.random() < self._augment_hsv:
augment_hsv(img)
if random.random() < self._flip_lr:
cv2.flip(img, 1, img)
cv2.flip(mask, 1, mask)
if random.random() < self._neg:
img = 255 - img
return img, mask
def inverse_transform(self, img: torch.Tensor):
img = img.permute(1, 2, 0)
img = img * 255
img = img.cpu().numpy().astype(np.uint8)
return img
def __len__(self):
return len(self.img_mask_list)
def __getitem__(self, idx):
img, mask = load_image_mask(self, idx, self.img_size)
if self._augment:
img, mask = self.augment(img, mask)
else:
img, ratio, (dw, dh) = letterbox(img, new_shape=self.img_size, auto=False)
mask, ratio, (dw, dh) = letterbox(mask, new_shape=self.img_size, auto=False)
return self.transform(img, mask)
def create_dataloader(img_dir, mask_dir, imgsz, batch_size, augment=False, aug_param=None, cache=False, workers=8, shuffle=False):
dataset = LoadImageAndMask(img_dir, mask_dir, imgsz, augment, aug_param, cache)
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count() // WORLD_SIZE, batch_size if batch_size > 1 else 0, workers]) # number of workers
loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, pin_memory=True, num_workers=nw)
return dataset, loader
if __name__ == '__main__':
random.seed(42)
torch.random.manual_seed(42)
np.random.seed(42)
import yaml
hyp_p = r'data/train_hyp.yaml'
with open(hyp_p, 'r', encoding='utf8') as f:
hyp = yaml.safe_load(f.read())
hyp['data']['train_img_dir'] = [r'D:/neonbub/datasets/codat_manga_v3/images/train', r'D:/neonbub/datasets/ComicErased/processed']
hyp['data']['val_img_dir'] = [r'D:/neonbub/datasets/codat_manga_v3/images/val']
hyp['data']['train_mask_dir'] = r'D:/neonbub/datasets/ComicSegV2'
hyp['data']['val_mask_dir'] = r'D:/neonbub/datasets/ComicSegV2'
hyp['data']['cache'] = False
hyp_train, hyp_data, hyp_model, hyp_logger, hyp_resume = hyp['train'], hyp['data'], hyp['model'], hyp['logger'], hyp['resume']
batch_size = hyp_train['batch_size']
batch_size = 4
num_workers = 2
train_img_dir, train_mask_dir, imgsz, augment, aug_param = hyp_data['train_img_dir'], hyp_data['train_mask_dir'], hyp_data['imgsz'], hyp_data['augment'], hyp_data['aug_param']
val_img_dir, val_mask_dir = hyp_data['val_img_dir'], hyp_data['val_mask_dir']
train_dataset, train_loader = create_dataloader(train_img_dir, train_mask_dir, imgsz, batch_size, augment, aug_param, shuffle=True, workers=num_workers, cache=hyp_data['cache'])
val_dataset, val_loader = create_dataloader(val_img_dir, val_mask_dir, imgsz, batch_size, augment=False, shuffle=False, workers=num_workers, cache=hyp_data['cache'])
LOGGER.info(f'num training imgs: {len(train_dataset)}, num val imgs: {len(val_dataset)}')
for epoch in range(0, 4): # epoch ------------------------------------------------------------------
train_dataset.initialize()
pbar = enumerate(train_loader)
pbar = tqdm(pbar, total=len(train_loader), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
pbar.set_description(f' training size: {train_dataset.img_size}')
for i, (imgs, masks) in pbar:
img, mask = imgs[0], masks[0]
imgs = imgs
masks = masks
img = train_dataset.inverse_transform(img)
mask = train_dataset.inverse_transform(mask)
cv2.imshow('img', img)
cv2.imshow('mask', mask)
cv2.waitKey(0)
pbar.close()