-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfig3_unit_taxonomy.py
251 lines (209 loc) · 8.78 KB
/
fig3_unit_taxonomy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 2 11:08:50 2022
@author: tempali
"""
import torch
import numpy as np
import argparse
import matplotlib.pyplot as plt
import pandas as pd
import helper
import plot
import seaborn as sns
import os
from functions import get_device
parser = argparse.ArgumentParser(description='device')
parser.add_argument('--i', type=str, help='Device index')
args = parser.parse_args()
plt.style.use('ggplot')
DEVICE = get_device()
R_PATH = 'Results/Fig3/Data/'
F_PATH = 'Results/Fig3/'
M_PATH = 'patterns_rev/seeded_mnist/'
hdf_path = R_PATH+'network_stats.h5'
LOAD = False
SEED = 2553
if not os.path.isdir(os.path.dirname(R_PATH)):
os.makedirs(os.path.dirname(R_PATH), exist_ok=True)
if not os.path.isdir(os.path.dirname(F_PATH)):
os.makedirs(os.path.dirname(R_PATH), exist_ok=True)
if SEED != None:
torch.manual_seed(SEED)
np.random.seed(SEED)
INPUT_SIZE = 28*28
# dataset loaders
import mnist
import Network
train_set, validation_set, test_set = mnist.load(val_ratio=0.0)
# mnist dimensions
nc, nx, ny = 1, 28, 28
nunits = nx*ny
n_instances = 10
seq_length = 10
nclasses = 10
LOSS_FN = 'l1_pre'
nets = []
for i in range(n_instances):
net= Network.State(activation_func=torch.nn.ReLU(),
optimizer=torch.optim.Adam,
lr=1e-4,
input_size=INPUT_SIZE,
hidden_size=INPUT_SIZE,
title=M_PATH+"mnist_net_"+LOSS_FN,
device=DEVICE)
net.load(i)
nets.append(net)
batch_size=1
#------------------------------------------------------------------------------
## fig 3A: plot topographic distribution of unit types and pixel variance
# use the first network for visualisation purposes
net = nets[0]
if not os.path.exists(hdf_path) or LOAD == False:
type_mask, type_stats = helper.compute_unit_types(net, test_set, train_set)
type_dict = {'Mask': type_mask, 'Stats': type_stats}
typedf = pd.DataFrame(data=type_dict)
# save dataframe
store = pd.HDFStore(hdf_path)
store['type_stats'+str(net)] = typedf
store.close()
else:
store = pd.HDFStore(hdf_path)
typedf = store['type_stats'+str(net)]
store.close()
type_mask = typedf['Mask']
type_stats = typedf['Stats']
type_mask = type_mask.reshape(nc*nx,ny)
# plot topographic distribution and save figure
fig = plot.topographic_distribution(type_mask)
plot.save_fig(fig, F_PATH + 'topographic_distribution_mnist')
#------------------------------------------------------------------------------
## Fig 3B: Input variance of prediction and error units
u_types = ['prediction', 'error', 'hybrid', 'unspecified']
## specify dictionary for all network instances
pop_dict = {'Unit type':[], 'N': [], 'Median input variance':[], 'Network': []}
for n, net in enumerate(nets):
net_path = R_PATH + 'net'+str(n)
if not os.path.exists(hdf_path) or LOAD == False:
type_mask, type_stats = helper.compute_unit_types(net, test_set, train_set)
type_dict = {'Mask': type_mask, 'Stats': type_stats}
typedf = pd.DataFrame(data=type_dict)
# save dataframe
store = pd.HDFStore(hdf_path)
store['type_stats_net'+str(n)] = typedf
store.close()
else:
store = pd.HDFStore(hdf_path)
typedf = store['type_stats_net'+str(n)]
store.close()
type_mask = typedf['Mask']
type_stats = typedf['Stats']
# reshape type mask for proper indexing
type_mask = type_mask.reshape(nunits)
# # retrieve indices of unit types (prediction, error & hybrid)
err_inds = [i for i, e in enumerate(type_mask) if e in [0,1]]
pred_inds = [i for i, p in enumerate(type_mask) if p in [2,3]]
hybrid_inds = [i for i, h in enumerate(type_mask) if h in [4,5]]
un_inds = [i for i, u in enumerate(type_mask) if u == 6]
if not os.path.exists(hdf_path) or LOAD == False:
# # get prediction and error unit indices
# record input pixel variance per category
var = torch.zeros(nclasses, INPUT_SIZE)
# pred_inds, err_inds = [] , []
for cat in range(nclasses):
var[cat] = torch.var(test_set.x[test_set.indices[cat]],dim=0)
# set up dictionary for single network
var_dict = {'Unit type': [], 'Input variance': [], 'Nr classes':[], 'Categories': []}
# pure prediction units
for p in pred_inds:
cpred, _, _ , _ = type_stats[p]
var_pred = torch.zeros(len(cpred))
for i, cat in enumerate(cpred):
targ_pred = (cat - 1) % seq_length
var_pred[i] = var[targ_pred, p]
var_dict['Unit type'].append('prediction')
var_dict['Input variance'].append(var_pred.mean().item())
var_dict['Nr classes'].append(len(cpred))
var_dict['Categories'].append(cpred)
# pure error units
for e in err_inds:
_, cerr, _ , _ = type_stats[e]
var_err = torch.zeros(len(cerr))
for i, cat in enumerate(cerr):
targ_err = cat
var_err[i] = var[targ_err, e]
var_dict['Unit type'].append('error')
var_dict['Input variance'].append(var_err.mean().item())
var_dict['Nr classes'].append(len(cerr))
var_dict['Categories'].append(cerr)
# hybrid units
for h in hybrid_inds:
cpred, cerr, _ , _ = type_stats[h]
var_pred, var_err = torch.zeros(len(cpred)), torch.zeros(len(cerr))
for i, cat in enumerate(cpred):
targ_pred = (cat - 1) % seq_length
var_pred[i] = var[targ_pred, h]
for i, cat in enumerate(cerr):
targ_err = cat
var_err[i] = var[targ_err, h]
var_dict['Unit type'].append('hybrid')
var_dict['Input variance'].append((var_pred.mean().item(), var_err.mean().item()))
var_dict['Nr classes'].append((len(cpred), len(cerr)))
var_dict['Categories'].append((cpred, cerr))
# unspecified
for u in un_inds:
var_u = torch.zeros(nclasses)
for cat in range(nclasses):
var_u[cat] = var[cat, u]
var_dict['Unit type'].append('unspecified')
var_dict['Input variance'].append(var_u.mean().item())
var_dict['Nr classes'].append(0)
var_dict['Categories'].append([])
# create a dataframe to store the variances per unit type for single network
netdf = pd.DataFrame(data=var_dict)
# save dataframe
store = pd.HDFStore(hdf_path)
store['mnist_net'+str(net)] = netdf
store.close()
else: # load input variance data
store = pd.HDFStore(hdf_path)
netdf = store['mnist_net'+str(net)]
store.close()
for u_type in u_types:
pop_dict['Unit type'].append(u_type)
if u_type == 'hybrid':
u_type_var = list(netdf.loc[netdf['Unit type'] == u_type]['Input variance'])
pred_var, err_var = torch.tensor([p for p, e in u_type_var]), torch.tensor([e for p, e in u_type_var])
# compute medians separately and add them to the df
pop_dict['Median input variance'].append((torch.median(pred_var).item(), torch.median(err_var).item()))
else:
u_type_var = netdf.loc[netdf['Unit type'] == u_type]['Input variance'].median()
pop_dict['Median input variance'].append(u_type_var)
pop_dict['N'].append(len(netdf.loc[netdf['Unit type'] == u_type]))
pop_dict['Network'].append('Network ' + str(n+1))
popdf = pd.DataFrame(data=pop_dict)
# save dataframe
store = pd.HDFStore(hdf_path)
store['popinfo'] = popdf
store.close()
# plot input variance for each prediction and error unit
fig, ax = plt.subplots(figsize=(7,7))
df_prederr = popdf.loc[popdf['Unit type'].isin(['prediction', 'error'])]
ax = sns.barplot(x='Unit type', y='Median input variance', data=df_prederr, capsize=.2, color='#868484ff')
plot.save_fig(fig, F_PATH + 'Input_variance_unit_types_mnist')
#------------------------------------------------------------------------------
# ## fig 3: compute average number of prediction and error units
summary_stats = {'Unit type':[], 'Mean number of units':[], 'Std':[]}
for u_type in u_types:
mean = popdf.loc[popdf['Unit type'] == u_type]['N'].mean()
std = popdf.loc[popdf['Unit type'] == u_type]['N'].std()
summary_stats['Unit type'].append(u_type)
summary_stats['Mean number of units'].append(mean)
summary_stats['Std'].append(std)
# Put stats in dataframe and save them to disk
summary_stats = pd.DataFrame(data=summary_stats)
store = pd.HDFStore(hdf_path)
store['summary_stats'] = summary_stats
store.close()
print(summary_stats)