-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhelper.py
783 lines (634 loc) · 30.8 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
import numpy as np
import torch
import torch.nn.functional as F
import matplotlib as mpl
import matplotlib.pyplot as plt
import bootstrapped.bootstrap as bs
import bootstrapped.stats_functions as bs_stats
import mnist
import cifar
from Dataset import Dataset
from ModelState import ModelState
import scipy.stats as st
# nested dict for color mapping unit types (fig 3A/fig5A)
CMAPPING = {'0': {'0': {'0':0, '1': 1}, '1': {'0':2,'1':3}},
'1':{'0':4, '1':5}
}
#
#
#
# ---------- Script with helper functions for plot.py -----------
#
#
def _calc_energy(net, preactivation, energy, mask=None, med=False):
if energy == 'ap':
return _calc_ap(net, preactivation)
elif energy =='st':
return _calc_st(net, preactivation, mask, med)
# return summary of ap st (Sengupta et al 2010)
return (1/3)*_calc_ap(net, preactivation) + (2/3)*_calc_st(net, preactivation, mask, med)
def _calc_ap(net, preactivation):
# calculate outputs
act = F.relu(preactivation)
return torch.abs(act)
def _calc_st(net, preactivation, mask, med=False):
# calculate outputs
act = F.relu(preactivation)
if med:
return act
abs_W = net.model.W.detach()
if mask is not None and len(mask.squeeze().shape) > 1: # weights need to be masked
abs_W = abs_W * mask
abs_act, abs_W = torch.abs(act), torch.abs(abs_W)
synaptrans = torch.sum(abs_act.unsqueeze(-1) * abs_W, axis=1)
return synaptrans
#
# --- Helper functions for bootstrap plotting fig 2A, 4A & 5C ---
#
def compute_pixel_variance(images):
"""
computes variance of pixels for each channel seperately
"""
nsamples, nc, npix = images.shape
pixel_var = torch.zeros(nc, npix)
for c in range(nc):
var_c = images[:, c, :].var(axis=0)
pixel_var[c, :] = var_c
return pixel_var
def find_pred_units(net, dataset, seq_length=10, Z_crit=2.576):
nclasses=10
preact_stats = compute_preact_stats(net, dataset)
nunits = net.model.hidden_size
pred_rule = torch.zeros(nunits, nclasses)
for cls_plt in range(10):
med, mad = preact_stats[:, cls_plt, 0], preact_stats[:, cls_plt, 1]
# scale MAD to obtain a pseudo standard deviation
# https://stats.stackexchange.com/questions/355943/scale-factor-for-mad-for-non-normal-distribution)
for i in range(nunits): # Z_crit CI
if (torch.abs(med[i]) - torch.abs(Z_crit*mad[i])) > 0:
pred_rule[i, cls_plt] = 1
return pred_rule
def find_error_units(net, test_set, seq_length=10, target=None, Z_crit=2.576):
batch_size = 1
class_error_units = torch.zeros(seq_length, net.model.hidden_size)
t_ind = 8 # look at penultimate timepoint
error_units = torch.zeros(net.model.hidden_size)
for target in range(seq_length):
starting_point = (target - t_ind) % 10
# create normal sequences
norm_seq = test_set.create_batches(batch_size, seq_length, fixed_starting_point=starting_point)
# create distractor sequences
dis_seq = test_set.create_batches(batch_size, seq_length, distractor=True,fixed_starting_point=starting_point)
# collect responses of networks on test set
responses = extract_responses(net, norm_seq)
# collect responses of networks on distractor set
d_responses = extract_responses(net, dis_seq)
anomalies = detect_anomalies(net, responses, d_responses, Z_crit)
for i in range(len(anomalies)):
if anomalies[i] == 1:
class_error_units[target, i] = 1 #
error_units[i] = 1
return error_units, class_error_units
def detect_anomalies(net, responses, d_responses, Z_crit=2.576):
t_ind = 8 # look at final time point
n_units, n_samples = responses.shape[0], torch.tensor(responses.shape[1])
mean_responses, std_responses = responses[:,:, t_ind].mean(axis=1), responses[:,:, t_ind].std(axis=1)
mean_distractor, std_d_responses = d_responses[:,:, t_ind].mean(axis=1), d_responses[:,:, t_ind].std(axis=1)
#Z_crit = 2.576 #2.576 # 99%
#Z_crit = 1.96
anomalies = torch.zeros(n_units)
for i in range(n_units):
mu_i, mu_id = mean_responses[i], mean_distractor[i]
# calculate standard errors and compute Z scores
s_i, s_id = std_responses[i]/torch.sqrt(n_samples), std_d_responses[i]/torch.sqrt(n_samples)
Z = torch.abs((mu_i - mu_id) / torch.sqrt(s_i**2 + s_id**2))
if Z >= Z_crit:
anomalies[i] = 1
return anomalies
def extract_responses(net, test_set, seq_length=10):
"""
Collect responses from h_t from the network on the test
data
"""
test_data, test_labels = test_set
n_units, nbatch, batch_size = net.model.W.shape[0], test_data.shape[0], 1
responses = torch.zeros(n_units, nbatch, seq_length)
for i,batch in enumerate(test_data):
state = net.model.init_state(batch_size)
for t in range(seq_length):
#state = net.get_next_state(state,batch[t])
state, l_terms= net.model.forward(batch[t], state)
a, h, W = l_terms
# collect unit responses h_t
responses[:, i, t] = h.squeeze() #state.squeeze()
return responses.detach()
def compute_allclass_rd(net, test_set, seq_length=10):
responses, drives = list(zip(*[tuple(compute_responses_drive(net,test_set, target, seq_length)) for target in range(0, 9)]))
return torch.cat(responses, axis=1), torch.cat(drives, axis=1)
def compute_unit_types(net:ModelState, dataset:Dataset, training_set:Dataset=None, Z_crit=2.576, seed=2553):
"""
Helper function that determines the types of units in the network
The types are:
0: pure error unit (e*)
1: pure prediction unit (p*)
2: hybrid (h*)
3: unspecified (u)
The pure units are devided based on how many classes they predict/error
signal for:
subtypes pure error units:
0.1: 1 class (e1)
0.2: multiclasses (e2)
subtypes pure prediction units:
1.1: 1 class (p1)
1.2: multiclasses (p2)
subtypes hybrid units:
2.1: hybrid unit within (prediction and error unit for the same class) (h1)
2.2: hybrid unit across (prediction and error unit for different classes) (h2)
Resulting in 6 different typings
These are assigned as:
0-1: pure error (0: e1, 1: e2)
2-3: pure prediction unit (2: p1, 3: p2)
4-5: hybrid (4: h1, 5: h2)
6: unspecified (u)
"""
if seed != None:
torch.manual_seed(seed)
np.random.seed(seed)
#preact_stats = compute_preact_stats(net, dataset)
nunits, nclasses = net.model.hidden_size, 10
pred_rule = find_pred_units(net, dataset, Z_crit=Z_crit)
_, error_rule = find_error_units(net, dataset, Z_crit=Z_crit)
units_stats = []
for i in range(nunits):
# count the number of classes the unit is predictive and error signaling for
#n_pred, n_err = 0,0
# track the classes that the unit is predictive and error signaling for
cpred, cerr = [], []
for j in range(nclasses):
if pred_rule[i,j] == 1:
cpred.append(j)
#n_pred += 1
if error_rule[j,i] == 1:
cerr.append(j)
#n_err += 1
# record if unit is predictive and error signaling
within = list(set(cpred).intersection(cerr))
unique_pred = set(cpred).difference(set(cerr))
unique_err = set(cerr).difference(set(cpred))
if len(unique_pred) == 0 or len(unique_err) == 0: # cannot be across if one the lists are empty
across = []
else: # just take the union of the two sets
across = list(unique_pred.union(unique_err))
# record stats for unit i
# cpred: the classes the unit is predictive for, cerr: the classes the unit is error signaling for
# within: the classes the unit is both predictive and error signaling for
# across: classes that the unit is either predictive or error signaling for
units_stats.append((cpred, cerr, within, across))
# parse type (traverse decision tree)
# assign a type to the units
units_types = torch.zeros(nunits)
for i, stats in enumerate(units_stats):
cpred, cerr, within, across = stats
# decide if unspecified or not
if len(cpred) == 0 and len(cerr) ==0:
units_types[i] = 6
else:
# decide if hybrid or not
ply1 = int(len(within) > 0 or len(across) > 1)
if ply1: #hybrid branche
# decide if within/across
ply2 = int((len(across) > 1))
units_types[i] = CMAPPING[str(ply1)][str(ply2)]
else: # PE branch
# decide if prediction unit
ply2 = int((len(cpred) > 0))
# decide if multiclass
ply3 = int(len(cpred) > 1 or len(cerr) >1)
units_types[i] = CMAPPING[str(ply1)][str(ply2)][str(ply3)]
return units_types, units_stats
def compute_responses_drive(net, test_set, target=0, seq_length=10):
"""
collect network responses & drive h_k & network drive p_k+1
look at h_k, p_k+1 (you want to correlate unit output i. vs. unit drive j.)
Output: response matrix, drive matrix (NxOxK) where N=nr units, O= nr
observations, K= sequence length = largest temporal history
"""
batch_size = 1
# record network predictions (activities of units)
state = net.model.init_state(batch_size)
# collect the response matrices in here
response_list, drive_list, synaptrans_list = [], [], []
# upper bound on temporal history since you need to be able to predict
# one time step in the future and need to deal with 0-indexing
K = seq_length-1
for k in range(K):
# determine where the sequence starts given temporal history k
seq_start = (target - k) % 10
# create sequences
batch_data, batch_labels = test_set.create_batches(batch_size, \
seq_length, fixed_starting_point=seq_start)
nbatch = batch_data.shape[0]
response_k, drive_k, synaptrans_k = torch.zeros((net.model.W.shape[0], nbatch)).to(net.device),\
torch.zeros((net.model.W.shape[0], nbatch)).to(net.device), torch.zeros((net.model.W.shape[0], nbatch)).to(net.device)
abs_W = net.model.W.detach()#torch.abs(net.model.W.detach())
# get observed responses and predictions associated with target
for i, batch in enumerate(batch_data):
# move state forward to k
for m in range(0, k+1): # m in [0,..,k]
state = net.get_next_state(state,batch[m])
# collect drives and responses for target (h_k, p_k+1)
response_k[:, i] = state.to(net.device)
drive_k[:, i] = net.predict(state).squeeze()
synaptrans_k[:, i] = torch.sum(response_k[:, i].unsqueeze(-1) * abs_W, axis=1)
# reset state
state = net.model.init_state(batch_size)
# add the responses and drives to the list
response_list.append(response_k)
drive_list.append(drive_k)
synaptrans_list.append(synaptrans_k)
# construct full matrices, normalize and return them
responses, drives, synaptrans = torch.stack(response_list, dim=-1), torch.stack(drive_list, dim=-1), torch.stack(synaptrans_list, dim=-1)
return responses.detach(), drives.detach(), synaptrans.detach()
def compute_targ_pred_corrmat(responses, drive):
"""
records the correlation between h_k and p_k for temporal window
k
Output: a correlation matrix with dimensions N**2xK, where entry i,j contains the correlation
between h^i_k and p^j_k+1, where K is the temporal window and N the
number of units
"""
n_units, n_obs, T = responses.shape
K = T-1 # upper bound on temporal history
corr_mat = torch.zeros((n_units, n_units, K))
for k in range(0, K):
# compute correlation matrix for u_tk: (h_t-k, p_t)
h_k, p_k1 = responses[:, :, k], drive[:, :, k+1]
# compute correlation coefficient
c_k = torch.tensor(np.ma.corrcoef(np.ma.masked_invalid(h_k), \
np.ma.masked_invalid(p_k1)))[:n_units, n_units:] # only look at second quadrant
for u_r in range(n_units):
for u_d in range(n_units):
corr_mat[u_r, u_d,k] = c_k[u_r, u_d]
return corr_mat
def compute_post_drive_bootstrap(pred,error ,seq_length=9):
""" compute bootstrap bounds for each time point"""
bs_pred, bs_error = [], []
for t in range(seq_length):
bs_pred.append(bs.bootstrap(pred[:, t], stat_func=bs_stats.mean, iteration_batch_size=None))
bs_error.append(bs.bootstrap(error[:, t], stat_func=bs_stats.mean, iteration_batch_size=None))
return bs_pred, bs_error
def compute_bootstrap(samples_list, seq_length=10):
""" compute bootstrap bounds for each timepoint and set of samples"""
bs_list = [[] for samples in samples_list]
for t in range(seq_length):
for i, bsamples in enumerate(bs_list):
samples = samples_list[i]
bsamples.append(bs.bootstrap(samples[:, t], stat_func=bs_stats.mean, iteration_batch_size=None))
return bs_list
def compute_bootstrap_dep(notn, meds, gmed, net, net_les=None, net_les_rev=None ,seq_length=10):
""" compute bootstrap bounds for each time point"""
bs_notn, bs_meds, bs_gmed, bs_net, bs_netles, bs_netles_rev = [],[],[],[], [], []
for t in range(seq_length):
bs_notn.append(bs.bootstrap(notn[:,t], stat_func=bs_stats.mean, iteration_batch_size=None))
bs_meds.append(bs.bootstrap(meds[:, t], stat_func=bs_stats.mean, iteration_batch_size=None))
bs_gmed.append(bs.bootstrap(gmed[:, t], stat_func=bs_stats.mean, iteration_batch_size=None))
bs_net.append(bs.bootstrap(net[:, t], stat_func=bs_stats.mean, iteration_batch_size=None))
if net_les is not None:
bs_netles.append(bs.bootstrap(net_les[:, t], stat_func=bs_stats.mean, iteration_batch_size=None))
bs_netles_rev.append(bs.bootstrap(net_les_rev[:, t], stat_func=bs_stats.mean, iteration_batch_size=None))
return bs_notn, bs_meds, bs_gmed, bs_net, bs_netles, bs_netles_rev
def extract_lower_upper(bs_list):
"""
wrapper function that extracts upper and lower bounds of the confidence
interval
"""
lower, upper = [bs.lower_bound for bs in bs_list], [bs.upper_bound for bs in bs_list]
return lower,upper
#
# --- Helper function for Appendix A Figures A1 & A2 ---
#
def _run_seq_from_digit(digit, steps, net:ModelState, dataset:Dataset, mask=None):
"""Create sequences with the same starting digit through a model and return the hidden state
Parameters:
- digit: the last digit in the sequence
- steps: sequence length, or steps before the sequence gets to the 'digit'
- net: model
- dataset: dataset to use
- mask: mask can be used to turn off (i.e. lesion) certain units
"""
fixed_starting_point = (digit - steps) % 10
b, _ = dataset.create_batches(batch_size=-1, sequence_length=steps, shuffle=True, fixed_starting_point=fixed_starting_point)
batch = b.squeeze() # removed 0 because of weird
h = net.model.init_state(1)
h = h.to(net.device)
for i in range(steps):
# check if mask needs to be applied
if mask is not None:
mask = mask.to(net.device)
# check if mask is for error or for prediction
if len(mask.shape) > 1: # error mask
h, l_a = net.model(batch[i], state=h, mask=mask)
else:
h, l_a = net.model(batch[i], state=h)
h = h * mask
else:
h, l_a = net.model(batch[i], state=h)
return h.detach()
#
# --- Helper functions for lesion plots (Figures 4, 5C)
#
def pred_class_mask(net:ModelState, test_set:Dataset, target=0, Z_crit=2.576):
"""
returns prediction unit mask for class: target
"""
target = (target - 1) % 10 # activation will affect prediction one time step later
n_units = net.model.W.shape[0]
# shape: nunits x nclasses x 2
preact_stats = compute_preact_stats(net, test_set)
med, mad = preact_stats[:, :, 0], preact_stats[:,:, 1]
pred_mask = torch.ones(n_units)
for i in range(n_units):
if (torch.abs(med[i][target]) - torch.abs(Z_crit*mad[i][target])) > 0:
pred_mask[i] = 0 # unit i is predictive for class target
return pred_mask
def _pred_mask(net:ModelState, test_set:Dataset, training_set:Dataset, latent=False, reverse=False, Z_crit=2.576):
"""
Wrapper function for calling the routine that computes the mask for the networks
"""
pred_mask = _pred_mask_mad(net, test_set,training_set, latent=latent, reverse=reverse, Z_crit=Z_crit)
return pred_mask
def _error_mask(net:ModelState, test_set, training_set, latent=False, reverse=False):
"""
Knock out lateral connections between error units that are not
prediction units
"""
error_units, _ = find_error_units(net, test_set)
error_indices = (error_units).nonzero().squeeze()
pred_units = _pred_mask(net, test_set, training_set= training_set, latent=latent, reverse=reverse)
pred_indices = (pred_units == 0).nonzero().squeeze()
unique_error = error_indices[~error_indices.unsqueeze(1).eq(pred_indices).any(1)]
unique_pred = pred_indices[~pred_indices.unsqueeze(1).eq(error_indices).any(1)]
mask = torch.ones(net.model.W.shape)
for i in range(mask.shape[0]):
for j in range(mask.shape[1]):
if i in error_indices and j in pred_indices:
mask[i][j] = 0
elif i in pred_indices and i in error_indices: # yellow unit
mask[i][j] = 0 # prevent yellow units from inhibiting at t=1
return mask
def _pred_mask_mad(net:ModelState, test_set:Dataset, training_set:Dataset, latent=False, reverse=False, Z_crit=2.576):
"""
Returns a mask for the network units, where each entry is 1 if the
associated unit has a bias in its final time point median
preactivation and standard error in at least one class.
The rationale behind this approach is that a unit with nonzero preactivation
has to have a functional role in supressing activity induced by the incoming
digit since it would have been supressed by the objective function otherwise.
"""
if type(training_set) is mnist.MNISTDataset:
class_meds = mnist.medians(training_set)
else: # cifar
class_meds = cifar.medians(training_set)
preact_stats = compute_preact_stats(net, test_set)
med, mad = preact_stats[:, :, 0], preact_stats[:, :, 1]
n_units, n_classes = net.model.W.shape[0], len(class_meds)
A_mask = torch.zeros(n_units)
for i in range(n_units):
for j in range(n_classes):
if (torch.abs(med[i][j]) - torch.abs(Z_crit*mad[i][j])) > 0:
A_mask[i] = 1 # unit i is predictive for class j
pred_mask = torch.ones(net.model.W.shape[0])
if reverse:
N_pred = sum(A_mask == 1).item()
idx = (A_mask == 0).nonzero().flatten()
perm = torch.randperm(len(idx))
idx = idx[perm[:N_pred]]
pred_mask[idx] = 0
else:
pred_mask[A_mask == 1] = 0
return pred_mask
#
# --- Helper function (general) ---
#
def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100):
"""
Adapted from https://stackoverflow.com/a/18926541
"""
if isinstance(cmap, str):
cmap = plt.get_cmap(cmap)
new_cmap = mpl.colors.LinearSegmentedColormap.from_list(
'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval),
cmap(np.linspace(minval, maxval, n)))
return new_cmap
#
# --- Helper function for identifying prediction units
# Figures 3A,B 4B, 5B,C, Appendix A3,A4 ---
#
def compute_preact_stats(net:ModelState, dataset:Dataset, nclasses=10, ntime=10):
"""
Computer for each unit the average final time point median preactivation and MAD
for each class
Output: preact_stats matrix n_units x nclasses x 2
"""
preact_stats = torch.zeros((net.model.hidden_size, nclasses, 2))
# generate sequences that end in the same class
for t in [ntime - 1]: # only look at final time point (0-indexed)
for category in range(nclasses):
starting_point = int(category - t + ntime)
if starting_point > (ntime - 1): # cycle back
starting_point -= ntime
data, labels = dataset.create_batches(-1,ntime, shuffle=False,fixed_starting_point=starting_point)
nb, ntime,batch_size,ninputs = data.shape
data = data.squeeze(0)
labels = labels.squeeze(0)
batch_size = data.shape[1]
h_net = net.model.init_state(batch_size)
for i in range(data.shape[0]): # calculate response variance of category up until t
x = data[i]
h_net, l_net = net.model(x, state=h_net)
#energy = _calc_energy(net, l_net[0], l_net[1])
if i == t:
med, mad= l_net[0].to(net.device).median(axis=0).values, torch.tensor(st.median_abs_deviation(l_net[0].cpu().detach().numpy(), axis=0, scale='normal'))
preact_stats[:, category, 0] = med
preact_stats[:, category, 1] = mad
return preact_stats.detach()
# --- Helper functions that compute preactivation figures lesioned & non-lesioned
# Figure 2A, 4B & 5C ---
#
def model_activity(net:ModelState,
training_set:Dataset,
test_set:Dataset,
seq_length=10,
data_type='mnist',
color=False,
save=True):
"""
calculates model preactivation and preactivation bounds
for unlesioned models
"""
nclass = 10 # change this if you want to change the number of classes
# category medians and median for all images
if data_type == 'mnist':
meds = mnist.medians(training_set)
global_median = training_set.x.median(dim=0).values
N = 784
elif data_type == 'cifar':
meds = cifar.medians(training_set)
global_median = training_set.x.median(dim=0).values
N = 3072 # only compute results over non-latent units
# calc energy demands for theoretical benchmarks
#meds = _calc_energy(net, meds, torch.nn.ReLU(meds)) # first preact
#global_median = _calc_energy(net, global_median, torch.nn.ReLU(global_median))
with torch.no_grad():
data, labels = test_set.create_batches(-1, seq_length, shuffle=True)
nb, ntime,batch_size,ninputs = data.shape
data = data.squeeze(0)
labels = labels.squeeze(0)
batch_size = data.shape[1]
# result lists
mu_notn = []
mu_meds = []
mu_gmed = []
mu_net = []
mu_input = []
mu_latent = []
h_net = torch.zeros(batch_size, N)
h_net = net.model.init_state(batch_size)
for t in range(data.shape[0]):
x = data[t]
y = labels[t]
# calculate energy demands of x
#x = _calc_energy(net, x, torch.nn.ReLU(x)) first test with preact
# repeat global median for each input image
gmedian = torch.zeros_like(x)
gmedian[:,:] = global_median
# find the corresponding median for each input image
median = torch.zeros_like(x)
for i in range(nclass):
median[y==i,:] = meds[i]
# calculate hidden state
h_meds = (x - median)
h_gmed = (x - gmedian)
# calculate L1 loss for each unit, assuming equal amounts of units in each model
m_notn = x.abs().sum(dim=1)/net.model.input_size
m_meds = h_meds.abs().sum(dim=1)/net.model.input_size
m_gmed = h_gmed.abs().sum(dim=1)/net.model.input_size
h_net, l_net = net.model(x, state=h_net)
# calculate energy demands for the network
m_net = torch.cat([a[:,:ninputs] for a in l_net[0]], dim=1).abs().mean(dim=1).mean()
m_input = torch.cat([a[:,:ninputs] for a in l_net[0]], dim=1).abs().mean(dim=1).mean()
m_latent = torch.cat([a[:,ninputs:] for a in l_net[0]], dim=1).abs().mean(dim=1).mean()
# commented out for later analyses
#m_net = _calc_energy(net, m_net, torch.nn.ReLU(m_net))
#m_input = _calc_energy(net, m_input, torch.nn.ReLU(m_input))
#m_latent = _calc_energy(net, m_latent, torch.nn.ReLU(m_latent))
# Calculate the mean
mu_notn.append(m_notn.mean().cpu().item())
mu_meds.append(m_meds.mean().cpu().item())
mu_gmed.append(m_gmed.mean().cpu().item())
mu_net.append(m_net.mean().cpu().item())
mu_input.append(m_input.mean().cpu().item())
mu_latent.append(m_latent.mean().cpu().item())
return data, np.array(mu_notn), np.array(mu_meds), np.array(mu_gmed), np.array(mu_net), np.array(mu_input), np.array(mu_latent)
def bootstrap_model_activity(nets:[ModelState],
train_set:Dataset,
test_set:Dataset,
seq_length=10,
energy='ec',
lesioned=True,
lesion_type='pred',
latent=False,
seed=None,
Z_crit=2.576,
data_type='mnist'):
"""
Calculates energy consumption of models and
all CI 99%/95% bootstrapped with replacement
"""
if seed != None:
torch.manual_seed(seed)
np.random.seed(seed)
# initialize sample matrices
norm_samples = np.zeros((len(nets), seq_length))
lesion_samples = np.zeros((len(nets), seq_length))
cont_samples = np.zeros((len(nets), seq_length))
for i, net in enumerate(nets):
mu_norm, mu_les =\
model_activity_lesioned(net, train_set, test_set, lesion_type='pred', seq_length=10, energy=energy, save=False,\
latent=False, data_type='mnist',Z_crit=Z_crit)
# calculate energy curves with control lesion
_, mu_cont=\
model_activity_lesioned(net, train_set, test_set, lesion_type='pred', seq_length=10, energy=energy, save=False,\
latent=False, data_type='mnist', reverse=True, Z_crit=Z_crit)
# fill sample matrices
norm_samples[i, :] = mu_norm
lesion_samples[i, :] = mu_les
cont_samples[i, :] = mu_cont
# compute bootstrap bounds
[bs_norm, bs_lesion, bs_cont] = compute_bootstrap([norm_samples, lesion_samples, cont_samples])
# store samples and bs in dictionary
bs_sample_dict = {'norm': [norm_samples], 'lesion': [lesion_samples], 'cont': \
[cont_samples], 'bs_norm': [bs_norm],'bs_lesion': [bs_lesion], 'bs_cont':[bs_cont]}
return bs_sample_dict
def model_activity_lesioned(net:ModelState, training_set:Dataset, test_set:Dataset, lesion_type='pred',
seq_length=10, energy='ec', save=True,
latent=False, data_type='mnist', reverse=False, Z_crit=2.576):
"""
calculates model preactivation and preactivation bounds
for lesioned models
"""
if data_type == 'mnist':
batch_size = -1 # full dataset
else:
batch_size = 32
if lesion_type == 'error':
mask = _error_mask(net, test_set, training_set,latent=latent, reverse=False)
else:
mask = _pred_mask(net, test_set, training_set= training_set, latent=latent, reverse=reverse, Z_crit=Z_crit)
with torch.no_grad():
data, labels = test_set.create_batches(batch_size, seq_length, shuffle=True)
nbatch, ntime, batch_size, ninputs = data.shape
#data = data.squeeze(0)
#labels = labels.squeeze(0)
#batch_size = data.shape[1]
# result lists
mu_net, mu_netles = torch.zeros(ntime), torch.zeros(ntime)
#mu_input = []
#mu_latent = []
h_net = net.model.init_state(batch_size)
h_netles = net.model.init_state(batch_size)
# create seperate states to prevent leaking across batches
state = h_net.unsqueeze(0).repeat_interleave(nbatch, dim=0)
lesioned_state = h_netles.unsqueeze(0).repeat_interleave(nbatch, dim=0)
for t in range(ntime):
m_net, m_netles = [], []
for b in range(nbatch):
h_net, h_netles = state[b], lesioned_state[b]
x = data[b,t]
h_net, l_net = net.model(x, state=h_net)
if lesion_type == 'pred':
h_netles = h_netles * mask # perform lesion
h_netles, l_netles = net.model(x, state=h_netles)
else: # lesion error units
h_netles, l_netles = net.model(x, state=h_net, mask=mask)
# calculate energy of the hidden states
if energy != 'pre':
l_net[0] = _calc_energy(net, l_net[0], energy)
l_netles[0] = _calc_energy(net, l_netles[0], energy, mask)
#m_net[b,:] = torch.cat([a[:,:ninputs]for a in [l_net[0]]], dim=1).abs().mean(dim=1)
#m_netles[b,:] = torch.cat([a[:,:ninputs] for a in [l_netles[0]]], dim=1).abs().mean(dim=1)
#m_input = torch.cat([a[:,:ninputs] for a in [l_netles[0]]], dim=1).abs().mean(dim=1).mean()
#m_latent = torch.cat([a[:,ninputs:] for a in [l_netles[0]]], dim=1).abs().mean(dim=1).mean()
m_net += torch.cat([a[:,:ninputs] for a in [l_net[0]]], dim=1).abs().mean(dim=1).tolist()
m_netles += torch.cat([a[:,:ninputs] for a in [l_netles[0]]], dim=1).abs().mean(dim=1).tolist()
# update state and lesioned state for batch b
state[b], lesioned_state[b] = h_net, h_netles
# m_net = m_net.mean(axis=0)
#m_netles = m_netles.mean(axis=0)
# Calculate the mean
mu_net[t], mu_netles[t] = torch.tensor(m_net).mean(), torch.tensor(m_netles).mean()
#mu_net.append(m_net.flatten().mean())
#mu_netles.append(m_netles.flatten().mean())
#mu_input.append(m_input.mean().cpu().item())
#mu_latent.append(m_latent.mean().cpu().item())
return np.array(mu_net), np.array(mu_netles)