-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar100.py
47 lines (35 loc) · 1.68 KB
/
cifar100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Source: https://www.cs.toronto.edu/~kriz/cifar.html
from pathlib import Path
import pickle
import numpy as np
from sklearn.model_selection import train_test_split
import config
from cifar10 import CIFARDataset, get_cifar_mean_and_std
def get_cifar100_imgs_and_gts(data_path):
with open(data_path, mode="rb") as f:
data_dic = pickle.load(f, encoding="bytes")
imgs = data_dic[b"data"]
imgs = imgs.reshape(-1, 3, config.IMG_SIZE, config.IMG_SIZE)
imgs = imgs.transpose(0, 2, 3, 1)
gts = data_dic[b"fine_labels"]
gts = np.array(gts)
return imgs, gts
def get_all_cifar100_imgs_and_gts(data_dir, val_ratio):
train_val_imgs, train_val_gts = get_cifar100_imgs_and_gts(Path(data_dir)/"train")
train_imgs, val_imgs, train_gts, val_gts = train_test_split(
train_val_imgs, train_val_gts, test_size=val_ratio,
)
test_imgs, test_gts = get_cifar100_imgs_and_gts(Path(data_dir)/"test")
return train_imgs, train_gts, val_imgs, val_gts, test_imgs, test_gts
def get_cifar100_dses(data_dir, val_ratio=0.1):
train_imgs, train_gts, val_imgs, val_gts, test_imgs, test_gts = get_all_cifar100_imgs_and_gts(
data_dir=data_dir, val_ratio=val_ratio,
)
mean, std = get_cifar_mean_and_std(train_imgs)
train_ds = CIFARDataset(imgs=train_imgs, gts=train_gts, mean=mean, std=std)
val_ds = CIFARDataset(imgs=val_imgs, gts=val_gts, mean=mean, std=std)
test_ds = CIFARDataset(imgs=test_imgs, gts=test_gts, mean=mean, std=std)
return train_ds, val_ds, test_ds
if __name__ == "__main__":
data_dir = "/Users/jongbeomkim/Documents/datasets/cifar-100-python"
train_ds, val_ds, test_ds = get_cifar100_dses(data_dir=data_dir, val_ratio=0.1)